
Exploring minBERT Performance Optimizations
Stanford CS224N Default Project

Marie Chu
Department of Computer Science

Stanford University
mariechu@stanford.edu

Emmy Thamakaison
Department of Computer Science

Stanford University
emmyst@stanford.edu

Abstract

With the rise in interest of transformers and natural language processing with
ChatGPT and GPT4, we decided to revisit traditional problems in NLP such as
sentiment analysis, paraphrase detection, and semantic textual similarity to see
how we could incorporate minBERT with other optimizations to improve the per-
formance of these tasks. To fine-tune our model’s performance on these tasks, we
explored substituting optimization algorithms and different regularization param-
eters. We also incorporated gradient surgery as well as incorporating additional
pre-training tasks in hopes of improving the multitask learning. In improving
our model’s similarity score, which was the lowest of the three, we incorporated
cosine similarity into our loss to improve the performance of the specific task. We
found out that this significantly improved our model’s performance on similarity
prediction and was also useful for the paraphrase detection task. Training on all
data sets with a round-robin approach, as well as combining gradient surgery (GS)
and pre-trained weights on masked language modeling (MLM) of our domain data
set and pre-training on an inference prediction task also led to big gains in overall
performance over our baseline. Our final model achieved a significant improvement
from our baseline (overall: 0.234), with a Sentiment Analysis accuracy of 0.452,
Paraphrase accuracy of 0.732, Similarity correlation of 0.584, and overall test score
of 0.590.

1 Key Information

Our mentor is Candice Penelton and Gabriel Poesia Reis e Silva. We have no external collaborators
nor did we share projects.

2 Introduction

Bidirectional Encoder Representations from Transformers (BERT) was recently introduced as a
simple yet empirically powerful language representation model [1]. Its transformer-based approach
performs competitively on a variety of tasks, including question-answering and inference prediction.
In this project, we aim to implement and improve upon a simpler, functional version of the model
called minBERT. The tasks we aimed to optimize include sentiment analysis, semantic textual
similarity, and paraphrase detection, which will be expanded upon in the following paragraphs.

Paraphrase detection is the task of comparing sentences in determining whether they share the same
meaning. However, according to a recent review, current paraphrase detection methods fall short–
a study examining a multitude of plagiarism detection tools concluded that most were unable to
identify paraphrases [2]. An even more difficult task than paraphrasing is performing sentiment
analysis. In this task the model needs to classify textual bodies (ie. "Positive", "Neutral", "Negative")
based on their respective authors’ opinions. Due to factors such as sentence complexity, there is
still room for improvement on current State-of-the-Art models. [3] In fact, even humans struggle to
semantically analyze a text due to double meanings, satire, etc. Semantic Textual Similarity (STS) is

Stanford CS224N Natural Language Processing with Deep Learning



a task that measures the degree of similarity (ie. 0 - being unrelated, 5 - being same meaning) between
bodies of text. Though much progress has been made towards STS through semantically-aware
word embeddings and transformer-based approaches, gaps remain in areas such as domain-specific
word embeddings [4]. From plagiarism detection to news analysis, all three of these tasks present
significant real-world applications. Thus, iterating upon them is an important task our team decided
to undertake.

Our current project explores ways to improve upon our baseline minBERT’s performance on the
described tasks above. We performed experiments around optimization algorithms, regularization,
round-robin training, and loss functions. Furthermore, we implemented minibatch stochastic gradient
descent and extended the multitask classifier’s pre-training to include inference classification and
masked language modeling on the domain specific datasets. Finally, we assembled combinations of
the above changes to produce a model that achieves results that are significantly better than a random
model on all three tasks. This model is further described in section 4.

3 Related Work

As mentioned in the introduction, BERT was introduced by Devlin et al. in 2018 as a transformer-
based language representation model [1]. It utilizes a masked language model (MLM) pre-training
objective, in which the model attempts to predict randomly masked input tokens from its surrounding
context. This translates into a versatile design that does not need heavy task-specific architectural
modifications. BERT achieves competitive performance on a large suite of sentence-level and token-
level tasks, including having a GLUE score of 80.5%, MultiNLI accuracy of 86.5% and SQuAD v1.1
question answering Test F1 score of 93.2 [1]. Since its publishing, BERT has become a ubiquitous
baseline for NLP experiments [5].

A key component of the Devlin et al.’s BERT model is the Encoder Transformer layer, which was
originally introduced in Vaswani’s paper Attention is All You Need. The BERT transformer layer
consists of multi-head self attention, an additive and normalization layer with a residual connection,
a feed forward layer, and another additive and normalization layer with a residual connection [6].
Multi-head self attention is a scaled dot-product across multiple heads which allows the model to
jointly attend to multiple representation subspaces [6]. The simpler version of BERT, minBERT was
the basis of our model that we sought to improve upon.

Furthermore, our project draws inspiration from Yu et al’s work on gradient surgery for multi-task
learning. Learning multiple tasks at once presents a challenging optimization problem, as training
efforts may lead to worse overall accuracy or lack computational efficiency. This may be due to
conflicting gradients of different tasks in certain optimization landscapes. Under such circumstances,
the multi-task optimization landscape may be dominated by one task’s gradient, which leads to
degraded performances for other tasks [7]. Thus, Yu et al. proposes the Projecting Conflicting
Gradients (PCGrad) technique, a form of gradient surgery in which conflicting gradients are altered
by projecting onto the normal plane of one another. They demonstrate PCGrad’s effectiveness in
improving the efficiency and performance of multi-task reinforcement learning models.

We also drew inspiration from Sun et al.’s work on fine-tuning BERT for text classification [8]. In this
paper, Sun et al. proposed to pretrain BERT on within-task training data, and fine-tune BERT with
multitask learning and on the target task itself. Furthermore, we drew from Williams et al.’s work on
sentence understanding through inference as an additional pretraining task. Like the authors of these
papers, we hoped that our model would have a better understanding of the language it’s working with
by incorporating these training tasks.

Lastly we drew from Reimers and Gurevych’s work on Sentence-BERT: Sentence Embeddings using
Siamese BERT-Networks and their measure of cosine similarity in our approach [9] to better capture
the similarity between sentences in the similarity and paraphrase detection tasks.

4 Approach

Our baseline model is the multi-task minBERT trained on only the STS dataset. This corresponds
to the minBERT starter code created by Stanford University’s CS 224N staff and Carnegie Mellon

2



Figure 1: minBERT with three separate heads for downstream tasks of sentiment analysis, paraphrase
detection, and semantic textual similarity.

University’s CS11-711 staff, which is a more compact, functional version of Devlin et al.’s original
BERT model.

In attempting to improve the model, we first explored smaller changes. Our baseline utilized AdamW
optimization, a stochastic gradient descent method extended from the Adam (Adaptive Movement
Estimation) algorithm that additionally decays weights per techniques described in Loshchilov and
Huttner’s 2019 paper [10]. We explored substituting AdamW with NAdam (Nesterov-accelerated
Adaptive Moment Estimation), another extension of Adam that employs Nesterov momentum [11].
The momentum smooths out noisy objective functions and theoretically improves convergence by
adding an exponentially decaying moving average of the gradient to the gradient descent algorithm
[11]. Furthermore, we also explored the impact of dropout rate on accuracy. Dropout is a technique
of randomly dropping units during training to prevent model over-fitting, and varying the dropout
rate has been shown to affect error [12]. We also tested out adding more layers by using two linear
layers and a non-linear ReLU activation function for our three tasks to increase the expressiveness of
the model.

Additionally, we experimented with a round-robin training method versus a sequential training
method. To employ the round-robin method, for each epoch, we selected a batch corresponding
to each task and trained them, repeating this process until we ran out of batches. As the datasets
included a different number of batches, we accounted for this by indefinitely cycling through the
batches of the smaller datasets until we finished all the batches in the largest dataset (Quora). In the
sequential method, we trained the model on all of the batches of a data set before moving onto the
next data set in the epoch.

On top of round-robin training on the datasets, we also incorporated the PyTorch implementation
of gradient surgery by Wei Cheng Tseng [13]. As described above, this technique alters conflicting
gradients of multiple tasks by projecting them onto the normal plane of each other [7]. In incorporating
this, we hoped to improve the efficiency and accuracy of multitask minBERT.

We also implemented an additional inference prediction task into the pre-training of the multitask
model. We utilize the Multi-Genre Natural Language Inference (MultiNLI) corpus created by
Williams et al., which contains over 433k broad-coverage sentence pairs annotated with inference
labels. We loaded in this dataset and implemented the collate function to pretrain on the MultiNLI
dataset in batches. We used a cross entropy loss to update the parameters of our model on the training
dataset by how well our model was able to label two sentences as entailment, contradiction, or neutral.
By training the model on this dataset, we hoped to improve its natural language understanding and
have it translate into better performance on the three downstream tasks [14].

Further, we implemented the code for MLM on the domain specific datasets of Stanford Sentiment
Treebank, Semantic Textual Similarity, and the Quora dataset. We loaded in these three datasets to
create a new dataset that consisted of only the sentences from each of the three datasets. We then
followed the specifications from the original BERT paper, masking out 15% of the tokens in each
sentence that weren’t [PAD] tokens, [CLS] token, or [SEP] tokens. However, following the note

3



mentioned in the default project specifications, these tokens weren’t masked all the time but rather
from that 15%, 80% of the cases are replaced with the [MASK] token, 10% of the tokens are replaced
with a random token and 10% remain unchanged.

We pretrained our MLM and inference prediction task with a round robin approach and gradient
surgery. We used these pretrained weights for our model and froze the minBERT layers on the
subsequent finetuning for the tasks of paraphrase, sentiment analysis, and similarity. Furthermore our
loss functions for the three tasks were binary cross entropy, cross entropy, and mean squared error
respectively as the first two tasks are classifications and the last task is a regression.

We also looked at incorporating cosine similarity for our similarity and paraphrase tasks. This
calculates the cosine similarity between two embeddings, across the specified dimension encapsulated
by Equation 1. To do this, we created two linear layers that projected the embeddings of minBERT
down to a dimension of 500 in which we subsequently calculated the cosine similarlity and scaled
respectively to fit our paraphrase task (0/1 outputs) and semantic textual similarity task (0-5 outputs).
We believed this would help the performance of paraphrase detection and semantic textual similarity
since two featurized vectors in embedding space that are similar most likely translate to two sentence
that are similar in sentence space.

x1 · x2

max(∥x1∥2∥x2∥2, ϵ)
(1)

After performing the experiments detailed below, we chose our final model to include frozen pretrained
minBERT weights from training on our two pretrain tasks of inference classification and MLM of
domain specific data. Furthermore, we utilized gradient surgery and a round robin approach of
training on the STS dataset, Quora dataset, and SST dataset with details provided in the next section.
We also incorporated cosine similarity in both our semantic textual similarity task as well as our
paraphrasing task. A diagram of our final model is provided in Figure 1.

5 Experiments

5.1 Data

For the Sentiment Classification task, we used the Stanford Sentiment Tree (SST) bank [15] and
CFIMDB data sets for training and testing. For the multitask portion we only used SST. SST consists
of 11,855 single sentences from movie reviews, and each sample was annotated to have a negative,
somewhat negative, neutral, somewhat positive or positive label. We used 8,544 examples for training,
1,101 examples for dev, and 2,210 examples for testing, respectively. Additionally, we used 2,434
examples from CFIMDB, which consists of highly polar movie reviews that are either negative or
positive. For each phase, we used 1,701 to train, 245 examples for dev, and 488 examples for testing
purposes.

For the Paraphrase Detection task, we used the Quora dataset, consisting of 400,000 question pairs
wtih labels indicating whether they are paraphrases of one another. This includes a train (141,506
examples), dev (20,215 examples), and test (40,431 examples) split.

For similarity detection, we trained on the SemEval STS Benchmark [16] dataset which consists of
8,628 different sentence pairs of varying similarity on a scale from 0 (unrelated) to 5 (equivalent
meaning). For the STS dataset, we have the following splits: train (6,041 examples), dev (864
examples), test (1,726 examples).

Additionally, we also used the SST, STS, and Quora datasets for our pretraining MLM task.

Regarding the inference prediction task, we used MultiNLI, which consists of labeled sentence pairs
from ten distinct genres of written and spoken English. As our source of truth, we used the "Gold
label", an assigned label for a single pair with the majority vote of the annotators, that could be
"contradiction", "entailment", or "neutral". The train, dev, and test datasets consisted of 392,702,
20,000, and 20,000 pairs, respectively.[14]

4



5.2 Evaluation method

For evaluation of paraphrase detection and sentiment classification, we used accuracy. For semantic
textual similarity, we compared the Pearson correlation of the true similarity values against the
predicted similarity values across the test data set. The Pearson correlation measures the strength of
the linear relationship between two variables.

5.3 Experimental details

For the fine-tuning, tasks we ran our experiments for one epoch with a learning rate of 1e-3 and a
dropout rate of 0.1 (except when we were experimenting with different dropout rates, learning rates,
and training time). For all the experiments that weren’t pretraining on the domain specific dataset or
inference prediction, we froze the layers of minBERT. By training on one epoch, this allowed us to
quickly test out different additions without being hindered by slow feedback loops.

For pretraining on the domain-specific dataset and inference task, we used a learning rate of 1e-5
and first trained for 5 epochs to obtain the pretrained weights for minBERT. We subsequently loaded
these weights and froze the layers of minBERT to use in the subsequent target tasks. These pretrained
weights were used in all the experiments shown in Table 2. For the final model we attempted to train
for more epochs but ran into the problem of overfitting as described below. Our final model includes
pretrained weights with a learning rate of 1e-5, dropout rate of 0.3, and 13 epochs.

5.4 Results

Method Sentiment Paraphrase Similarity
Baseline (Sentiment training only) 0.332 0.380 -0.009
Sequential training on all datasets 0.312 0.627 0.249
Round Robin (RR) on all datasets 0.378 0.661 0.282

Table 1: Training on Multi-task Baseline for 1 epoch

Our training on domain-specific datasets instead of only the SST dataset significantly improved our
minBERT performance from the baseline. Employing a round-robin approach instead of a sequential
approach to training improved our model’s accuracies further. We think this helped the model update
its parameters more evenly across all tasks, as the last dataset doesn’t "dominate" the predictions of
the targeted tasks due to the model "forgetting" what it learned from previous datasets.

Additions Sentiment Paraphrase Similarity
RR baseline 0.378 0.661 0.282
Dropout 0.2 0.387 0.626 0.270
Dropout 0.3 0.361 0.636 0.258
Added Layers 0.375 0.671 0.277
Gradient Surgery 0.361 0.656 0.291
GS + pretraining on domain dataset 0.354 0.654 0.323
pretraining on both 0.431 0.689 0.278
GS + pretraining on both 0.414 0.694 0.268
NAdam 0.381 0.649 0.280
GS + NAdam + pretraining on both 0.432 0.693 0.278
pretrain + cosineSim on similarity 0.427 0.708 0.429

Table 2: Experimental Results for Round-Robin Baseline training on Multi-task for 1 epoch

As seen in Table 2, our implementation of MLM and inference prediction pre-training also incremen-
tally improved the model’s performance (Sentiment: 0.431, Paraphrase: 0.689, Simliarity: 0.278),
albeit incrementally. This aligns with our initial predictions that this pre-training will help improve
the model’s lexical understanding and translate to better performance in downstream tasks.

We also found in our initial experiments that GS and NAdam, when used individually, both decreased
the model performance, with the overall performance being 0.436 for both GS and NAdam, and the
RR baseline being 0.440. However, when combined with some other extensions, such as NAdam
+ MLM and inference pre-training, they led to superior performance than when they were used
individually (Sentiment: 0.432, Paraphrase: 0.693, Simliarity: 0.278).

5



Interestingly, we found that purely adding more layers had decreased the overall accuract accuracy
compared to the Round-Robin (RR) baseline (Sentiment: 0.375, Paraphrase: 0.671, Simlarity: 0.277).
This may be attributed to unnecessary layers contributing to overfitting due to our smaller training
datasets, leading to higher error. We also found that dropout probabilities of p = 0.2, 0.3 led to lower
accuracy compared to RR baseline as well, which can be alternatively explained by the model not
being able to fit properly.

The result of Table 2’s pretrained weights were obtained with training over 5 epochs. However
when we were pretraining the network on the inference prediction task and MLM for 10 epochs, we
realized that the inference prediction was overfitting to the training dataset while MLM was still
showing gains in the train and dev sets. To combat this, we retrained it with slowed down learning for
the inference task so there would be smaller updates to the parameters due to inference. Our final
pretrained weights were obtained after 13 epochs and we used them for the subsequent experiments.
Before assembling our final model, we trained the combinations in Table 3 for more epochs as we
believed they would be promising based on the results of Table 2. This was to confirm or dispel
our initial one-epoch results, as well as explore other additions such as cosine similarity, before
committing to our final model.

Additions Sentiment Paraphrase Similarity
GS + pretrain on both (9) 0.444 0.712 0.272
GS + pretrain on both + NAdam (4) 0.449 0.715 0.288
GS + pretrain + cosineSim on similarity (8) 0.449 0.710 0.512

Table 3: Training on multiple epochs with round robin. Note: (n) where n is number of epoch that
produced best results

As mentioned, we explored cosine similarity after we had already experimented with training for
more epochs on our other models. However, from the results of Table 3 it was clear that cosine
similarity was the most promising. As a result, we did a few more shorter experiments with it.
The cosineSim in the following experiments refers to a modified cosineSim compared to the one in
Table 3.The cosineSim in Table 4 includes an extra ReLU layer after the cosine similarity layer for
the similarity task as pictured in Figure 1. We observed that this achieved better results in the first
epoch compared to the old cosineSim as values in our dataset were not really "dissimilar". Therefore,
instead of linearly shifting and scaling the -1 to 1 outputs of cosine similarity, we instead passed it
through a ReLU layer so all "dissimilar" items get mapped to 0 (unrelated sentences) instead.

Additions Sentiment Paraphrase Similarity
pretrain + cosineSim on similarity 0.427 0.708 0.472
pretrain + cosineSim on both 0.443 0.717 0.503
NAdam + pretrain + cosineSim on both 0.434 0.718 0.504
GS + pretrain + cosineSim on both 0.418 0.712 0.501
GS + pretrain on both + scaled similarity loss + cosineSim
on both

0.441 0.725 0.546

Table 4: Training different variants of cosineSim. Note: these values were obtained with ranges
between 1-3 epochs of training

As we were training for multiple epochs, we noticed it was overfitting for the similarity task and there
were significant improvements in the dev and train set of similarity while the performance of the
other tasks began to degrade, as a result we decided to do a similar process as we did with pretraining
and scaled down the loss of the similarity task so its updates to the parameters weren’t as aggressive.
The improvements of this is showed in Table 4. We also chose to use gradient surgery in our final
model because although the results on the short experiment appear to be worse, with more training
time, the performance of gradient surgery seems to balance out the performance between the tasks as
the parameters are only updated in the direction of their common losses.

Overall, we saw significant improvements in our multi-task model’s (depicted in Figure 1) overall
performance (dev: 0.598) compared to the baseline (dev: 0.234). We achieved that result by running
experiments with different learning rates as well as longer training times as depicted in Figure 2 and
Figure 3. Our final model achieved the following results on the test set: SST test accuracy: 0.452,
paraphrase test accuracy: 0.732, STS test correlation: 0.584, and overall test score: 0.590.

6



Figure 2: different learning rates effect on performance of each task

Figure 3: effects of training time on performance of each task.

6 Analysis

Examining the model’s performance across the tasks, we see that the model can solve basic instances
of a presented problem but struggles with complex prompts. Regarding the sentiment classification
task, we illustrate this using the following examples:

Figure 4: heatmaps of sentiment and paraphrase predictions with the results scaled to the percentage
of predictions in each category.

Correct:
Sentence: "Exquisitely nuanced in mood tics and dialogue , this chamber drama is superbly acted by
the deeply appealing veteran Bouquet and the chilling but quite human Berling."
Predicted: 4
True: 4
Incorrect:
Sentence: "A rewarding work of art for only the most patient and challenge-hungry moviegoers."
Predicted: 0
True: 3

As seen above, the model appears to understand the task to some extent when presented with an
overtly positive/negative prompt. However, the model struggles with nuanced sentences. In the above
incorrect example, it may be only focusing on the word "only" and "challenge-hungry", which may
dominate the sentence’s underlying positive sentiment. As seen in Figure 4, the darker colored
diagonal of the heatmap demonstrates that the model for the most part can correctly predict positive
and negative sentiment. The model however has difficulty determining the degree of positivity or
negativity in the statement.

7



Correct:
Sentence 1: "What are the latest exciting hollywood movies?"
Sentence 2: "What’s the latest Hollywood movie?"
Predicted: 1
True: 1
Incorrect:
Sentence 1: "What are some gift ideas for a female friend?"
Sentence 2: "What are some gift ideas for female friend?"
Predicted: 0
True: 1

For paraphrase detection, we see that the model appears to do pretty well with cases that have
parallel syntax and are easily identifiable as paraphrases, however it tends to struggle with examples
containing typos and bad grammar. Although the two sentences in the incorrect case are almost
identical (except the missing article in front of "female friend"), the model still predicts this incorrectly
as not paraphrases. These noisy data points could cause our model trouble as not only does it need
to detect paraphrases, it would also have to detect typos and bad grammar. We also noticed the
model had difficulty with determining paraphrases when one sentence is significantly longer than
the other/one sentence is the summary of another as this is another task in NLP in and of itself.
Furthermore, by analyzing Figure 4 we see that our model tends to be conservative in its predictions
of paraphrases, often opting for "not a paraphrase" when it is unsure and generating more false
negatives than false positives. Lastly, we illustrate some aspects of the model’s behavior on the
similarity task:

Correct:
Sentence 1: "Two black dogs are playing on the grass."
Sentence 2: " Two black dogs are playing in a grassy plain."
Predicted: 4.1
True: 4.6
Incorrect:
Sentence 1: "UN chief welcomes peaceful presidential elections in Guinea"
Sentence 2: "UN chief condemns attack against peacekeepers in Mali"
Predicted: 3.48
True: 1.0

As demonstrated above, the model seems to fixate on parallel syntax between two sentences rather
than the semantics.

7 Conclusion

Our multi-task minBERT based model demonstrates sufficient understanding of our downstream tasks,
with scores of 0.452 for sentiment analysis, 0.732 for paraphrase detection and 0.584 for similarity
correlation. This was achieved with frozen weights from pre-training tasks, gradient surgery to
combine the losses of multiple tasks, task specific improvements like cosine similarity in calculating
the loss, hyper-parameter tuning, and regularization. We discovered that individually, optimizations
may seem to worsen or improve the performance of the model but when used in conjunction with
other methods, the improvements and degradation could differ. Although our model already performs
significantly better than the baseline, the examples highlighted in the "Analysis" section signals that
there is still room for improvement.

Regarding future directions, we foresee infusing word sense– word categories corresponding to
multiple definitions– into the input embeddings as a potential avenue towards model improvement.
Levine et al. created a Sense-BERT model that attempted to predict a word’s supersenses (ie.
"noun.food") in conjunction with the pre-existing MLM tasks in the pre-training. Demonstrating
their resultant model’s superior performance in tests such as Word in Context (WiC) task from the
SuperGLUE benchmark, they created a sense-informed model that appears to achieve "significantly
improved lexical understanding" when evaluated compared to vanilla BERT [17]. Although non-
task-specific, incorporating word sense embeddings may translate into better performance in our
downstream tasks.

8



References
[1] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Toutanova Kristina. Bert: Pre-training of

deep bidirectional transformers for language understanding. October 2018.

[2] Chao Zhou, Cheng Qiu, and Daniel E. Acuna. Paraphrase identification with deep learning: A
review of datasets and methods, 2022.

[3] Meenu Bhagat and Brijesh Bakariya. Sentiment analysis through machine learning: A review.
In Garima Mathur, Mahesh Bundele, Mahendra Lalwani, and Marcin Paprzycki, editors, Pro-
ceedings of 2nd International Conference on Artificial Intelligence: Advances and Applications,
pages 633–647, Singapore, 2022. Springer Nature Singapore.

[4] Dhivya Chandrasekaran and Vijay Mago. Evolution of semantic similarity - A survey. CoRR,
abs/2004.13820, 2020.

[5] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in BERTology: What we
know about how BERT works. Transactions of the Association for Computational Linguistics,
8:842–866, 2020.

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

[7] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning, 2020.

[8] Yige Xu Xuanjing Huang Chi Sun, Xipeng Qiu. How to fine-tune bert for text classification?
May 2019.

[9] Iryna Gurevych Nils Reimers. Sentence-bert: Sentence embeddings using siamese bert-networks.
EMNLP, 2019.

[10] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2017.

[11] Timothy Dozat. Incorporating nesterov momentum into adam, Feb 2016.

[12] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014.

[13] Wei-Cheng Tseng. Weichengtseng/pytorch-pcgrad, 2020.

[14] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 1112–1122, New Orleans, Louisiana, June 2018.
Association for Computational Linguistics.

[15] Jean Wu Jason Chuang Christopher D Manning Andrew Y Ng Richard Socher, Alex Perelygin
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. Proceedings of the 2013 conference on empirical methods in natural language
processing, page 1631–1642, 2013.

[16] Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, Rada Mihal-
cea, German Rigau, and Janyce Wiebe. SemEval-2016 task 1: Semantic textual similarity,
monolingual and cross-lingual evaluation. In Proceedings of the 10th International Workshop
on Semantic Evaluation (SemEval-2016), pages 497–511, San Diego, California, June 2016.
Association for Computational Linguistics.

[17] Yoav Levine, Barak Lenz, Or Dagan, Dan Padnos, Or Sharir, Shai Shalev-Shwartz, Amnon
Shashua, and Yoav Shoham. Sensebert: Driving some sense into BERT. CoRR, abs/1908.05646,
2019.

9


	Key Information
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

