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Abstract

In recent years, Pre-trained Language Models (PLMs) have seen a meteoric rise,
largely because through their training process, PLMs form a rich, implicit rep-
resentation of domain knowledge. Yet its implicit nature makes knowledge in-
scrutable, which calls the need for explicit representations like Knowledge Graphs
(KGs). KGs, while powerful in representing complex relationships between enti-
ties, do not capture priority between triples. In this paper, we propose a method
for augmenting KGs with importance weights using Wikipedia as proxy for impor-
tance. As Wikipedia is limited as a dataset, we use PLMs to generalize the notion
of importance from the Wikipedia dataset. We see importance-augmented knowl-
edge graph as an important step in constructing richer explicit representations of
knowledge.

1 Background

Knowledge graphs (KGs) are a popular and effective way to represent structured knowledge. They
are composed of entities (nodes) and relationships (edges) between those entities. KGs have been
used in various tasks such as question answering, recommendation systems, and information re-
trieval.

1.1 Limitations of Knowledge Graphs

Formally a knowledge graph G can be defined as:
KG={&R,T}

where £ is the set of entities (e.g. Einstein, Germany, Theory of Relativity) and R is the set of
relations (e.g. born in, discovered). T is the set of triples in the form of (h,r,¢) with h as head, ¢ as
tail, and r as relation, where h,t € £ and r € R. Thus for the fact “Einstein is born in Germany”,
h = Einstein, r = born, and ¢ = Germany.

If a knowledge graph is to be a proxy for how knowledge rests in the mind, then a knowledge graph
— specifically a knowledge graph triple — is insufficient at representing factoids in the mind. Con-
sider the example above with Einstein. The two facts “Einstein is born in Germany” and “Einstein
discovered theory of relativity” are represented as triples in the knowledge graph. Yet consider that
to a human mind, Einstein’s discovery of theory of relativity is more “important” than his birthplace.
Knowledge graph representation fails to capture the priority between these two factoids with which
most humans would agree.

An immediate counterpoint is the subjectivity of “importance”. To some minds (perhaps a student
studying the nationality of prominent scientists), Einstein’s birthplace might be of greater impor-
tance than his discovery. Yet the subjective nature of the object of study should not completely
discourage the study of it; rather, the difficulty should invite better methods to capture that informa-
tion.
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Besides, to the authors a knowledge graph as it stands is limited, and some notion of weights in
relationships must exist in order to better represent knowledge itself.

1.2 Importance-augmented Knowledge Graph
Formally a weighted knowledge graph can be defined as:
WKG = {&,R, T, fu}

where £, R and T remain as in G, and f,, : T — [0,1] is a function from KG triple to the
associated weight.

A general method for incorporating weights for link prediction has been studied[[], yet most weights
are confidence scores, i.e. measuring the uncertainty of the triple. We see confidence scores as help-
ful but ultimately uninteresting. Importance as weights are interesting but, as mentioned, perhaps
difficult to study due to its subjective nature.

1.3 KG-BERTI[Z]

In recent years, we have witnessed a meteoric rise of pre-trained language models (PLMs) like
BERT[3]. Trained on a very large corpus, PLMs have demonstrated ability to answer questions
that require domain knowledge, leading many to hypothesize PLMs to have implicit representation
of knowledge. Contrast this with knowledge graphs: PLM is a rich, implicit representation of
knowledge whereas KG is a structured, explicit representation of knowledge.

Several attempts have been made to combine the advantages of these two representations. Most
notable attempt is KG-BERT, which performs several KG-specific tasks like link prediction, relation
prediction, and triple classification using PLMs. Key idea is to convert knowledge graph triples into
sequence of tokens, using the sequence as input tto the BERT model. KG-BERT has seen reasonable
success, with some improvements made in PKGC[Z].

1.4 Importance in LLMs

In the previous section we mentioned how PLM has a rich representation of knowledge. What is
meant by a “rich” representation of knowledge? Let us consider a conversation with GPT-4[5], a
recent LLM, shown in Figure [.

We see in the conversation that GPT-4 attempts to order facts about Einstein based on importance.
It also notes Einstein’s discovery is more important than his birthplace. We can empirically note
that GPT-4 can “weight” different relationships based on a notion of importance, whereas KGs
are structurally incapable of such task. Thus it is plausible that if we want to create importance-
augmented knowledge graphs, we can extract implicit knowledge in them for importance in triples.

While no systematic inquiry has been made as to whether LLMSs possess a robust implicit repre-
sentation of importance of facts, we hypothesize that the success of LLMs imply a rich implicit
representation, which serves as the motivation for our experiments.

1.5 Contributions

Therefore, we’d like to leverage PLMs in order to augment KGs with importance. In order to use
PLMs, we must fine-tune it to our needs; unfortunately, there exist no publicly available knowledge
graph datasets that label edges with importance. Thus we use Wikipedia articles as proxy for impor-
tance in a triple: specifically, given triple (h,r,t), position of ¢ in the Wikipedia article of A is used
to approximate f,(h,r,t). Then a BERT model is fine-tuned on this data in order to approximate a
general f,, function.

In this paper, we present a model that is capable of computing importance scores using Wikipedia
as proxy for importance. This model is then used to augment an existing KG with several important
scores for completeness.



Please order the most important facts about Einstein

Albert Einstein developed the theory of relativity, which revolutionized our

understanding of space, time, and gravity. His two most significant contributions
are the Special Theory of Relativity (1905) and the General Theory of Relativity
(1915).

Einstein's famous equation, E=mcA2, demonstrates the relationship between energy
and mass, asserting that energy can be converted into mass and vice versa. This
groundbreaking equation has had profound implications for science and
technology, including nuclear power and weaponry.

3. In 1921, Einstein was awarded the Nobel Prize in Physics for his explanation of the
photoelectric effect, which laid the foundation for the development of quantum
mechanics.

Einstein's work on the Brownian motion provided empirical evidence supporting the
existence of atoms and molecules, which was still a matter of debate among
scientists at the time.

. He was born on March 14, 1879, in Ulm, Germany, and died on April 18, 1955, in
Princeton, New Jersey, USA.

. Throughout his life, Einstein held various academic positions at prestigious
institutions, including the University of Zurich, the University of Prague, the Swiss
Federal Institute of Technology (ETH Zurich), the University of Berlin, and the
Institute for Advanced Study in Princeton, New Jersey.

Einstein was a strong advocate for peace and humanitarian causes, and he was also

an outspoken critic of nuclear weapons, racism, and nationalism.

Figure 1: Conversation with GPT-4 on Ordering Einstein Facts based on Importance

2 Importance Score Extraction from Wikipedia

In this section, we will discuss the process of preprocessing Wikipedia articles and the method used
to compute importance scores for the generated triples.

2.1 Motivation

Given a triple (h,r,t), we wanted a dataset that gives us wy, ., where wy, ,; = fu(h,r,t). Yet
as mentioned above, there are no publicly available datasets, so we have to generate wy, ;. Three
sources that implicitly capture these relationships came to mind: LLMs, Google, and Wikipedia.

2.1.1 LLMs as Source

As demonstrated above with GPT-4, with proper prompting, we can extract information about im-
portance of facts from LLMs. We however moved away from this approach for several reasons:

1. We prefer human-generated data as the baseline for training our model.

2. Using data generated by LLM to fine-tune BERT seems unwise, and may exacerbate the
biases.

3. LLMs are computationally expensive to run inference, and this is an issue when there are
triples on the order of a million. A simple backhand calculation: if we generate 1 token per
second and each triple has 10 tokens on average, then generating data for 1M triples takes
10M seconds, which is near 4 months.

2.1.2 Google as Source

Let T}, .+ be the textual representation of triple (h, 7, t) e.g.
TAlberl_Einstein,wasBornln,Germany = "Albert Einstein was born in Germany"
Then the number of Google search results of T}, ,.; can be used to compute wy, ;. ¢, With appropriate

normalization. We see this approach as interesting, albeit with high variance and noise. We suggest
the number of Google search results be used as a supplementary feature in future work.



2.1.3 Wikipedia as Source

When using Wikipedia as a source, we assume that earlier a fact shows in a Wikipedia article, more
important the fact is. We see this assumption as being largely true, as Wikipedia articles are edited
by humans with implicit goal of presenting relevant information. The assumption fails sometimes
when, for instance, basic information (like birthplace) about a person is presented earlier than more
critical information.

Given a triple, we use the index of tail in the Wikipedia article of head in order to compute the
importance score. There are different ways to index the tail, which we will go over in subsequent
sections.

2.2 Dataset

We used YAGO3-10 (Yet Another Great Ontology 3-10) as the dataset. YAGO3-10 has 123,182
entities, 37 relations, and 1,179,040 triples (of which 1,079,040 we use for training). All entities
are identifiers for Wikipedia articles. In order to remove variance in character count, we default
to English Wikipedia. Because of this limitation and other issues like website access and inability
to find the entity in a Wikipedia article, we could not use near 69.39% of the data for training.
Ultimately we have 330,248 triples, or 30.61% of the original dataset for training.

2.3 Preprocessing Wikipedia Articles
Given triple (h,r,t), let

1. Iy be the link index of entity ¢ in the Wikipedia article of h. Link index here is the index
of the entity in the ordered list of all entities in the article, in the order that they appear.
We use the term link since named entities in Wikipedia articles link to the corresponding
Wikipedia article.

2. Iy, , be the link index of entity ¢ in the Wikipedia article of /, where infobox is ignored.
Example of Infobox is shown in Figure . Considering links in infobox can be a double-
edged sword as sometimes useful entities are in infobox and not in the main article, but
also infobox has a regular ordering that does not prioritize importance of facts.

3. C}+ be the character index of the first character of entity ¢ in the Wikipedia article of h.
Character index here is the number of characters in the article before the first character of
entity.

2.3.1 Limitations

Note how this method does not take the relation type into account. Even though the relation type is
an important matter, we assumed that given head h and tail ¢, in most instances, there is one type of
relation between h and ¢. The mention of ¢ in an article of h will imply ¢ is being mentioned in the
context of that one type of relation. Thus the index of ¢ is sufficient to determine the position of the
“triple”.

2.3.2 Power Decay

Given an index, we use a power decay function to normalize to a real-value between 0 and 1:

s(x) =a” (1)

where s(z) is the importance score, x is the position of the tail entity in the article, and « is a
positive constant. The power decay function is chosen because it assigns higher importance to
entities mentioned earlier in the article while still considering entities that appear later. This function
reflects the intuition that earlier-mentioned entities are generally more important, but it allows for
the possibility that later-mentioned entities can still be relevant. For I, ; and I}, ,,  of 0.95 is chosen.
For C, ¢, o of 0.999 is chosen. The decay rates are chosen based on the magnitude of these values;
note that C', ; will be much larger than the other two indices.



Albert Einstein

Portrait by Ferdinand Schmutzer, 1921
Born 14 March 1879

Ulm, German Empire
Died 18 April 1955 (aged 76)
Plainsboro, New Jersey, US
Citizenship Full list [show]
Education Federal polytechnic school

in Zurich (Federal
teaching diploma, 1900)

University of Zurich (PhD,
1905)

Figure 2: Wikipedia Infobox on Albert Einstein

H T T O]

BERT Train Loss (Last Epoch) 0.028 0.070 0.062
BERT Test Loss 0.030 0.061 0.058
RoBERTa Train Loss (Last Epoch) 0.032  0.074 0.066
RoBERTa Test Loss 0.031 0.059 0.062

Table 1: Results for BERT and RoBERTa

3 Experiments

The goal is to train a BERT model in order to fully complete a knowledge graph with importance
weights. As mentioned above, 69.39% of the data for YAGO3-10 training dataset do not have
weights attached to them. Thus for proper imputation of data, we need to train an appropriate
model.

3.1 Methods

Given h,r,t € Eand I € {1, I,’Lt7 Ch,+ }, the method is as follows:

1. Convert (h,r,t) to a sequence of tokens, using relation2text.txt for r.

2. Let the sequence of tokens be the input to BERT sequence classification model, with the
output as a single label .

3. Use MSE as the loss function and AdamW optimizer for training.
In order to aid training, we preprocessed the Wikipedia data so that I € [0, 1]. 1,079,040 triples

were used in the train dataset, and 50,000 triples were used for dev and test datasets each. We used
BERT and RoBERTa[R] as the BERT models, learning rate of 1E-5, and 3 epochs.

3.2 Results

We see the results laid out in Table 0. Notably, even though I, ; and I;, , used the same decay rate,
we see that the PLMs are much better able to learn I, ;. The reason for this is because I, ; includes
the infobox, which leads to much more regular patterns in the importance scores of certain triples.



There are several limitations to the result:

1. Itis difficult to tell how good these losses are without having human-labeled data to validate
our model. We are assuming that the Wikipedia positions are a good proxy, but when
evaluating the results, it is difficult to tell.

2. Wikipedia has many relationships, whereas YAGO3-10 is a subset of these relationships.
The low discrepancy between train and test losses evidence low possibility of overfitting,
but this may be due to the limitation of the dataset.

3. BERT and RoBERTa do not have significant differences in loss. We expect with a problem
as difficult as determining importance of facts, the size of the model will have an effect.
Yet there is no difference, which may suggest that these models are opting for a simpler
strategy that does not encompass actually learning the task.

Despite these limitations, however, we show that pre-trained language models can learn non-trivial
relationships between the “importance” and the triple.

3.3 Importance-augmented Knowledge Graph

In the codel that we have provided, we have provided a means of generating importance scores from
a knowledge graph. We do this by

1. Given triple (h,r,t), if ¢ can be found within article of h, use the appropriate index for
computing importance score.

2. If no t can be found, then use the model we trained in order to generate the importance
score, thereby imputing the data.

Thus the result of imputation is a six-column tsv file with head, relation, tail, I}, ¢, I}, ;, and C, ;. We
hope that this dataset can act as a rich augmentation of knowledge graphs enabled by PLMs.

4 Suggested Future Work

4.1 Google as Source

As mentioned above, we suggest using Google as an alternative way to enrichen a knowledge graph.
Once controlled for its variance and erraticity, we believe this can be a useful feature to add to a
knowledge graph.

4.2 Application to KG-BERT

Initially we sought to use the new representation in order to aid training KG-BERT. We hypothe-
size that a richer representation of knowledge graphs can help with tasks like link prediction. The
computational complexity of these models, however, is very high (faking weeks, up to a month on
V100), which is infeasible given allotted time and resources.

5 Conclusion

In this paper, we explored the problem of assigning importance scores to triples in a knowledge
graph. We proposed a novel approach by leveraging Wikipedia articles and preprocessing techniques
to extract importance scores. Our assumption was that the position of a fact within a Wikipedia arti-
cle is indicative of its importance. We employed BERT and RoBERTa models to predict importance
scores based on the extracted data.

While our approach has shown promise, there is room for improvement. Future work could include
using the number of Google search results as a supplementary feature, taking the relation type into
account, and exploring different decay functions for normalizing the importance scores. Addition-
ally, the performance of the models can be further enhanced by experimenting with other pre-trained
language models, more sophisticated techniques for text processing, and refining the hyperparame-
ters.


https://github.com/joshcho/cs224n-final
https://github.com/yao8839836/kg-bert/issues/8
https://github.com/yao8839836/kg-bert/issues/8

In conclusion, our approach demonstrates a viable way to extract and predict importance scores for
knowledge graph triples using large language models and Wikipedia articles. This work paves the
way for refining and expanding knowledge graphs, enriching explicit knowledge representations.
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