Rationale Belief Aggregation for Self-Verified
Reasoning

Stanford CS224N Custom Project

Vaishnavi Shrivastava
Department of Computer Science
Stanford University
vaishl@stanford.edu

Abstract

Large language models such as GPT-3 [[1] have a great deal of information en-
coded within their parameters, however, our ability to access this information is
bottlenecked by how we communicate or interface with these models, namely
through prompting. Chain-of-thought prompting [2] demonstrates the value of
producing step-by-step reasoning chains (rationales) before answering a question,
and self-consistency [3]] shows that sampling multiple rationales and aggregating
their outputs can allow for more robust reasoning. In this work we postulate that
rationales consist of multiple beliefs, or informational phrases that the model uses
as context for its reasoning (which may or may not be factual), and some inference
over these beliefs. Empirically, we observe that different rationales expose different
beliefs and hypothesize that performing a principled aggregation over the beliefs
surfaced by different rationales would allow us to reduce internal contradictions
within a language model and produce more consistent rationales to reason over. We
propose two such aggregation strategies, Belief Aggregation and Belief Majority
Voting, and evaluate their performance over three challenging QA datasets [4].
Our method results in modest gains in accuracy over self-consistency and greedy
decoding for chain-of-thought prompting, while providing strong gains in coverage
(% of questions a model is able to answer without abstaining), thereby resulting in
confident reasoning over a larger set of questions.
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2 Introduction

Large pre-trained language models [1]] have increasingly encapsulated more and more world-
knowledge in their weights. However, as chain-of-thought prompting [2] has shown, prompting
models with the step-by-step reasoning required to solve a question can elicit higher-order reasoning
capabilities from large language models. Self-Consistency based decoding [3] has also shown that
generating multiple reasoning paths (which we will refer to as rationales) and computing a final
output by majority voting on the sampled outputs can significantly improve performance over greedily
sampling a single rationale, which can suffer from local optimization and repetitive generations [3].
In most cases, chain-of-thought rationales consist of a set of beliefs followed by some inference
based on these beliefs. We define beliefs as informational statements such as ‘Barack Obama has 2
children’, which the model uses to reason about related questions. These beliefs could be true or false
(i.e. the model could equivalently generate ‘Barack Obama has 3 children’, which is false), but are
implicitly treated by the LM to be true. When sampling multiple rationales, we empirically observe
that different rationales can expose different beliefs that the language model may have about the



given question. For example, rationale 1 may surface beliefs A and B, while rationale 2 may surface
beliefs C and D. The problem we seek to solve is, how can aggregate the beliefs surfaced in different
rationales, use them to verify each other and gain a more consistent view of what the language model
believes, and use this set of self-verified beliefs that we are more confident in to reason more robustly
about complex problems?

This research question of aggregating rationales for more confident and consistent reasoning is
important because no single sampled rationale can provide a full sense of the information a language
model contains about a particular question. By relying on just one rationale, the language model
answers questions using an incomplete set of information. Furthermore, the information exposed
in a given rationale may be an unfaithful reflection of the ‘true beliefs’ that the LM actually has.
Given the diversity and volume of data used to train an LM, and the problem of hallucination during
generation [6], LMs most likely encode and generate many facts that contradict themselves. Therefore
employing an element of self-verification is also crucial for consistent reasoning by surfacing a large
set of beliefs relevant to a question, checking for contradictions between these beliefs, and finding the
most confident set of non-contradictory beliefs that can be provided as context to the model. This set
would ideally represent a relatively complete set of information relevant to a given question the model
is most confident about, and therefore serve as more robust context to base the language model’s
reasoning on than a single rationale.

3 Related Work

There has been some prior work done on sampling multiple rationales from a model and using them
to answer an overall question. For example, the Self-Consistency paper samples a series of rationales
from a language model and then aggregates across these rationales. The primary difference in this
approach is that with Self-Consistency, the aggregation is done over the final answers instead of
over on the beliefs or factual information exposed in each rationale. Aggregating over final answers
can be insufficient in cases where the sampled outputs are evenly distributed over the space of final
answers. Self-Consistency also doesn’t improve rationale quality or improve performance in cases
where information from multiple rationales is required to faithfully and factually reason about and
answer a question. The Ask Me Anything technique [7]] also prompts a model multiple times for a
given question, but instead of generating chain-of-thought style rationales the model is prompted
using a series of templates to generate questions related to the original question and the final answers
are aggregated. Our technique would not require template-based questions and would perform
aggregation at a more granular level based on the beliefs within a rationale.

There are also works related to making the outputs of a model more consistent. The ConCord
framework [8] samples multiple output answers for a given question and then aims to make a model’s
output for different questions consistent with each other, also by checking for entailments between
different sampled answers across questions and using a MAX-SAT solver to ensure that the selected
outputs are consistent. Our work notably differs from this since we sample rationales (instead of
directly sampling answers) and instead of checking for consistency across responses to different
questions, we check for consistency regarding model beliefs surfaced pertaining to a given question.
Maieutic prompting [9] is another technique that pursues logically consistent reasoning by abductively
prompting a model to rationalize both possible answers of True or False questions and using a MAX-
SAT solver to unify the resulting output explanations. Our method differs from this technique since
instead of abductively prompting a model, we sample and aggregate across multiple rationales, and
our technique can be applied to datasets where the answer is more nuanced than just True or False.
Related methods also exist which provide model generated content as context for the model to answer
a given question. Liu et. al. [10] prompt the model to specifically elicit more knowledge about a
given commonsense question and then reprompt the model with the produced knowledge. This work
differs from ours in that we sample chain-of-thought style rationales from the model, which include
a series of related chained facts ultimately leading to an answer and aggregate across these chains,
instead of reprompting for individual pieces of information from the model. Yu et. al. [11] generate
a diverse set of documents related to a given question, instead of retrieving related documents, and
answer questions in the context of the retrieved documents. This differs from our technique since
there is no self-verification step of extracting information across documents and finding an internally
consistent set of information.
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Figure 1: Diagrams of the Belief Aggregation and Belief Majority Voting Techniques

4 Methods

Task. The main tasks to evaluate this method on will be complex multi-step reasoning tasks, such as
commonsense reasoning or reasoning with world knowledge, and arithmetic reasoning. Though the
specifics may vary, the task in each of these cases is given a question to reason about it explicitly and
then produce the final answer predicated on this reasoning. In our method, we will sample multiple
such rationales and aggregate the information found across them to answer the final question. An
example input question (from the StrategyQA dataset) may be "Do placozoa get learning disabilities?",
with an example chain-of-thought output being "Placozoa are simple animals. They do not have a
nervous system. They cannot learn. Thus, placozoa do not get learning disabilities. So the answer is
no." We will sample and aggregate multiple such outputs.

Methods. Our first aggregation method Belief Aggregation has the following steps:

1. Generate: We begin by sampling several rationales from a language model, similar to Self-
consistency. In the current version of this technique, we use chain-of-thought prompting with
temperature sampling to generate rationales. In further iterations, we may also incorporate
other prompting techniques like self-ask or decomposition-based prompting [[12] to extract
more diverse information from the model.

2. Extract: After the rationales are sampled, we extract the model beliefs or factual information
from the rationales, experimenting with different few-shot prompts to extract this information.
Currently we use two different types of extraction, annotated as ‘Keypoints’ and ‘Distinct
Facts’ in the results. In ‘Keypoints’ extraction we prompt the model with some in-context
examples and the instruction “What are the keypoints that can be extracted from the following
statements?’. With the ‘Distinct Facts’ extraction we change the instruction to ‘Remove
any repeated information from the following statements.” and correspondingly change the
in-context examples. The statements in each case include the sampled rationales. In addition,
we post-process the beliefs by manually filtering ‘uninformative’ beliefs, since models
(text-davinci-002 in particular) have a tendency to often express uncertainty even if they
contain a particular answer. We further deduplicate beliefs with a large amount of shared
content by computing an n-gram based overlap metric and filtering out beliefs with overlap
above a given threshold.

3. Aggregate: For each extracted belief, we compute a confidence score, based on the language
modeling probability of generating that belief given the question - P(belief | question), which
is further normalized by dividing by P(belief) to prevent up-weighting generic beliefs [? ].
Additionally, in order to self-verify and shed contradictory beliefs, we check the pairwise
entailments between every pair of beliefs and determine which ones are contradictory to
each other. After these beliefs have been extracted, and their entailment relationships and



confidence scores have been computed, we use a MAX-SAT solver to select the highest
confidence, non-contradictory subset of beliefs.

4. Reprompt: Then, we reprompt the model with the question and the selected subset of
beliefs, to generate the final answer.

Our second method Belief Majority Voting shares the same first two steps as the Belief Aggregation
method - generating rationales and then extracting beliefs from those rationales, but instead performs
majority voting to aggregate the beliefs.

1. Generate: Same as in Belief Aggregation
2. Extract: Same as in Belief Aggregation

3. Majority Voting Aggregation: For each extracted belief, we reprompt the LM by providing
the extracted belief as additional context before prompting the model to provide the answer
conditioned on the question and the given belief. Then the outputted answer for each belief
are aggregated using a majority vote to produce the final answer.

We evaluate our method against chain-of-thought with greedy decoding and self-consistency with 10
sampled rationales with temperature sampling. We will re-implement these baselines and regenerate
the corresponding accuracy numbers. We report results on the Instruct-GPT3 (openai/text-davinci-
002) model [[13]], which is used for each step of prompting in both aggregation methods.

5 Experiments and Results

Dataset We will use several datasets including StrategyQA [4]], OpenbookQA [14], and Common-
senseQA?2 [15]. Each of these datasets have several thousand examples in their train sets, and their dev
set sizes can range from 200 examples to several thousand examples. No additional pre-processing
is done on the data. Given the token quota constraints for this project, we evaluated our method on
200 randomly sampled questions from the datasets, instead of evaluating on their entire dev sets.

Evaluation The chain-of-thought and self-consistency papers primarily report percentage accuracy
of the final answer across the test set for each dataset as their metric of choice. So our primary metric
of choice is also accuracy on the final outputted answer. We also report coverage on the StrategyQA
dataset, where we empirically saw more cases of the model abstaining an answer (by a tied vote in
self-consistency or by outputting I don’t know or Maybe). Coverage is defined as the % of questions
for which the model answers the question instead of abstaining.

5.1 Experimental Details

All experiments are done using the Instruct-GPT3 model, prompted using the CRFM API. All of the
above steps have been implemented froms scratch by creating a prompting pipeline specifically for
this project (using the CRFM API to prompt the models). The MAX-SAT solver was downloaded
and used as a python package (https://pysathq.github.io/docs/html/api/examples/rc2.html). The
prompts for the generation step were borrowed from the chain-of-thought paper for StrategyQA and
from the Maieutic prompting paper for CSQA2, and written using randomly sampled examples for
OpenbookQA. All other prompts were written using randomly sampled examples from the training
subsets of the datasets. All results are on 200 randomly sampled questions from the training and dev
subsets of each dataset (given token allocation constraints with CRFM).

5.2 Results

Table[T] displays the results on a few variations of our Belief Aggregation method on the StrategyQA
dataset. Figure [2p shows the results of Belief Aggregation compared to the baseline approach on the
StrategyQA, OpenbookQA, and CSQA?2 datasets. Overall Belief Aggregation slightly exceeds perfor-
mance as compared to both the chain-of-thought and self-consistency baselines on OpenbookQA
and CSQAZ2, while it slightly underperforms self-consistency on StrategyQA but still supercedes the
greedy decoding baseline. The technique however does result in a 3-4% boost in coverage compared
to self-consistency and greedy decoding.

5.2.1 Analysis of Different Variants of Belief Aggregation



Technique Accuracy

Greedy Chain-of-Thought 0.665
Self-Consistency Chain-of-Thought 0.706
Keypoints + Remove and Ignore Irrelevant Content 0.680
Distinct Facts + Remove and Ignore Irrelevant Content 0.680
Distinct Facts + Remove and Ignore Irrelevant Content + Ngram Deduplication 0.685
Distinct Facts + Remove and Ignore Irrelevant Content + Ngram Deduplication +
Normalized Confidence Score 0.680
Distinct Facts + Remove and Ignore Irrelevant Content + Ngram Deduplication +
Normalized Confidence Score + Top-5 Confidence Thresholding 0.695

Table 1: Accuracies of variants of Belief Aggregation on 200 examples from the StrategyQA dataset
for the text-davinci-002 model, with 10 sampled rationales.
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Figure 2: Accuracy and Coverage of Belief Aggregation compared to Greedy Decoding and Self-
consistency

Technique Accuracy
Greedy Chain-of-Thought 0.665
Self-Consistency Chain-of-Thought 0.706
Majority Vote Beliefs + Ignore Irrelevant

+ Ngram Deduplication 0.690

Majority Vote Beliefs + Ignore Irrelevant
+ Ngram Deduplication + Normalized Confidence Score
+ Top-5 Confidence Thresholding 0.695

Table 2: Accuracies of variants of Belief Majority Voting on 200 examples from the StrategyQA
dataset for the text-davinci-002 model, with 10 sampled rationales.



Extracting Beliefs

We consider two separate prompts to extract beliefs from a given rationale. The first ‘Keypoints’ is
an instruction + few-shot example designed to extract the most relevant, unique beliefs from a given
rationale. The second ‘Distinct Facts’ has a similar format but an instruction and few-shot example
designed to retain all unique information, unburdening the belief extraction stage from needing to
identify the most relevant content. Empirically, we see better performance from the ‘Distinct Facts’
prompt since asking the model to identify the most important beliefs is often more likely to result in a
loss of information causing us to lose important beliefs to reason with.

Removing Irrelevant Content

Prompting an LM while including irrelevant content in provided context often results in the LM being
distracted by the irrelevant information. We saw the same problem occur in our technique, given
that LMs can at times output irrelevant beliefs in their chains-of-thought. For example, given the
following question from the StrategyQA dataset, "Was Hillary Clinton’s deputy chief of staff in 2009
baptised?", one belief outputted in a chain-of-thought rationale could be "Huma Abedin, Hillary
Clinton’s deputy chief of staff in 2009, was born in 1976.", even though the birth year of the deputy
chief of staff is irrelevant to answering the question. We hypothesize that this may occur because LMs
like humans may ‘brainstorm’ and surfacing such irrelevant information may occasionally indirectly
trigger the formation of other more useful connections between concepts. To remove such irrelevant
content from distracting the LM, we use a zero-shot instruction prompt to post-process the beliefs
by directing the LM to consider both the question and the beliefs and retain only the beliefs useful
in answering the question. Additionally, we modify the instruction when reprompting the model to
ignore any content in the context. While this doesn’t result in a performance improvement for the
‘Keypoints’ technique, it does improve performance for ‘Distinct Facts’, perhaps given that more
beliefs are retained so there’s a greater chance of more beliefs being irrelevant.

Confidence Scores

In our technique, we compute confidence scores for each belief to provide as weights to the MAX-
SAT solver, in addition to the entailment-contradiction relationships between beliefs. The original
confidence score of belief b = P(b|"Q: question A: "), i.e. the probability of seeing the belief as an
answer to the given question. We experiment with normalizing the confidence score computation
to divide this score by P(b|"A: "), to reduce the weights of beliefs that may be seen frequently,
regardless of any given question. This normalization coupled with confidence score thresholding to
select only the beliefs that the LM is most confident about results in a 1% performance gain.

5.2.2 Analyzing the Success of Belief Aggregation

Further analysis reveals where our method is better than the self-consistency approach of majority
voting over final answers. There are several cases where the model’s outputs are evenly distributed
across the space of all possible answers. For example, in StrategyQA where the answer space consists
of True, False, if half of the rationales result in an output of T'rue while half result in an output
of False, this suggest an inherent lack of confidence in the model’s outputted answer, similar to a
model outputting "I don’t know" or "Maybe" as the final answer. In such cases, where the outputs
across all sampled rationales are fairly evenly distributed, our method of belief aggregation is able to
better extract the relevant information often present in a minority of the rationales and compose or
leverage this information to answer the overall question. Currently the best metric we have to assess
this improvement is coverage, or the % of questions to which the model outputs an answer instead of
abstaining (by saying "I don’t know" or "Maybe" in the case of greedy decoding or belief aggregation
or having a tie in majority voting with self-consistency). Our technique results in a 3-4% increase
in coverage compared to both self-consistency and greedy decoding, allowing us respond to more
questions.

5.2.3 Analyzing the Failure Cases of Belief Aggregation

While belief aggregation is a well-motivated technique, there are different pieces of the overall
process that that could be more defined and more carefully explored in our future work to further
improve our results. The first area of improvement is around belief extraction. Currently the beliefs
produced by prompt-based belief extraction can run into the issues of being either too atomic or
not atomic enough in their formulation. For example, given the question ‘Is the Asian black bear
multicolored?’, a few extracted beliefs could be ‘The Asian black bear is black with a white crescent
on its chest.” and ‘Black and white are two colors.” In this case, the second belief is not one that is



relevant to the question in a standalone way; it requires the first belief to provide additional context.
Similarly given the question ‘Do the directors of The Matrix advocate for transgender rights?’, an
extracted belief could be ‘The Wachowskis, who are the directors of The Matrix, are both transgender
women.’, which may not be atomic enough, since it actually consists of two separate beliefs ‘The
Wachowskis are directors of The Matrix.” and ‘The Wachowskis are both transgender women.’. One
way of improving this could be more nuanced in-context examples that give more concrete examples
of these two cases. We leave other considerations to future work.

Another potential concern with our current method is the lack of calibration in LLMs, which affects
our confidence score computation. Specifically beliefs that LLMs may consider to be true may actually
be factually incorrect, therefore when we threshold on the top-N beliefs we are most confident in, we
may be filtering out beliefs that have a lower weight but are actually correct. Another related issue is
LLMs tending to upweight beliefs that are more generic and therefore more likely to be true, over
beliefs that are more nuanced and relevant to the question under consideration, but also more likely
to possibly be false.

Furthermore, our method currently relies on entailment relationships between beliefs to find a set
of factually consistent beliefs. However, it might be more reasonable to be able to cluster beliefs
that all imply one particular answer and separately cluster beliefs that imply a different answer, by
considering the beliefs as evidence we are accruing towards one answer or the other. For example,
given the question ‘The Wachowskis are directors of The Matrix.’, the beliefs ‘The directors of The
Matrix have not made any public statements about transgender rights.” and ‘The Wachowskis, who
are the directors of The Matrix, are both transgender women.” are not directly contradictory (may
have a neutral relationship with each other), but may be more likely to imply one particular answer or
another, and therefore may be more likely to constitute evidence towards one particular answer or
another.

5.2.4 Analyzing Belief Majority Voting

We motivate Belief Majority Voting by empirically observing that self-consistency often fails in
cases when several sampled rationales are quite similar to one another, and only a minority of the
rationales contain the information necessary to answer the question correctly. In such a case, majority
voting ignores the critical minority opinion. Table [2] shows the results of two variants of belief
majority voting compared to the greedy decoding and self-consistency baselines on the StrategyQA
dataset. Overall, belief majority slightly underperforms self-consistency. Concretely analyzing
outputs, we observe that this occurs for a few different reasons. One shortcoming of this method
is that it relies on ngram-based deduplication of beliefs, however this often fails to filter all of the
beliefs that are very similar to each other, since beliefs can be semantically similar without being
syntactically similar. Another challenge this method faces is the issue of language model calibration,
where again incorrect beliefs may be assigned lower confidence scores compared to factually correct
ones. This poses a problem if we try to filter out less relevant beliefs by thresholding on the belief
confidence scores, since we may end up retaining incorrect beliefs and losing correct ones. The final
concern this method faces is that here beliefs are used in a standalone way as context to answer a
question. However, often beliefs must be coupled with other beliefs in order to be understood in
context of the question. In future work, we will investigate ways of modeling the dependencies
between beliefs using models such as probabilistic graphical models.

6 Discussion and Conclusion

In this work we introduce two novel prompting techniques for more robust question answering by
aggregating chain-of-thought rationales - Belief Aggregation and Belief Majority Voting. We
postulate that chain-of-thought based rationales consist of a set of beliefs in addition to a basic
inference over those beliefs. Since no single rationale can surface all possible beliefs required to
answer a given question, we follow self-consistency in generating multiple rationales to surface a
larger set of possible beliefs relevant to the question. We consider a principled means of aggregating
the surfaced beliefs by computing entailment-contradiction relationships between each pair of beliefs,
computing confidence scores for each belief, and leveraging a MAX-SAT solver to find the highest
confidence set of consistent beliefs surfaced by the LLM and then reprompting the LLM with this
consistent set of beliefs. We also implement and investigate an alternate strategy around reprompting
the model with each belief as context and majority voting the outputs to arrive at our final answer. We
evaluate our method on the Instruct-GPT3 model across three challenging question answering datasets,
StrategyQA, OpenbookQA, and CSQAZ2, and in general see our approach result in modest gains over
the greedy decoding and self-consistency baselines for chain-of-thought reasoning. Additionally,



we see substantive 3% gains on coverage for StrategyQA with Belief Aggregation, indicating that
our approach allows us to confidently answer more questions in the dataset. We further analyze our
outputs and reason about areas of improvement to our methods, which we leave as future work in the
important area of rationale aggregation.
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