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Abstract

The research conducts an investigation of sampling and fine-tuning approaches
to multi-task train DistilGPT-2 and evaluate the models on unseen domain tasks.
BIG-bench tasks are separated into training tasks and evaluation tasks in order to
have no overlap in associated keywords. The results show that, while different
sampling and fine-tuning techniques may prove useful for out-of-sample training
tasks observations, they may not necessarily adapt well on unseen domain tasks. In
the end, the model trained using all of the training observations and where only the
last linear layer was fine-tuned showed to perform best on tasks in new domains.
This result was achieved at a very specific moment during training after the model
had trained for a couple of epochs and before the model specialized further on the
training tasks. At last, the results show that it is possible for a model to train well
in the domains of mathematics, logical reasoning, contextual question-answering
and numerical response, and adapt to the domains of emotional intelligence and
emotional understanding.

Introduction

Language is humans way to express ideas and communicate with each other. There are ample ways
to express one idea, spoken and written words bridge the gap between signifiers, "the conceptual
material form", and the signified, "the conceptual ideal form" following Louis Hjelmslev. All in one,
our constructed languages are a means to an end, and while there are hundreds of ways to phonetically,
pictographically and manually express a concept, the common denominator is that language is a
construct to externalise our own rationale and logic, and share it with each other.

It is thus no surprise that in the era of intelligent machines, we try to explore how we can instil
rational thinking into models by the means of our own written expression of thought. The last decade
has seen a phenomenal improvement in the language capabilities of models. These have been due to
advancements in computing power, the availability of data, and changes in modeling architectures.
In 2019, OpenAI’s research team published how their 1.5 billion parameters Generative Pre-trained
Transformer 2 (GPT-2 [1]) outperformed predecessors. The year 2022 has witnessed the success
story of ChatGPT with its 175 billion parameters, which has taken the world by storm due to its
ability to respond to text input prompts and return a concatenation of the information available on
the web. The newly released GPT-4 has close to 100 trillion parameters and its preliminary version
outperformed ChatGPT by 26% on the Multistate Bar Examination (MBE), "beating humans in five
of seven subject areas" [2].

While these achievements are undeniably impressive, by comparison to human capabilities, these
models are still largely inefficient. Humans are estimated to have between 80 and 100 billion neurons
with around 100 trillion synapses, but scientists have debunked that we only use 10% of our brains. In
fact "every part of our brain is integral to our daily life", but some brain images support that 10% of
our brain are particularly more active than other areas depending on the task [3]. Nonetheless, human
brains use around 20% of the body’s energy. Meanwhile, ChatGPT is estimated to emit around 25
tCO2eq a day, around twice the yearly carbon footprint of the average American [4]. Thus, both the
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additional number of parameters and the high energy consumption undermine the achievements of
Large Language Models (LLM) in comparison to human capabilities.

Ultimately, future research should consider the ecologically impact that their machine learning
products have, especially when used at scale. To that end, more efficient models need to be created
by maximizing the learning procedure per observation employed and the metric improvement rate
for each additional parameter. Therefore, this research focuses on applying sampling and fine-
tuning techniques to multi-task train DistilGPT-2, a relatively small language model with 82 million
parameters, on a subset of the Beyond the Imitation Game Benchmark (BIG-bench [5]). In addition,
the models are also evaluated on tasks that have no overlap with the training tasks, to investigate how
learning some skills transfers to different ones, similarly to how humans approach new problems.

Related Work

This research is primarily inspired by the work of the researchers behind Meta In-Context Learning
(MetaICL [6]) which is based on GPT-2 Large[1]. The authors use 142 different datasets to train
models and evaluate them on previously unseen data from hold-out datasets. Thus, "Meta" refers
to the fact that the model needs to learn to differentiate between types of datasets using the context
contained in the in-context learning examples. Specifically, the model receives k examples (xi, yi)
with i = 1...k as well as xk+1 as input for which it needs to predict yk+1. In one of their experiment
setting, High Resource to Low Resource (HR→LR), they train MetaICL, and other baselines on all
datasets with more than 10,000 observations and evaluate on held-out smaller target datasets, among
which they are some that have no domain overlap with the training datasets. In their results, they
show that MetaICL outperforms the other baselines regarding average accuracy for all target tasks.
However, MetaICL performs similarly to the Multi-Task 0-shot baseline on target datasets in unseen
domain. Here, the baseline is equivalent to MetaICL with k=0. Thus, adding in-context observations
does not make a difference on datasets on which the model was not trained on. Nonetheless, Multi-
Task 0-shot does reach higher accuracy that the 0-shot baseline (GPT-2 Large without any further
training), implying that the model was able to transfer its learning to target datasets in unseen domains.
As such, this research will further investigate how to train a Multi-Task 0-shot model, such that it can
also perform relatively well on datasets with different domains.

Furthermore, the authors also experimented with the different model sizes available for GPT-2 (Small,
Medium and Large). They show that the results are inconclusive on whether a larger parameterized
model leads to better performance. In fact, it depends on the experimental setup. On most occasions,
GPT-2 Small has a lower performance than GPT-2 Large but a better performance than GPT-2
Medium. Therefore, this research will experiment with DistilGPT-2, the smallest of the GPT-2
models, to further encourage the improvement of smaller models. Also, the research of [7] does not
suggest the need to to train a model from scratch, as using and fine-tuning large language models
leads to a marginal improvement in the performance on downstream tasks. Next, research has shown
that much can be achieved by efficiently engineering the learning environment of the model, on which
this research focuses. For example, in the case of multi-task learning, one can consider upsampling
and downsampling tasks to encourage the learning of all tasks, similar to how one would do for
unbalanced training sets in classification problems. Furthermore, surgical fine-tuning, meaning
fine-tuning a subset of layers, can prove useful to adapt to shifts in data distribution [8]. Here the
authors show how surgical fine-tuning improves the accuracy by 2 to 4% compared to full model
fine-tuning on three different scenarios of distribution shift. Thus, these ideas and techniques will be
applied to a multi-task zero-shot framework with domain shift at test time to investigate how to best
transfer learning from the training tasks.

Approach

The experiments are conducted using DistilGPT-2 using the HuggingFace library [9] with Pytorch,
which is a condensed version of OpenAI’s GPT-2 [1] following a similar procedure as for DistilBERT
[10]. This consists in training a student model to imitate the teacher (GPT-2) and minimize the
error against the true label as well as the error against the teacher model (see Figure 1). The final
model consists of 6 blocks compared to 24 in GPT-2 and achieves a perplexity score of 21.1 after
fine-tuning compared to 16.3 for GPT-2 on the WikiText-103 benchmark. Perplexity refers to how
well a distribution is approximated on the training text. Following, all training experiments are trained
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on the same tasks for 20 epochs in batches of 8, 16 or 32, depending on how many parameters are
trained on Google Colab 15GB GPU. The optimization algorithm is AdamW with decoupled weight
decay with arbitrary learning equal to 0.005 and other default parameters. Hyperparameters tuning is
left for future research and here the validation dataset is primarily used to select the epoch at which
the model generalizes best to out-of-domain tasks, as well as in-domain tasks (further explained
below).

Figure 1: DistilGPT-2 training procedure
Source: https://iq.opengenus.org/distilled-gpt2/

Given that multiple tasks are used to train the models, different sampling procedures are used to
see how well a model learns all tasks equivalently instead of the ones with the most observations.
As such, in a first experimental setting, no specific sampling is conducted. In the second setup, all
training tasks have equal weight in training by down-sampling and up-sampling individual tasks to
each contain 500 observations. In the third setting, observations are sampled to have relatively equal
domain representation. For example, one dataset ’causal judgment’ falls in the domain of ’social
reasoning’, ’common sense’ and ’reading comprehension’ as defined per BIG-bench [5]. Thus, all
domains are sampled to have relatively equal weights between 10 and 15% during training to see if a
model can learn to be equally good in all disciplines.

Next, the following fine-tuning techniques are used to train models for all different sampling experi-
ments. Inspired by the surgical fine-tuning research [8], different blocks or layers are trained as well
as one setup where blocks are trained one after the other in a cascade fashion and one setting where
all the parameters are trained for comparison:

• Linear Layer
• First Block (0) and Linear Layer
• Middle Block (2) and Linear Layer: the middle block 2 was arbitrarily decided
• Last Block (5) and Linear Layer
• Cascade: the first block is trained for 5 epochs, while the following blocks are trained for 3

epochs. The linear layer is trained during all epochs.
• Reversed Cascade: only the linear layer is trained for 5 epochs, the following blocks 5, 4

and 3 are trained for 3 epochs, and the first two blocks 1 and 0 are trained for 2 epochs. The
linear layer is trained during all epochs.

• All Blocks and Linear Layer

The cascade technique follows the idea to fine-tune the model for upstream generalization across
tasks to downstream specialized text generation. In reversed cascade, the procedure can use the earlier
pre-trained weights longer before making changes to them in order to adapt to this specific multi-task
setting at the downstream level.

Finally, the models are validated and tested using the Recall-Oriented Understudy for Gisting
Evaluation (ROUGE [11])-LSum metric. The metric is a variant of the ROUGE score which
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computes the recall for overlapping word sequences between prediction and human references, but it
also penalizes for too short or too long sequences.

Experiments

Data and Experimental Setup

The Beyond the Imitation Game benchmark (BIG-bench [5]) tasks were selected in this experimental
research as it falls within the scope and the motivation of this research to investigate how small
models can get better at complex tasks. All of the tasks were initially run on GPT-21 in order to filter
and select a subset of tasks which had ROUGE-LSum scores larger than zero.

Now, each of the BIG-bench tasks have associated keywords and since the aim of the research was to
see how a model would perform on tasks it hadn’t been trained on, the tasks were separated in order to
have no overlapping keywords, or domains, between training and evaluation. Here, the MetaICL [6]
research also inspired the research two separate the tasks in a way that imitates their High Resource to
Low Resource experimental setup, thus training on the tasks with the highest numbers of observations
and evaluate the models on tasks with the lowest amount of observations.

To that end, the Apriori Frequent Itemset [12] algorithm was applied on the set of keywords of
each task to select the most frequent keywords and keywords combination. Thus, the tasks with
keywords: common sense, mathematics, numerical response, social reasoning, reading comprehen-
sion, contextual question-answering, logical reasoning and free response; were selected for training.
The tasks which had no overlap with training task keywords were selected for evaluation. These
were characterized by the keywords: analogical reasoning, emotional understanding, morphology,
non-English, medicine, emotional intelligence, dialogue systems and intent recognition. Most of
the evaluation tasks are difficult and are not expected to do well at testing, such as non-English and
medicine, but are included nonetheless, for the sake of the research.

Overall, there were around 10,000 observations for training available and 4,000 observation for
evaluation. In addition, 707 observations from the training observations were held out for validation
and testing in order to get an understanding of what the model had learned during training. Next, a
validation data set was constructed at random using 25% of the held-out training observations and
25% of the evaluation task observations amounting to around 1,000 observations in total, and the
remaining 75% of the held-out training tasks and evaluation tasks were used for testing, amounting
to 3,000 observations (see Appendix Table 1). Thus, 80% of both validation and test data sets are
evaluation tasks observations and have the highest weight since out-of-domain evaluation is the focus
of the research. In hindsight, the held-out training observations could have been only used during
testing. However, at the time of the research, it felt necessary to give the models some credit for what
they had learned on the training tasks and they were therefore included in the validation sample.

Results

All the fine-tuning techniques were applied with the three training sampling approaches for 20 epochs
(see Figure 2). The results show that the loss curves decrease for all training approach, except in the
case where all parameters of DistilGPT 2 were trained which starts to diverge at around 5 epochs.
However, it reaches the overall lowest loss for the task weighted training sample and the case where
no sampling was applied. All the models where only one transformers block was trained at a time
reach similar levels towards the end with the difference being narrower for the task weighted and
domain weighted training samples. Of them the cascade and reverse cascade techniques have the
lowest loss at the end of training, the latter only for the domain weighted sample. The loss curve of
the model where only the linear layer was trained is the highest in all training scenarios.

However, even though it is the highest, it does reach the best validation ROUGE-LSum scores on the
validation dataset and peaks at around 5 epochs in all cases. Similarly, the reverse cascade validation
curve peaks as well because at that stage of training only the linear layer was updated before training
the previous blocks in a reversed fashion. Thus, both linear layer and R-cascade are nearly equivalent

1Initially the research wanted to focus on GPT-2 fine-tuning but due to limited computational resources,
DistilGPT-2 was selected to be able to apply all the sampling and fine-tuning techniques in time for the
completion of the project.
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at this time, the main difference is that the former is trained in batches of 32 and the latter in batches
of 16 to accommodate for memory requirements on the GPU. The other models where only one
block was trained at a time have relatively stable validation ROUGE-LSum scores with the last block
trained model being the highest for the task weighted samples and the domain weighted samples.
In the case of the unsampled training set, the cascade and first block trained models have similar
performance with Cascade being slightly better. Only the validation curve of the fully trained model
decreases to zero with training duration.

Figure 2: Training Loss (top) and Validation ROUGE L-sum scores (bottom) per Epoch

Epoch Model - task weighted domain weighted
(in order of sampling) All Train Evaluation All Train Evaluation All Train Evaluation

- Raw DistilGPT-2 1.73 4.92 0.93 - - - - - -
3, 4, 2 Middle 2.13 5.89 1.19 2.48 6.2 1.55 2.22 5.94 1.29
1, 0, 0 All 2.33 6.47 1.29 2.32 6.45 1.28 0.88 2.08 0.58
0, 6, 7 Last 2.53 5.40 1.82 3.25 11.08 1.29 2.97 10.23 1.15
2, 7, 1 Cascade 2.58 5.76 1.78 2.88 6.04 2.09 2.51 6.14 1.6
10, 4, 1 First 2.60 6.19 1.70 2.81 6.86 1.79 2.51 6.14 1.6
2, 2, 2 R-Cascade 7.97 6.11 8.44 8.14 6.12 8.65 8.75 6.31 9.36
4, 5, 5 Linear layer 9.40 6.73 10.06 8.26 6.11 8.8 8.78 6.3 9.39

Table 1: Testing ROUGE-LSum scores

To analyze, the models on the test datasets, the models were selected at the epoch and model
checkpoint where the validation Rouge-LSum score was highest. Overall, the linear layer fine-tuned
models perform best on the test data as a whole and on the evaluation tasks observations. Note again
that reverse cascade and linear layer fine-tuning are near equivalent but differ in batch sizes during
training, showing how training choices can impact the final results. For the out-of-sample training
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observations, one can observe that training the last block, together with the linear layer, reaches the
highest Rouge-Lsum scores for both the task-weighted training sample and the domain weighted
training sample. This implies that taking into account the difference in numbers of observations
per task does improve the multitasking performance on training like test observations. In addition,
domain weighting the training data does have an advantage over task weighting on the evaluation
tasks. Nonetheless using all of the training observations and training the linear layer leads to the
highest ROUGE-LSum score on the evaluation tasks, being even higher than the performance on
out-of-sample training observations. Thus, the linear layer fine-tuned model was able to beat the
pre-trained DistilGPT-2 by a factor of 10 for the evaluation tasks and the last block fine-tuned and
task weighted model by a factor of 2 for the out-of-sample training observations. A last observation
is that, on average, the best scores were obtained after a few training epochs.

Analysis

Taking a deeper look at the results, we can see that the average ROUGE-LSum per task is consistent
with prior findings where the best result comes from training the linear layer with no training sampling
procedure. In addition, domain weighed and task weighted training samples are more likely to lead
to better testing results, judging from the ranking in Table 2. However, for held-out training tasks
observations, the average ROUGE-LSum per task is highest for linear layer fine-tuning with no
sampling procedure, compared to the prior finding that task-weighted training with last block fine-
tuning led to an overall best ROUGE-Lsum scores on training-like observations. Thus, there are some
tasks in which the model performs better than in others and which have more representation in the
held-out training observations. For indicative purposes, average ROUGE-LSum scores per task for
GPT2-Large are shown, but the results are not directly comparable as these were computed using all
of the BIG-bench observations per task in the preliminary stages of the research. However, they show
that the smaller fine-tuned DistitGPT-2 reaches better scores on training tasks and similar scores for
the evaluation tasks, despite having 692M fewer parameters.

Sampling Model All Tasks Training Tasks Evaluation Tasks

domain weighted All 1.38 1.62 0.43
- Raw DistilGPT-2 4.51 5.40 0.96
- Cascade 4.73 5.55 1.46
- Middle 4.78 5.75 0.88
domain weighted Middle 4.89 5.86 1.01
task weighted Cascade 5.06 5.90 1.69
- First 5.10 6.04 1.35
task weighted Middle 5.17 6.18 1.12
- Last 5.27 6.15 1.77
domain weighted Cascade 5.45 6.47 1.37
domain weighted First 5.45 6.47 1.37
- All 5.69 6.85 1.08
domain weighted Last 5.71 6.88 0.99
task weighted All 5.76 6.98 0.92
task weighted Last 6.00 7.18 1.30
task weighted First 6.05 7.18 1.54
task weighted R-Cascade 6.89 7.15 5.84
task weighted Linear layer 6.94 7.13 6.16
domain weighted Linear layer 7.08 7.21 6.57
domain weighted R-Cascade 7.13 7.33 6.33
- R-Cascade 7.32 7.75 5.58
- Linear layer 7.79 8.01 6.90
- GPT-2 Large 6.05 5.85 6.89

Table 2: Average Rouge-LSum score per task
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Finally, domain scores are analyzed by mapping the ROUGE-LSum cores by pairwise keyword combi-
nations in Figure 3. In the lower left, we can see that the highest scores are obtained for combinations
of domains: logical reasoning, mathematics, numerical response, and contextual question-answering.
These refer specifically to the tasks ’key_value_maps’ and ’sufficient_information’ which increased
by a factor of 20 with fine-tuning, and ’identify_math_theorems’ on which pre-trained DistilGPt-2
was already performing well (see Appendix Table 2). On the evaluations tasks, the unseen domains in
which the fine-tuned model performed best were for the keyword combination emotional understand-
ing and emotional intelligence (’social_support’ task), followed by the intent recognition, dialogue
system combination (’intent_recognition’ task) on which pre-trained DistilGPT-2 performed poorly.
This is a surprising finding as the tasks related to the emotional realm were not expected to perform
as well with a model that shows more expertise in mathematics and logical reasoning. Interestingly, it
shows that a model is able to transfer knowledge from training to unseen tasks and that more research
is necessary to, potentially, understand the mechanism.

Figure 3: Rouge L-sum scores per combination of domains for out-of-sample train tasks (in red) and
unseen domain evaluation tasks (in blue) using the unweighted DistilGPT-2 with fine-tuned linear
layer

Conclusion

In summary, the aim of the research was to investigate how to make small models perform better on
unseen tasks in domains they had not been trained on. BIG-bench tasks were separated to have no
overlap in domains, or keywords, between training and evaluation tasks. Next, different sampling
techniques (no sampling, task-weighted sampling, domain-weighted sampling) were applied to
construct the training datasets which in turn were used to fine-tune DistilGPT-2 in various ways.
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These consisted in updating certain blocks only at a time, all of the parameters, blocks in a consecutive
and reversed way, and simply by training the last linear layer. The last approach proved to perform
best on unseen domain tasks and did not suggest the need to task- or domain-weight the training
observations. Thus, the combination of the pre-trained parameters of DistilGPT-2 with the updated
linear layer showed that a model was able to get better at training tasks as well as unseen evaluation
tasks.

Specifically, the analysis showed that the model learned to perform well on trained tasks related to
mathematics, logical reasoning, contextual question-answering and numerical response, and improve
metrics related to emotional understanding and emotional intelligence by a factor of 20 compared
to pre-trained DistilGPT-2 results. The experiment also showed that this result does not need long
training time and that performance on unseen domain tasks peaks at a very specific moment during
the training procedure. It also showed that low training loss may indicate good performance on
trained tasks, but the model will not necessarily adapt well to unseen domains the more the model is
specialized in certain tasks even if the training set covers multiple domains. In addition, the results
show that larger parameterized models are not necessarily the key to making models better, but that
we need to develop stronger model learning procedures and understanding that will ultimately reduce
the computational resources required to power the models in the long run.

The finding is encouraging in the sense that it indicates that knowledge can be transferred between
tasks that we would not necessarily associate with each other. Therefore, more research is necessary
to understand why this is possible, and more model interpretation and analysis techniques may help
us in that regard. At last, it should humble us towards what we think works, and what does not, and it
should encourage us to believe that machine learning models can help us uncover mechanisms we
have yet to understand.
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Appendix

BIG-bench Tasks Keywords train validation test

bridging_anaphora_resolution_barqa common sense, reading comprehension, contextual QA., free response 619 7 22
causal_judgment common sense, social reasoning, reading comprehension 152 9 29
common_morpheme morphology, non-English - 17 33
crash_blossom common sense 22 6 10
discourse_marker_prediction common sense 786 24 47
few_shot_nlg free response 123 4 26
general_knowledge common sense 54 2 14
geometric_shapes mathematics, free response 288 19 52
hhh_alignment common sense, emotional intelligence 179 9 33
identify_math_theorems mathematics, logical reasoning 37 7 9
implicit_relations social reasoning, reading comprehension 68 2 15
intent_recognition dialogue system, intent recognition - 160 533
international_phonetic_alphabet_nli reading comprehension 101 5 20
key_value_maps mathematics, logical reasoning 80 5 16
moral_permissibility common sense, social reasoning, reading comprehension 274 17 51
movie_recommendation emotional intelligence - 131 369
nonsense_words_grammar contextual question-answering, logical reasoning 34 5 11
object_counting logical reasoning, free response 1000 - -
operators mathematics, numerical response, free response 168 12 30
parsinlu_qa analogical reasoning - 269 781
penguins_in_a_table reading comprehension, logical reasoning, free response 120 11 18
presuppositions_as_nli common sense, logical reasoning 688 15 32
semantic_parsing_in_context_sparc contextual question-answering, free response 1124 9 22
semantic_parsing_spider free response 1028 2 4
simple_arithmetic_json_subtasks mathematics, numerical response, free response 15 4 11
social_support emotional understanding, emotional intelligence - 216 681
strange_stories social reasoning, emotional understanding 140 7 27
sufficient_information numerical response, contextual QA, logical reasoning, free response 23 3 13
suicide_risk emotional understanding, medicine - 15 25
swedish_to_german_proverbs numerical response, analogical reasoning, non-English 56 1 15
symbol_interpretation reading comprehension, logical reasoning 895 17 78
temporal_sequences reading comprehension, logical reasoning 1000 - -

Total 9074 1010 3027

Table 1: BIG-bench tasks information and train, validation and test splits
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BIG-Bench Tasks Keywords Test obs. DistilGPT-2 Fine-tuned Model

simple_arithmetic_json_subtasks mathematics, numerical response, free response 11 0.00 0.00
crash_blossom common sense 10 0.00 0.00
penguins_in_a_table reading comprehension, logical reasoning, free response 18 0.35 0.00
general_knowledge common sense 14 0.44 0.00
implicit_relations social reasoning, reading comprehension 15 0.00 0.00
moral_permissibility common sense, social reasoning, reading comprehension 51 0.00 0.00
nonsense_words_grammar contextual question-answering, logical reasoning 11 0.73 0.91
presuppositions_as_nli common sense, logical reasoning 32 0.88 3.04
causal_judgment common sense, social reasoning, reading comprehension 29 0.06 3.45
discourse_marker_prediction common sense 47 26.42 3.58
semantic_parsing_spider free response 4 5.82 4.06
semantic_parsing_in_context_sparc contextual question-answering, free response 22 4.26 4.70
few_shot_nlg free response 26 9.29 7.14
operators mathematics, numerical response, free response 30 0.87 8.89
bridging_anaphora_resolution_barqa common sense, reading comprehension, contextual QA. 22 2.43 9.45
symbol_interpretation reading comprehension, logical reasoning 78 3.47 11.73
sufficient_information numerical response, contextual question-answering 13 1.60 19.12
key_value_maps mathematics, logical reasoning 16 1.19 25.39
identify_math_theorems mathematics, logical reasoning 9 57.59 63.14

common_morpheme morphology, non-English 33 0.21 0.00
suicide_risk emotional understanding, medicine 25 1.14 0.89
parsinlu_qa analogical reasoning 781 0.14 1.25
movie_recommendation emotional intelligence 369 1.70 4.27
intent_recognition dialogue system, intent recognition 533 1.87 13.80
social_support emotional understanding, emotional intelligence 681 0.71 21.21

Table 2: Test tasks ROUGE-LSum scores of DistilGPT-2 and the linear layer fine-tuned model on
unsampled training observations
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