Enhancing miniBERT: Exploring Methods to Improve
BERT Performance

Stanford CS224N {Default} Project Mentored by Tathagat Verma

Yasmin Salehi, Shivangi Agarwal, Ben Hora
Department of Computer Science
Stanford University
{ysalehi, shivagar, bhora} @ stanford.edu

Abstract

This paper investigates BERT’s performance in fine-tuning tasks related to semantic
classification, paraphrase detection, and semantic similarity. We propose four meth-
ods to enhance BERT: implementing a ConvBERT-inspired mixed attention block,
cosine similarity fine-tuning, progressive stacking, and multitask learning. Our
results indicate that incorporating ConvBERT’s mixed attention block marginally
improves the model’s performance, which we attribute to the use of pretrained
weights from BERT-base-uncased. However, employing cosine similarity during
fine-tuning effectively reduces overfitting. Despite its potential, multitask learning
as an additional enhancement only slightly improved the results. This lack of
improvement may stem from the diverse nature of the tasks, potentially requiring
more specialized model architectures or optimization strategies for simultaneous
handling of multiple tasks.

1 Introduction

Recent advances in natural language processing have led to the development of powerful models such
as Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al.,[2018), which has
achieved state-of-the-art results on a wide range of NLP tasks (Sun et al.| 2019;|Yang et al., 2019;
Munikar et al., [2019; [Peinelt et al., 2020; Reimers and Gurevych, 2019; Zhang et al., [2020; Jeong
et al.,|2020). The BERT model, originally created by Devlin et al.| (2018)), is designed to learn the
context and meaning of words in a sentence. BERT is based on the Transformer architecture—a type of
neural network that uses self-attention to model dependencies between words. More specifically, as
described in|Devlin et al.| (2018)), BERT uses a multi-layer bidirectional Transformer encoder to create
contextualized word representations that consider the context of a word and its surrounding words
to generate its own vector representation. In this project, we first implemented a miniBERT model
including some of the key components of the original BERT model, such as multi-head self-attention
and a transformer layer, and explored several methods proposed in the literature to enhance its
performance. Specifically, we extended the BERT model by implementing a mixed-attention block,
progressive stacking, consine similarity fine-tuning and multitask learning.

Our experimental findings reveal that incorporating the mixed attention block from ConvBERT does
not lead to substantial improvements in the model’s performance, which might be due to the use of
pretrained weights from BERT-base-uncased. Nonetheless, applying cosine similarity during fine-
tuning effectively reduces overfitting. The inclusion of multitask learning and progressive stacking as
an additional modification did not result in significant enhancements in the outcomes, possibly because
the tasks’ diverse nature requires more specialized model architectures or optimization strategies to
efficiently handle multiple tasks simultaneously. However, cosine-similarity fine-tuning effectively
improved the performance by reducing overfitting and improving the contextual embeddings.

Stanford CS224N Natural Language Processing with Deep Learning

2 Related Work

Since the introduction of BERT (Bidirectional Encoder Representations from Transformers) by
Devlin et al.|(2018), it has become a popular pretraining technique for various NLP tasks. BERT’s
success has spawned several variants with modifications to improve specific aspects of the model. For
instance, RoOBERTa |Liu et al.|(2019) refines BERT by training on larger datasets and with optimized
hyperparameters, resulting in improved performance. Another notable variant is ConvBERT [Jiang
et al.[(2020), which incorporates a mixed attention block consisting of self-attention and convolutional
attention mechanisms to achieve more efficient learning.

In the realm of multitask learning, BERT has been utilized for various NLP tasks simultaneously.
A prominent example is the Multitask Question Answering Network (MT-QAN) by McCann et al.
(2018), which fine-tunes BERT for multiple tasks, including question answering and machine
translation. Another study by [Stickland and Murray| (2019) proposes a method for learning task-
specific projection layers with BERT for multitask learning, which demonstrates improvements in
model efficiency and performance.

Meanwhile, cosine similarity is a widely used metric to measure the similarity between two vectors,
often employed in NLP tasks such as semantic similarity or paraphrase detection|Jiang et al.|(2019);
Mohamed and Oussalah| (2020). Fine-tuning BERT models with cosine similarity can help reduce
overfitting, as it encourages the model to learn more meaningful and transferable representations.
A similar approach, Siamese BERT |[Reimers and Gurevych| (2019), uses pairwise training with
contrastive loss to learn sentence embeddings, which can then be compared using cosine similarity.

Progressive stacking is a technique that involves incrementally increasing the model’s capacity to
enable efficient transfer learning for fine-tuning tasks |Houlsby et al.|(2019). This is achieved by
introducing new layers or modules to the existing architecture and training them for specific tasks
while keeping the pretrained weights fixed. A similar method, AdapterHub |Pfeiffer et al.| (2020)),
introduces small adapter modules in the transformer layers of pretrained models, enabling efficient
fine-tuning without the need for extensive retraining. Another related approach is the use of task-
specific heads on top of pretrained models, as demonstrated in Raffel et al.| (2020), which allows
fine-tuning for a wide range of NLP tasks.

In summary, our work builds upon these existing techniques and models to extend BERT for semantic
classification, paraphrase detection, and semantic similarity tasks. By evaluating the effectiveness of
mixed attention, cosine similarity fine-tuning, and progressive stacking, we contribute to the ongoing
research in improving BERT-based models for various NLP tasks.

3 Approach

3.1 Mixed Attention Block

While self-attention has shown great success in NLP, it has limitations in capturing local dependencies
(Jiang et al., [2020). To address this, convolutional layers may be used to achieve a better balance
between capturing global context and local patterns Jiang et al.|(2020). Therefore, following the work
of (Jiang et al., [2020), we implemented mixed attention mechanism, which combines self-attention
and convolutional layers in a single block to effectively capture both global and local dependencies
(Jiang et al.| 2020). The mixed-attention block is defined as:

Mixed Atin(K, Q, K., V; Wy) = Cat(Self Attn(Q, K, V), SDConv(Q, K, Vi W), (1)

where self attention is defined as:

Self-Att(Q, K, V') = softmax (QTK) v, 2)
Vi
dynamic convolution is defined as:
DConv(X, Wy, i) = LConv(X, softmax(WX,), 1), 3)
and lightweight convolution is defined as:

k
LConv(X, W,i) = > W;. X (i rrsnys)

Jj=1

where X € R™* is the input and d is the hidden dimension and n is the number of tokens, and K,
Q, V are the key, query and value tensors, respectively. The implementation of the mixed-attention
block is illustrated in Figure|T]

= w—

Linear Linear Linear

ay v

SoftMax SoftMax

Mat Mul
Linear Linear

a2 a2
d

Figure 1: Illustration of mixed-attention block Jiang et al.|(2020), which consists of self-attention and
span-based dynamic convolution. As indicated, the modules share the same Query but use different
Key to generate the attention map and convolution kernel respectively Jiang et al.| (2020)).

3.2 Task-specific Layers

In our project, we adopt a task-specific architecture for each of the three fine-tuning tasks, namely
semantic classification, paraphrase detection, and semantic similarity. For this purpose, we implement
separate layers on top of the BERT model (Devlin et al., 2018) to cater to the unique requirements of
each task, which are depicted in Figure [} In the case of semantic similarity and paraphrase detection
tasks, we employ a Siamese BERT architecture Reimers and Gurevych| (2019) that enables the model
to learn and compare sentence embeddings effectively. This architecture consists of two identical
BERT networks with shared weights, which process the input sentence pairs independently before
comparing their representations.

For the semantic similarity task, we further employ cosine similarity fine-tuning Reimers and
Gurevych| (2019) to minimize over-fitting and enhance the model’s performance. This technique
involves using the cosine similarity metric during the training process to adjust the model’s parameters
based on the similarity between input representations. By incorporating this fine-tuning method,
we aim to improve the model’s ability to capture semantic relationships between sentences more
effectively.

3.3 Multitask Learning

Multitask learning has been shown to be a powerful approach in natural language processing,
particularly in improving the performance of large language models such as BERT. The idea behind
multitask learning is to simultaneously train a single model on multiple related tasks, allowing it
to learn more generalized and robust representations of the input data. By leveraging the shared
representations learned across multiple tasks, the model can better capture the underlying structure
of the data, resulting in improved performance on each individual task. In addition to improving
performance, multitask learning can also help to reduce over-fitting and increase the model’s ability
to generalize to new data. Therefore, incorporating multitask learning into the training of BERT can
lead to improved performance on a range of natural language processing tasks.

3.4 Progressive Stacking

The researchers in (Gong et al.,|2019) introduced a novel technique for training BERT models, known
as progressive stacking, which involves training the model layer by layer. This strategy allows the
model to learn increasingly valuable representations of the input data throughout the training process,

0..1

I -1..1 0..5 -1..1
Linear(dropout(u)) Linear(dropout(concat(u, v))) Linear(dropout(concat(u, v))) cosine - sim(u,v)

u u \Z u v u v

1 1 1 | 1 | i
Pooling Pooling Pooling Pooling Pooling Pooling Pooling
Bert ‘ Bert Bert ‘ ‘ Bert Bert ‘ Bert ‘ ‘ Bert ‘
Input Sentence A Sentence B Sentence A Sentence B Sentence A Sentence B
(@) (b) © (@)

Figure 2: Task-specific layers implemented on top of the BERT model for (a) semantic classification,
(b) paraphrase detection, (c) semantic similarity using neural networks, and (d) semantic similarity
using cosine similarity (for fine-tuning only). As seen in the figure, (b), (c), and (d) are Siamese
networks.

ultimately leading to improved performance. As a result, we integrate this method into our miniBERT
model to enhance its performance. Inspired by Net2Net, a technique developed by |Chen et al.[(2016)
that accelerates the training of neural networks through knowledge transfer, our implementation of
progressive stacking follows a similar principle. Instead of transferring knowledge from a trained
neural network to a larger or deeper network with similar behavior, our implementation leverages
models with varying depths, such as shallow and deep models. By aggregating the knowledge from
these models, we aim to create a more robust and efficient model that can potentially outperform
models trained from scratch or using single-layer configurations.

We implemented progressive stacking approach by extending the original BERT model to create
a ProgressiveStackingBertModel class, using an Algorithm 1 which can be found in the appendix.
This class modifies the forward method to iterate through different numbers of layers specified in
the self.num_layers_list attribute. For each specified number of layers, the model generates the
last_hidden_state and pooler_output by calling the encode method with the specified number of
layers. The outputs are then averaged across all the specified layer combinations to obtain the final
output. The ProgressiveStackingBertModel aims to capture the advantages of progressive stacking as
described in (Gong et al.;2019) by leveraging varying numbers of layers within the model to generate
more diverse and potentially robust predictions. This approach differs from the original BERT model
in that it combines outputs from different layer combinations to produce the final output, which may
lead to enhanced performance on downstream tasks.

4 Experimental Settings

4.1 Dataset

The datasets on which the miniBERT are fine-tuned and evaluated on are the Stanford Sentiment
Treebank (SST) and the CFIMDB datasets for the task of sentiment analysis, the Quora dataset for the
task of paraphrase detection, and the SemEval STS dataset Agirre et al.|(2013) for semantic textual
analysis. Information regarding these datasets is presented in Table |4|in the appendix.

4.2 Pre-trained Weights

In our study, we utilize the BERT-base-uncased model as the foundation for our experiments. This
model is a pre-trained version of BERT Devlin et al.|(2018])) that comprises 12 layers (transformer
blocks), 768 hidden units, and 12 self-attention heads, totaling 110 million parameters. The BERT-
base-uncased model employs the uncased variant of the tokenizer, meaning that the input text is
lowercased before tokenization, and any case information is discarded. This model has demonstrated
strong performance across various natural language processing tasks Devlin et al.| (2018)), making it a

suitable choice for the foundation of our work. By using the pre-trained weights of the BERT-base-
uncased model, we can leverage the knowledge it has gained from vast amounts of unsupervised
pre-training on English text, allowing our model to efficiently adapt to the specific tasks of semantic
classification, paraphrase detection, and semantic similarity with fine-tuning. The choice of BERT-
base-uncased as the starting point for our experiments provides a strong baseline, enabling us to
effectively investigate the impact of our proposed extensions and modifications on the model’s
performance.

4.3 Hyper-parameter Setting

Table[T]lists the hyperparameters with which different BERT extensions were trained to reach their
optimal performance on the validation sets of the datasets.

Table 1: Hyperparameters

Hyperparameter .Value
pretrain finetune
o le—3 le—5
Batch size 64 32
Embedding size 768 768
Number of epochs 9 9

4.4 Model Variations

In this work, we evaluated the performance of various BERT extensions achieved by changing the
convolution kernel size, k, in the mixed attention block and trying different number of layers in the
progressive stacking BERT models. For proper comparison, the hyperparameters listed in Table|[T]
remained consistent across different experiments. The results of this ablation study are discussed in
more depth in the Results and Discussion section.

4.5 Loss Function, Regularization, and Optimization

For sentiment classification and paraphrase detection, we used cross entropy and binary cross entropy
loss, respectively, for learning the trainable parameters defined as:

H(p,q) = — Zpi log ¢i,and L(y, §) = — [ylog(y) + (1 — y)log(1 — §)], Q)

respectively, where p and ¢ are two probability distributions over the same discrete set of events with
p; and g; being the true and predicted probability of event ¢, y is the true binary label (0 or 1), § is the
predicted probability of the positive class (i.e., the class with label 1). On the other hand, for the task
of semantic similarity detection we used Mean Square Error defined as:

L _1¢ A
L(y,9) = o Z(yi —5i)° (0)
i=1
where y is the true target value, ¢ is the predicted target value, n is the number of samples in the
dataset, and L is the mean squared error loss. In our study, AdamW optimizer was used to minimize
loss, and to combat overfitting, a dropout rate of 0.3 was applied throughout the architecture.

4.6 Evaluation Metrics

To evaluate the performance of our miniBERT model for sentiment classification and paraphrase
detection, we used accuracy and F1-score as the primary evaluation metrics, while for semantic
textual similarity, we used Pearson correlation coefficients. In this study, the results obtained by
training the non-extended miniBERT model serve as our baseline.

Table 2: Pretrain Results.

Dataset Method Accuracy Pearson Corr.
Baseline 0.392
SST Multitask 0.388
Progressive Stacking 0.394
Mixed Attention 0.395
Baseline 0.771
Cfimdb Multitask
Progressive Stacking 0.771
Mixed Attention 0.735
Baseline 0.684
Quora Multitask 0.680
Progressive Stacking 0.683
Mixed Attention 0.677
Baseline 0.260
SemEval STS Multitask 0.261
Progressive Stacking 0.259
Mixed Attention 0.288

Table 3: Fine-tune Results.

Dataset Method Accuracy F1Score Recall Pearson Corr.
Baseline 0.523 0.522 0.531
SST Multitas'k Finetupe 0.510 0.494 0.484
Progressive Stacking 0.524 0.523 0.531
Mixed Attention 0.519 0.498 0.495
Baseline 0.967 0.967 0.967
Cfimdb Multitas.k Finetupe
Progressive Stacking 0.963 0.963 0.963
Mixed Attention 0.967 0.967 0.967
Baseline 0.786 0.769 0.769
Quora Multitas'k Finetupe 0.786 0.769 0.766
Progressive Stacking 0.783 0.731 0.728
Mixed Attention 0.776 0.764 0.767
Baseline 0.694
Multitask Finetune 0.697
SemEval STS Progressive Stacking 0.662
Mixed Attention 0.664

4.7 Results and Discussion

Main results Table [2]and Table [3|demonstrate the impact of incorporating mixed-attention mecha-
nisms, progressive stacking, and multitask fine-tuning extensions on the performance of the extended
miniBert implementations. These enhancements aim to augment the learning capability and rep-
resentational power of the model. The results in Table [2| show comparable or slightly improved
pre-trained weights compared to the baseline model, suggesting that these techniques enable the
model to concentrate on crucial features in the input. Specifically, the mixed-attention block captures
a more comprehensive range of contextual information from the input text through its combination
of self-attention and convolutional layers. In contrast, progressive stacking trains the model using
various layer configurations and averages the results, facilitating a gradual learning of low-level and
high-level features, thus yielding marginally better outcomes.

However, while progressive stacking has led to somewhat improved performance on the SST dataset,
as shown in Table E], it has slightly overfitted to the train set of the Quora, Cfimdb, and SemEval STS
datasets. This overfitting is attributable to the inherently larger number of parameters compared to
the other methods and is evident through its marginally decreased performance relative to the other
techniques. On the other hand, multitask learning demonstrates slightly better performance than the

other approaches and the baseline on the SemEval STS and Quora datasets. We believe this outcome
is due to the ability of multitask fine-tuning to reduce overfitting.

Multitask fine-tuning encourages the model to learn a shared representation that generalizes well
across multiple tasks, thereby alleviating overfitting on any single task. By training on multiple tasks
simultaneously, the model is less likely to overfit to the noise or idiosyncrasies in one specific dataset,
as it needs to capture more general and transferable patterns to perform well on all tasks. This shared
representation fosters better generalization capabilities and results in slightly improved performance
on the SemEval STS and Quora datasets, as observed in the experimental results.

Effect of cosine similarity in reducing overfitting As discussed in the Methodology section, we
aimed to investigate the performance of different types of layers for the task of similarity detection,
namely employing neural networks and cosine similarity to predict the similarity score of two
sentences. The Pearson correlation score on the validation set turned out to be 0.345 when using
neural networks. In contrast, employing cosine similarity to predict the semantic similarity scores
yielded better performance—i.e., a Pearson correlation score of 0.697. This significant difference in
performance can be attributed to the underlying mechanisms of each method. Neural networks are
powerful models that can capture complex patterns in data; however, they may require more training
data and fine-tuning to achieve optimal results, or they may end up overfittig. In the case of the
similarity detection task, it is possible that the neural network model may not have been adequately
optimized or required more data to learn a better representation of the similarity between sentences.
On the other hand, cosine similarity is a simpler, more straightforward metric that measures the cosine
of the angle between two vectors. In the context of text similarity, this measure can effectively capture
the semantic similarity between sentences by comparing their respective vector representations, which
are typically derived from pre-trained language models like BERT. The higher Pearson correlation
score achieved with cosine similarity suggests that this method is more adept at capturing the semantic
similarity between sentences in the given dataset without requiring extensive fine-tuning or additional
data.

Leaderboard Results Our model achieved an SST test accuracy of 0.517, a paraphrase test accuracy
of 0.789, and an STS test correlation of 0.635. Combining these results, our overall test score is
0.647, placing us at position 89 in the leaderboard. These results demonstrate the effectiveness
of our proposed model for semantic classification, paraphrase detection, and semantic similarity
tasks. Despite the room for improvement, our position in the leaderboard indicates the potential
of our approach in the context of the competitive landscape of NLP research. However, for the
mixed attention block, we were expecting better results. One possible explanation for this suboptimal
performance could be the use of pretrained weights from BERT-base-uncased, which may not have
been optimally aligned with the mixed attention block’s architecture. Additionally, the mixed attention
block might not have been as beneficial for the specific tasks we addressed, given that its advantages
may be more pronounced in other scenarios or domains.

0.66
0.5175 §
o 5
Z0.5150 £ 0.64
3 O
Q =]
< 0.5125 g 0.62
S
0.5100 A~
0.60
4 6 8 4 6 8
Convolution Kernel Size Convolution Kernel Size
(a) (b)

Figure 3: The effect of increasing the convolution kernel size in the mixed attention block on (a)
accuracy for the sentiment classification task for the SST dataset and (b) semantic correlation for the
STS dataset.

Ablation Study and Hyperparameter Search In our work, we explored the effect of increasing
the convolutional kernel size in the mixed attention block, as well as various layer configurations

L4 * [] *
Layers Config
o 1 0.520 Layers Config
., 0.520 4,8,12 . o |
5 2,6,10 £0.515 4,8,12
3 3 x 2,6,10
A A 3,69, 12 3 ,6,
3,6,9,12
0.515 ¢® 2,4,6,8,10,12 A ,6,9,
- 0.510 ¢ 2,4,6,8,10,12
]] A
2 4 6 2 4 6
Number of Values in Num Layers Number of Values in Num Layers
(a) (b)

Figure 4: Comparison of progressive stacking BERT model performance with different layer configu-
rations. (a) Development accuracy vs. number of values in Num Layers (top), and (b) F1 score vs.
number of values in Num Layers (bottom).

in progressive stacking. As seen in Figure [3] increasing the kernel size of the convolution layer
in the mixed attention block improved the performance on the SST and STS datasets, with £ = 9
exhibiting the optimal performance. This observation can be attributed to the way convolutional
layers operate and their capacity to capture different types of contextual information in the input
text. As the kernel size increases, the convolutional layer can encompass a larger context window,
allowing it to capture more long-range dependencies between words and phrases in the input text.
However, we also foresee increasing the kernel size beyond a certain point to lead into diminishing
returns for starting to incorporate less relevant and noisy information from distant parts of the input
text. This additional information could potentially degrade the performance of the model.

Meanwhile, in progressive stacking experimentation, we analyze the results obtained from various
layer configurations in the progressive stacking BERT model, as presented in Figure 3. The results
indicate that the performance of the model with a single layer is on par with the performance of
the model with a more layers (2, 4, 6, 8, 10, 12). This suggests that this approach of progressive
stacking approach might not be as effective as initially hypothesized. Additionally, the results for the
less granular configurations, such as 4, 8, 12 and 2, 6, 10, show little or no improvement over the
other configurations. This could indicate that the progressive stacking approach might not provide
the desired level of knowledge transfer between the layers, resulting in no significant improvement
in performance. The more balanced configuration (3, 6, 9, 12) offers a slight improvement in
accuracy, although the F1 score is still comparable to the other configurations. This suggests that
the progressive stacking approach can yield some benefits when the increase in the number of layers
is more gradual. However, the improvements observed are relatively minor and may not justify the
increased complexity of the model. Overall, the results from the progressive stacking BERT model
show that the approach might not significantly improve performance compared to a single-layer
model. Future work could explore other configurations, different granularities, or adaptive approaches
to determine the optimal layer count automatically.

5 Conclusion

The study explored mixed-attention mechanisms, progressive stacking, and multitask fine-tuning on
miniBert’s performance in tasks like semantic classification and paraphrase identification. Mixed-
attention and progressive stacking showed marginal improvements, but progressive stacking caused
overfitting in some datasets. Multitask fine-tuning reduced overfitting and slightly improved per-
formance on SemEval STS and Quora datasets. Cosine similarity was more effective than neural
networks for similarity detection tasks. Ablation analysis and hyperparameter search investigated the
mixed attention block and progressive stacking, revealing that increasing the kernel size improved
performance but progressive stacking did not. Key limitations include suboptimal mixed attention
block performance, overfitting from progressive stacking, and modest multitask fine-tuning improve-
ments. Future research could explore alternative configurations or adaptive methods to optimize layer
count or refine the mixed attention block.

References

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. * sem 2013
shared task: Semantic textual similarity. In Second joint conference on lexical and computational
semantics (* SEM), volume 1: proceedings of the Main conference and the shared task: semantic
textual similarity, pages 32—43.

Tiangi Chen, Ian Goodfellow, and Jonathon Shlens. 2016. Net2net: Accelerating learning via
knowledge transfer. In Proceedings of the 33rd International Conference on Machine Learning,
pages 1-10.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. 2019. Efficient training of
bert by progressively stacking. In International conference on machine learning, pages 2337-2346.
PMLR.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning
for nlp. In International Conference on Machine Learning, pages 2790-2799. PMLR.

Chanwoo Jeong, Sion Jang, Eunjeong Park, and Sungchul Choi. 2020. A context-aware citation
recommendation model with bert and graph convolutional networks. Scientometrics, 124:1907—
1922.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2019.
Smart: Robust and efficient fine-tuning for pre-trained natural language models through principled
regularized optimization. arXiv preprint arXiv:1911.03437.

Zi-Hang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, and Shuicheng Yan. 2020.
Convbert: Improving bert with span-based dynamic convolution. Advances in Neural Information
Processing Systems, 33:12837-12848.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. 2018. The natural
language decathlon: Multitask learning as question answering. arXiv preprint arXiv:1806.08730.

Muhidin Mohamed and Mourad Oussalah. 2020. A hybrid approach for paraphrase identification
based on knowledge-enriched semantic heuristics. Language Resources and Evaluation, 54:457—
485.

Manish Munikar, Sushil Shakya, and Aakash Shrestha. 2019. Fine-grained sentiment classification
using bert. In 2019 Artificial Intelligence for Transforming Business and Society (AITB), volume 1,
pages 1-5. IEEE.

Nicole Peinelt, Dong Nguyen, and Maria Liakata. 2020. tbert: Topic models and bert joining forces
for semantic similarity detection. In Proceedings of the 58th annual meeting of the association for
computational linguistics, pages 7047-7055.

Jonas Pfeiffer, Andreas Riicklé, Clifton Poth, Aishwarya Kamath, Ivan Vuli¢, Sebastian Ruder,
Kyunghyun Cho, and Iryna Gurevych. 2020. Adapterhub: A framework for adapting transformers.
arXiv preprint arXiv:2007.07779.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of transfer learning with a unified
text-to-text transformer. The Journal of Machine Learning Research, 21(1):5485-5551.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

Asa Cooper Stickland and Iain Murray. 2019. Bert and pals: Projected attention layers for efficient
adaptation in multi-task learning. In International Conference on Machine Learning, pages
5986-5995. PMLR.

Chi Sun, Luyao Huang, and Xipeng Qiu. 2019. |Utilizing BERT for aspect-based sentiment analysis
via constructing auxiliary sentence. In Proceedings of the 2019 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 380-385, Minneapolis, Minnesota. Association for
Computational Linguistics.

Yinfei Yang, Yuan Zhang, Chris Tar, and Jason Baldridge. 2019. Paws-x: A cross-lingual adversarial
dataset for paraphrase identification. arXiv preprint arXiv:1908.11828.

Zhuosheng Zhang, Yuwei Wu, Hai Zhao, Zuchao Li, Shuailiang Zhang, Xi Zhou, and Xiang Zhou.

2020. Semantics-aware bert for language understanding. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 9628-9635.

A Dataset Information

Table @] includes the train:dev:test split of the datasets on which our miniBERT was trained on.

Table 4: Information on different datasets.

Name Train Dev Test
SST 8,544 1,101 2,210

CFIMDB 1,701 245 488
Quora 141,506 20,215 40,431

SemEval STS 6,041 864 1,726

B Infrastructure Settings

The experiments in our study were carried on an AWS server with one NVIDIA A10G GPU, § CPU
cores, and 23GB of memory.

C Progressive Stacking Algorithm

The following algorithm implements the progressive stacking extension in our work.

Algorithm 1 Progressive Stacking

Require: layer_configurations: list of lists of layer counts
Ensure: dev_accuracies: list of development accuracies for each configuration, f1_development:
list of F1 scores for each configuration
Initialize dev_accuracies and f1_development as empty lists
for each layer_configuration in layer_configurations do
Load the pre-trained BERT model
Initialize the model with the given number of layers
Train the model using the training data
Evaluate the model using the development data
Compute and store the development accuracy and F1 score in dev_accuracies and
f1_development
end for
return dev_accuracies, f1_development

A A Sl e

2 o

10

https://doi.org/10.18653/v1/N19-1035
https://doi.org/10.18653/v1/N19-1035

D ConvBERT

The SeparableConv1D class in conv_bert.py has been adapted and modified from the Hugging Face
Library.

11

	Introduction
	Related Work
	Approach
	Mixed Attention Block
	Task-specific Layers
	Multitask Learning
	Progressive Stacking

	Experimental Settings
	Dataset
	Pre-trained Weights
	Hyper-parameter Setting
	Model Variations
	Loss Function, Regularization, and Optimization
	Evaluation Metrics
	Results and Discussion

	Conclusion
	Dataset Information
	Infrastructure Settings
	Progressive Stacking Algorithm
	ConvBERT

