
Multitasking with BERT
Stanford CS224N { Default} Project

Jiacheng Hu
Department of Computer Science

Stanford University
jchu0822@stanford.edu

Jack Hung
Department of Computer Science

Stanford University
jjhung66@stanford.edu

Abstract

Models take a lot of resources to train. Thus it is often desirable to train one
single model that can perform a variety of tasks, which is what we are trying to
achieve on this default final project. Our goal is to implement a BERT model that
is able to multitask: after training, this one single model would be able to perform
sentiment analysis, paraphrase detection, and semantic textual similarity. After
finishing implementing a minBERT model and the Adam optimizer, we achieve
this multi-task goal by implementing a multi-task finetuning framework, which
optimizes the model over all three different tasks at the same time instead of one
after another. To avoid clashing between objectives, we implemented gradient
surgery on our Adam optimizer and explored whether assigning different weights to
objectives could lead to a potential increase in model performance. The answer we
get from this particular model is no. We take full advantage of the Sentence-BERT
framework for paraphrase detection and semantic textual similarity tasks, which
captures deeper information and yields a much higher model performance than
the conventional concatenation approach. We also propose using a uniform loss
function across multi-task learning, and we discovered that this provides uniformity
to the losses of distinct objectives and empirically yields better performance on the
multitask-fine tuned model.

1 Key Information to include

• Mentor: Cathy Yang
• External Collaborators (if you have any): None
• Sharing project: None

2 Introduction

In this paper, we tackle the challenge of building a multitask learning model which fine tunes on
top of BERT in order to perform on 3 key tasks: sentiment classification, paraphrase detection, and
semantic textual similarity. The main goal of our project is to implement a handful of potential
improvements to our baseline model, which directly uses BERT representations without additional
fine tuning, in order to achieve significant increases in the overall performance.

While there are various challenges to this task, we narrowed down our focus to a handful which we
attempted to address:

1. Gradient updates to the same model from different loss functions can often clash: to
combat this, we use a technique called gradient surgery proposed by Yu et al. which has
potential to reconcile these differences.

2. Favored performance towards certain tasks over others: The ultimate goal of our project
is to improve our model’s scores on all three main tasks. This means that improvement to

Stanford CS224N Natural Language Processing with Deep Learning

any task is beneficial, ideally no one task outshines the rest. To combat this imbalance, we
modify gradient surgery to prioritize some gradient updates over others so we can shift and
balance the improvements, an approach proposed by Bi et al. in order to train a “main” task
and an “auxiliary” (less important) task.

3. Prediction Functions for Different Tasks: The three tasks that our model needs to handle,
being sentiment analysis (one sentence input, one output score from 1-5), paraphrase
detection (two sentences input, binary output), and semantic textual similarity (two sentences
input, one similarity score as output), vary in input and output formats quite drastically. This
means that the prediction functions for different tasks cannot be defined uniformly across all
three tasks. Furthermore, as this is one single model performing three different tasks at the
same time, we need to consider whether the objectives we set up eventually clash with each
other, as this would greatly hinder the performance of the model.

4. Loss Functions for Multitask Fine-tuning: Aside from the gradient surgery, we are, in
short, adding the loss functions of the three gradients from different objectives together, and
optimizing the model from the summed loss as a whole. On paper this sounds promising, but
can get troublesome in implementation: when there is a single task, the optimizer trains the
model with the goal to minimize the loss, which should lead to an increase in performance
of that given task; but with three losses added together and being optimized, it could cause
uneven weighting, as there is no guarantee that multiple gradients contribute to the total
loss with the extent to improve on the performance of each task. Thus specifically for our
goal to finetune the model with multitask learning, it is crucial to maintain uniformity across
different loss functions.

3 Related Work

Bidirectional Encoder Representations from Transformers (BERT) by Devlin et al. (2018). is a
technique for creating language representations through pre-training on massive corpuses. The large
amount of data used means that the word embeddings are incredibly robust, giving it great promise
in being able to “understand” the meaning of words in a text and thus making it a good candidate
for use in various downstream applications when used in conjunction with fine-tuning. Our project
explores this concept, applying various fine-tuning techniques to build a representation on top of the
baseline BERT model that can perform decently on a selected set of tasks.

Gradient surgery is a technique proposed by Yu et al. (2020). in which during gradient updates, the
gradient of the i-th task gi is projected to the normal plane of some conflicting gradient gj . In the
original paper, Yu et al. claims that such manipulation of gradients improves the performance of
models during multi-task learning, as the method can alleviate conflicts in gradient updates to the
same parameter which can often be the case with unrelated tasks. We apply this exact technique via
the PCGrad optimizer written by Tseng (2020) to produce a successful improvement to our baseline
model.

The Sentence BERT or SBERT by Reimers and Gurevych (2019) is a modified BERT network
which uses Siamese network structures to improve performance on semantic similarity tasks. In their
paper, Reimers and Gurevych propose that two BERT networks should be used to encode pairs of
sentences, after which cosine similarity is applied to the two embeddings for tasks like semantic
similarity. Additionally, they demonstrate that SBERT can be more widely used in other downstream
NLP applications. We take inspiration from SBERT’s architecture and adapt it to multitask learning,
particularly drawing from their classification objective function and using a similar equation in our
paraphrase detection and semantic similarity tasks.

4 Approach

1. Multi-task Learning with Gradient Surgery: As mentioned in the related work, Yu et al.
(2020)’s gradient surgery relies on projecting conflicting gradients, so that the gradient of
the i-th task gi is projected to the normal plane of some conflicting gradient gj :

gi = gi −
gi · gj
||gj ||2

· gj

2

Much richer details of gradient surgery and why it performs well on a theoretical level are
covered in the original paper. The pseudocode of the PCgrad update is illustrated below:

Fortunately, there are complete implementations of PCgrad updating rules online written by
WeiChengTseng (Tseng, 2020). We used this implementation in our training, renaming the
original pcGrad class by Tseng as MGrad in our multitask_optimizer.py file, which is just a
copy of Tseng’s implementation. As this is proven theoretically from the original paper as a
robust technique that would not hinder the performance of multitask training, we applied
the pcGrad update rule on our Adam optimizer for all other experiments.

2. Main + Auxiliary Tasks: In Bi et al. (2022) paper MTRecc: Multi-task Learning over
BERT for News Recommendation, Bi et al. propose a modified version of gradient surgery
by introducing the concepts of main and auxiliary tasks: the gradients of the auxiliary tasks
are added and applied a tunable hyperparameter weight λ, then feeded with the gradient
of the main task to perform gradient surgery. Specifically, we declare sentiment analysis
as our main task and the other two as auxiliary tasks. That being said, we claim that
paraphrase and semantic textual similarity are “helping” tasks that will help improve on
sentiment analysis, because making the computer learn paraphrases and textual similarities
will logically improve its efficacy in classifying sentiments. The equation of our auxiliary
task computation goes as follows:

gaux = λ(gpara + gsts)

In our implementation, we added two new arguments in the argument parser: loss_type and
lbd. Declaring loss_type as “main+aux” will apply the modified gradient surgery as shown
in the equation above with λ = args.lbd. λ is empirically set to 0.3, as declared in Bi et
al.’s original paper.

3. Sentiment Classification: We keep the neural framework of sentiment classification to
be relatively simple, not giving it any modifications from the given code that finetunes
sentiment classification alone. The neural network for sentiment classification goes as such:

3

A cross-entropy loss is computed between the yielded 5-Tensor logits and the labels as the
loss function of the sentiment classification objective.

4. Paraphrase Detection: We have iterated through various methods for the model to learn
the paraphrase detection method. At first, we have attempted to rely on cosine similarity on
the two transformed sentence embeddings to generate output, which yields an okay result
on the model. The final method that we eventually adopt is inspired by the Sentence-BERT
structure proposed by Reimers and Gurevych (2019) Their original SBERT architecture is
presented as below:

Note that originally, this classifier is used for classification, and a softmax classifier layer
on the top is used to perform the task. As our output for each pair of sentences is just one
single logit, we applied some modifications on the above architecture, implementing a neural
network with architecture shown as below:

4

To maintain the consistency of gradients, we also apply a cross entropy loss to the output
logit and the actual label to compute the loss function of this objective.

5. Hyperparameter Tuning: We also explore various hyperparameters to see if adjusting them
would lead to a significant improvement in model converging speed or model performance.
Specifically, we explored batch size, learning rate, and investigated the correlation between
them.

5 Experiments

5.1 Data

We use the Stanford Sentiment Treebank dataset([1]) for training and evaluating our model on the
Sentiment Classification Task. This dataset consists of 11,855 sentences from movie reviews each
labeled negative, somewhat negative, neutral, somewhat positive, or positive by 3 human reviewers.
The dataset is partitioned into training which has 8,544 examples, dev which has 1,101 examples,
and test which has 2,210 examples.

We also use the Quora question pairs dataset([2]) for training and evaluating our model on the
paraphrase detection task. This dataset contains quora questions labeled as either paraphrases (1) of
each other or not (0). It contains over 400,000 lines of possibly duplicate question pairs. The training
set will contain 141,506 of these examples, the dev set contains 20,215 examples, and the test set
contains 40,431 examples.

Finally, we are training and evaluating our model on the Semantic Textual Similarity Task using the
SemEval STS Benchmark Dataset([3]), which consists of 8,628 sentence pairs each with a similarity
score between 0 (unrelated) and 5 (equivalent). The training dataset has 6,041 examples, the dev set
has 864 examples, and the test set has 1,726 examples.

5.2 Evaluation method

For evaluation, we ran the default evaluation function for our model over the three tasks and their
associated datasets, gathering the accuracy of our model’s responses based on each dataset’s ground
truth responses and averaging across the three to get our overall scores.

5.3 Experimental details
1. Model experiments: for all model experiments, we keep a constant set of hyperparameter

settings. Specifically, we maintain batch size 32, learning rate 1e-4, and 8 epochs. This

5

was decided through some hyperparameter experiments in which we found that this set of
hyperparameters results in fastest convergence without compromising performance.

2. Hyperparameter Experiments: we tried all sorts of combinations of hyperparameter
values performed using the base BERT network model. We tried the following values for
these hyperparameters:

• Learning rate: 1e-3, 1e-4, 1e-5, 1e-6
• Batch size: 8, 16, 32, 64
• Epochs: 3, 6, 8

5.4 Results

Our final results for the test dataset were: SST: 0.524, Paraphrase: 0.797, STS: 0.688.

The results from our model experiments are shown in (Table 1). The main difference across each trial
lies in the prediction function used. We found that applying cosine similarity to the input embeddings
of the Paraphrase detection and semantic similarity tasks offered some improvement to scores, but
the greatest improvement occurred when applying the SBERT classification objective function to
semantic similarity and Paraphrase detection.

Table 2 contains results pertaining to our hyperparameter experiments, as described in the experimen-
tal details section. We found that although larger learning rates corresponded to worse scores when
using smaller batch sizes, larger batch sizes benefitted from the increased learning rate.

Table 3 shows a comparison between using MSE loss and Cross entropy for the semantic similarity
task in the context of our multitask learning architecture. Despite MSE loss being a common option
for the semantic similarity task, we found that using cross entropy actually improves the score, a
result which we believe may be related to congruence across the three loss functions used during
simultaneous multitask learning.

Model SST Dev Paraphrase Dev STS Dev
minBERT (baseline) 0.322 0.489 0.040
Multitask BERT 0.501 0.543 0.060
Multitask BERT with cosine similar-
ity on paraphrase only

0.498 0.589 0.473

Multitask BERT with cosine simi-
larity on sts and difference on para-
phrase

0.498 0.589 0.473

Multitask BERT with SBERT on
paraphrase and sts

0.514 0.642 0.613

Table 1: Model Experiments

Hyperparameters SST Dev Paraphrase Dev STS Dev
Batch size 8, lr=1e-5 (baseline) 0.501 0.724 0.706

Batch size 8, lr=1e-3 0.475 0.642 0.612
Batch size 32, lr=1e-5 0.511 0.638 0.580

Batch size 32, lr=1e-4 (BEST) 0.509 0.767 0.723
Table 2: Hyperparameter Experiments

Model SST Dev Paraphrase Dev STS Dev
MSELoss on sts 0.483 0.732 0.528

CrossEntropyLoss on sts 0.509 0.767 0.723
Table 3: Loss Function experiments

6

6 Analysis

Here we analyze the results from our extensions and offer explanations for why we think we got
those results.

1. Multitask Learning with Gradient Surgery: Since the overarching goal of our project
was to train an additional representation on top of the existing BERT model that can be
used to perform on three different tasks, implementing multitask learning was the logical
first step. Additionally, since gradient updates have a good chance of being conflicting, we
decided to include gradient surgery to reconcile these differences.
In table 4, we see that just by implementing multitask fine tuning with gradient surgery
on top of the baseline model, we achieved a substantial increase in performance across
all three tasks as expected. This should make sense, since adding any sort of fine tuning
mechanism to the baseline is likely to give it improved performance. Interestingly, the
model’s performance increased by a similar proportion on all three tasks and showed that the
gradient update mechanism favors no single task, even when gradient updates for paraphrase
and sts were down weighted so sentiment classification would be treated as the main task.
The main + auxiliary task approach ends up not working ideally in implementation for
training our model.

Model SST Dev Paraphrase Dev STS Dev
minBERT (baseline) 0.322 0.489 0.040
Multitask BERT (even) 0.501 0.543 0.060
Multitask BERT (main+aux) 0.497 0.528 0.060

Table 4: Different Multitask Techniques

2. SBERT inspired classification function: Our most significant improvement came from
redefining our paraphrase detection and semantic similarity prediction functions (Table 5).
This is a reasonable result since the new prediction functions take into account not only the
individual inputs, but also the differences between them. Consequently, we would expect
the model to better understand whether two sentences are the same as each other.
A surprising result we also found while experimenting with the prediction and loss functions
of our models was that while MSE loss is well used for training semantic similarity tasks,
our model actually functioned better when equipped with cross entropy loss across all tasks.
We believe that this is the case because we are implementing multitask-learning, and thus
keeping the gradients to be on the same scale is crucial. MSE loss and cross entropy loss
are drastically different functions: if each of them is evaluated individually, decreasing any
of them does theoretically lead to a better performance of the model. However, such an
intuition is not true when the two loss functions are added together. In our case, we see
that MSE loss and cross entropy loss synchronize very poorly when being added together,
breaking the congruence of gradients across the three different objectives and yielding a
much worse result in return. This is primarily why we adopted cross entropy loss on training
the sts task, as counterintuitive as it sounds.

Model SST Dev Paraphrase Dev STS Dev
minBERT (baseline) 0.322 0.489 0.040
Multitask BERT with SBERT on
paraphrase and sts, MSELoss on sts

0.483 0.732 0.528

Multitask BERT with SBERT and
cross entropy loss on paraphrase and
sts

0.516 0.797 0.710

Table 5: Different Prediction Functions

3. Hyperparameter Tuning: As our final improvement, we decided to perform hyperparame-
ter tuning to achieve the optimal score via our model (Table 6). We found that while the
performance of the model did not increase massively across different hyperparameters, using
a larger batch size from 8 to 32 increased the speed to convergence, allowing us to reach

7

optimal performance by epoch 3 when using a batch size of 32 in contrast to convergence at
epoch 6 when using a batch size of 8. We believe that this increased speed to convergence is
due to better gradient estimation with larger batch sizes, since there is less likely to be as
much noise and therefore variance across updates.
Also, although larger batch sizes and learning rates have the potential to lead to greater
overfitting on the training set, we did not observe significant differences in performance
between the training set and the dev set with a batch size of 32 and an increased learning
rate of 1e-4. As we did not apply any additional regularization techniques to our model, it is
possible that the use of a large quantity of training data was able to effectively prevent any
possible overfitting that would have otherwise occurred.

Model SST
Dev

Paraphrase
Dev

STS Dev SST
Train

Paraphrase
Train

STS
Train

Batch size 8, lr=1e-5 (baseline) 0.501 0.724 0.706 0.512 0.730 0.712
Multitask BERT with SBERT on
paraphrase and sts, Batch size 32,
lr=1e-4 (BEST)

0.509 0.767 0.723 0.524 0.781 0.725

Table 6: Different Hyperparameters

7 Conclusion

We implemented various fine tuning techniques on top of the pretrained BERT model to perform
on three tasks: Sentiment Analysis (SST), Paraphrase Detection, and Semantic Textual Similarity
(SST). We find that simultaneous multitask learning with uniform loss functions, along with modified,
SBERT based prediction functions end up yielding decent results, achieving test accuracies of:
SST: 0.524 Paraphrase: 0.797 STS: 0.688.

References
Qiwei Bi, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Hanfang Yang. 2022. MTRec: Multi-task

learning over BERT for news recommendation. In Findings of the Association for Computa-
tional Linguistics: ACL 2022, pages 2663–2669, Dublin, Ireland. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805.

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 3982–3992, Hong Kong, China. Association for Computational Linguistics.

Wei-Cheng Tseng. 2020. Weichengtseng/pytorch-pcgrad.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning. CoRR, abs/2001.06782.

[1] https://nlp.stanford.edu/sentiment/treebank.html

[2] https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

[3] default project handout (https://web.stanford.edu/class/cs224n/project/default-final-project-bert-
handout.pdf)

8

https://doi.org/10.18653/v1/2022.findings-acl.209
https://doi.org/10.18653/v1/2022.findings-acl.209
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://github.com/WeiChengTseng/Pytorch-PCGrad.git
http://arxiv.org/abs/2001.06782

	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

