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Abstract

The increasing availability of pretrained transformer models has made transfer
learning a more viable solution towards downstream NLP tasks. Fine-tuning a
pretrained model on data examples directly related to the downstream task can
result in better performance with less labels because of the size of the corpus the
pretrained model was trained under (typically in the range of several billions of
tokens). In this study, we assess this claim by considering a set of downstream
NLP tasks within the domain of job application pain points. In identifying these
pain points, five NLP tasks were developed with the underlying goal to offload the
manual effort job applicants face in the end-to-end job application process. Tasks 1
and 2 were solved using a masked language model (BERT and DistilRoBERTa)
with respective accuracies of 78.3%, and 48% obtained in the fine-tuned models.
Tasks 3, 4, and 5 were solved using instruction fine-tuning with FLAN-T5. The
models produced semantic textual similarity scores of 0.34436, 0.14566, and
0.43527 respectively. Tasks 1 and 2 showed an improvement over the baseline
models because of the inclusion of niche domain-specific words that could be
accounted for in the overall vocabulary, while Tasks 3, 4, and 5 did not show
an improvement over the baseline (gpt-3.5-turbo) most likely because of the few
training examples used during fine-tuning which could not compete with GPT’s
large language model.

1 Key Information

• External collaborators: N/A

• External mentor: N/A

• Sharing project: N/A

2 Introduction

This project uses modern NLP transformer-based solutions to solve problems within the domain of
the job application process. From the job applicant’s point of view, the main pain points experienced
during a typical job search include: 1) searching for a job posting to apply to, 2) extracting important
skills keywords from that job posting, 3) modifying an existing resume to include the important skills
keywords in order to tailor the resume towards a specific job posting, 4) writing a cover letter which
builds on the resume, and is also specific to a job posting, 5) answering additional web form questions
when submitting the application online, and 6) preparing for the interview if shortlisted.
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The solution to all these pain-points can adequately be addressed through the use of transfer learning
and pretrained models with fine-tuning on the downstream NLP task using data collected within
the domain of that downstream task. In total, there are 5 NLP tasks this project addresses: Task 1:
Named Entity Recognition (NER) for extracting important skills keywords from job postings, Task 2:
Masked Language Modeling (MLM) for automating the modification of existing resumes to include
skills keywords from job postings, and Task 3: instruction fine-tuning to autoregressively generate a
cover letter conditional on inputs.

Task 3 was divided into three NLP sub-tasks: Task 3a to generate a cover letter conditional only
on a job posting as input, Task 3b to generate a cover letter conditional on a job posting, but also
demographic information such as the applicant’s education history, and full name from the resume.
Task 3c takes the cover letter generation one step further by conditioning on the same inputs as Task
3a, and 3b, but in addition, conditions on resume bullet points from the applicant’s employment
history (what companies they have previously worked for, their job title, and bullet point descriptions
of what sort of tasks they were previously in charge of).

Tasks 4, and 5 again involved instruction fine-tuning, but this time for a question-answer (Q/A) task:
Task 4 is aimed at automating the completion of web form questions on a company’s job application
page. Examples of these questions include "Why do you want to work here?" or "Explain a time
when you when above and beyond for a customer". Task 5 is also question-answer task, but involves
generating a question-set conditioned on the resume. This question-set can be used by the applicant
to help them anticipate potential job interview questions that might arise around their claimed resume
experiences during the real interview. Lastly, the social motivation behind this project also aims at
providing job applicants equal opportunities: ideally, a job applicant will be able to apply to more
jobs, in a shorter amount of time, with a higher success rate.

3 Related Works

The first paper which motivated the solution to Task 2 was by Liu, et al. (2019) on RoBERTa:
an optimized version of BERT. The authors replicated the original BERT pretraining study [2] by
Delvin, et al. (2019), and with some configuration changes (such as training the model longer, using
bigger batches, removing the next sentence prediction objective, and dynamically changing the mask
pattern), they were able to obtain improvements to the published BERT results on various GLUE
tasks, as well as on SQuAD and RACE [1]. RoBERTa also makes use of dynamic masking (as a
pose to BERT which uses static masking). This is the process by which different parts of sentences
are masked for different epochs. This was related to my project with Task 2 regarding the keyword
insertion problem. Using RoBERTa for this task fine-tuned on resume data allowed for keywords to
be more correctly inserted into sentence locations that preserved grammatical correctness.

The second paper which motivated the solutions to Tasks 3, 4, and 5 was by Chung, et al. (2022)
on FLAN-T5 and instruction fine-tuning [3]. Instruction fine-tuning is the problem by which a
model is trained on a variety of tasks and a collection of datasets, through phrased instructions as the
input to the model. Originally, the T5 model was proposed by Raffel, et al. (2020), which was an
encoder-decoder pretrained on a mixture of supervised, and unsupervised tasks [4]. The FLAN-T5
is an augmented version of T5. The paper by Chung, et al. in particular helped to solve a crucial
component of this project related to NLP tasks, which was conditioning on context input data such as
resumes, and job postings. By fine-tuning FLAN-T5 on downstream tasks, I was able to achieve this
component of the project.

Lastly, the paper from the project proposal by Gururangan, et al. (2020) motivated the data collection
efforts to construct domain-specific corpora [5]. The authors showed the results of domain-adaptive
pretraining (DAPT) and task-adaptive pretraining (TAPT), and how improvements over the RoBERTa
baseline were possible. This paper related to my project because in the TAPT experiments, it was
shown how acceptable results were still possible with smaller datasets, and less compute: the authors
were able to match the performance of DAPT using TAPT.

4 Approach

The overarching problem is to investigate transformer-based solutions to offloading the manual
effort within the job application process. The project approach was as follows: 1) first validate the
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major pain points job applicants face during the job application process, 2) identify what sort of
NLP solutions might be feasible to solve these major pain points, 3) collect the data needed for the
downstream NLP tasks, 4) write the neural network training loop to solve for and save the model
weights, 5) evaluate the model on the test data set, and 6) deploy the model in such a way that it can
be used for inference in a production environment.

Validate the major pain points job applications face: At the start of the course, preliminary
background research was conducted using a mix of literature review, informal question-answer
interviews conducted virtually with job applicants on Zoom, and reviewing existing market solutions.
The results were aggregated and coded into 6 main themes which were taken to be the major pain
points: 1) searching and filtering for job postings online, 2) extracting important skills keywords for
jobs which the applicant is qualified for, 3) using those keywords to modify their existing resume, 4)
writing a customized cover letter against the job posting, 5) submitting the application online while
sometimes having to answer additional web-form questions, and 6) preparing for both behavioural,
and technical job interviews. The reason for pain points 2, and 3 is because of the increasing
sophistication of applicant tracking systems (ATS) that companies prevalently now use.

Identify candidate NLP solutions: several candidate solutions were developed at the start of the
course, but none of them were viable. Details pertaining to the development of these preliminary
solutions can be found in Appendix A.

Data collection: The data collection activities are explained in further detail in section 5, but
essentially aim to collect examples related to each downstream NLP task.

Training loop and fine-tuning: The procedure for all 5 downstream tasks were the same: find a
suitable pretrained model for the given NLP task, and fine-tune it using the examples (also related to
the NLP task) obtained during data collection.

Model evaluation: For Tasks 1, and 2, the evaluation metric was accuracy, and top-k accuracy. Top-k
accuracy for Task 2 (as it was defined in the CS 224n project milestone), is the ratio of predictions
where the keyword, wi ∈W to be inserted in sentence s ∈ S appears in the top-k scores output of
the MLM, to the total number of examples. For Tasks 3, 4, and 5, since the output is also a string of
text, the evaluation metric of semantic textual similarity (STS) was used.

Model deployment: The best solution found so far for model inference in a production environment
far was to make use of LinkedIn URLs, where a job applicant provides their personal URL to trigger
this end-to-end pipeline where Tasks 1 - 5 are performed. The use of LinkedIn was due to convenience
because of how data was collected (see Section 5).

Baselines and main approaches: The baselines are also discussed in more detail in Section 5. At a
high-level, for Task 1, the baseline was GPT-3, for Task 2, the baseline was pretrained DistilRoBERTa.
For Tasks 3, 4, and 5, the baseline model was GPT-3.5-turbo. The main approach for Task 1 was
BERT (fine-tuned on skills keywords in job postings), while for Task 2 the main approach was
DistilRoBERTa (fine-tuned on software resumes). The main approaches for Tasks 3, 4, and 5 made
use of FLAN-T5 and instruction fine-tuning on the textual data for each downstream task.

5 Experiments

In this section, the data collection procedure is discussed in full detail, along with the evaluation
methods, and experimental details. We also present the quantitative results.

5.1 Data collection

The data collection procedure started during the early weeks of the course, beginning with job posting
data. This phase of the project (along with fine-tuning) proved to be the most time-consuming. The
following sections describe the data collection and pre-processing steps for each task.

Job posting data for Task 1: The source for collecting job posting data for Task 1 was Google
Jobs. This is a public job board accessible through search engine, which lists job postings based on
some query (such as "software" or "nlp" jobs) and geographical location. Each job posting typically
links to another source such as LinkedIn, or the job posting company’s website. The posting is rich
with detail, and the text data of interest is within the job description. Details in the header such as
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company descriptions, salary information, or other logistics were not needed, therefore the scraping
procedure ignored this. Out of all the data collection steps, the scraping of job posting data was
quickest and easiest. In total, 500 postings were scraped using the keyword "software", and another
500 postings were scraped for the keywords of "data science". For both, a geographical location in
the U.S (San Francisco, CA) and Canada (Toronto, ON) were used. These were chosen to match
the LinkedIn profiles which were scraped in Task 2 (also in San Francisco Bay area, and Toronto).
The pre-processing steps involved the removal of non-alphanumeric characters. Figures 1 and 2
in Appendix B contain screenshot of a typical Google Jobs posting (job highlights in 1 and job
description in 2, while Figure 3 contains a screenshot of the data frame object for which the job
posting data was stored, and eventually converted into a CSV file.

Resume data for Task 2: There were no realistic resume data sets that could be found publicly.
Resume data is typically confidential. Companies store this data securely and privately. Furthermore,
generating synthetic resume data is also not ideal, nor realistic. The closest representation of resume
data was found to be with LinkedIn profiles, which are public. A typical LinkedIn profile consists of
a header description, a list of work experiences, a list of education and degrees, a list of skills and
endorsements, a list of publications, and several other attributes. It turns out that these attributes
closely resemble what a job applicant will list on their resume (LinkedIn can be used to apply for
jobs after all). To collect resume data, the fields of header description, work experience, education,
and skills were scraped. The header description, and skills list were both just strings. The schema
for work experience, and education are similar: they are both lists which differ in length for each
user. Each element of the list is a dictionary. For work experience, the dictionary keys are company
name, date range, job title, and job description. The values are all strings. The job description string
consists of sentences of what that user did at their company. This is akin to resume job description
bullet points. For Tasks 2, 3, 4, and 5, this information is used as input to the models. As of this
final report submission, over 1000 LinkedIn profiles have been successfully scraped, and stored into
a CSV file. To adhere to privacy, personal identifiers such as the user’s first name, last name, and
LinkedIn URL were not stored. Figure 4 in Appendix B contains a snippet of a typical LinkedIn
public profile work experience section, while Figure 5 shows a screenshot of the data frame object
this data was stored in. The fields of ’jobs’, and ’schools’ are both lists of dictionaries each of which
contains keys such as ’companyName’, ’school’, ’degree’, and ’description’.

There were many challenges during this data collection stage. The first challenge was with the
inaccessibility of some LinkedIn profiles. LinkedIn has a notion of degree-of-connection: browsing
some LinkedIn profiles was not possible using a public search. In order to view the contents of that
profile, a LinkedIn account with a 2nd degree connection or higher was needed. To overcome this,
my personal LinkedIn profile was used. Prior to data collection, several network connection requests
were made to users in Toronto, and San Francisco in order to improve the scraping success rate. This
substantially improved the results from 60% to 97% (for example, for every 100 profiles, only 3 were
not accessible when using my own LinkedIn account to browse).

The second challenge was with LinkedIn’s network limitation rate. Scraping too many profiles in a
single day initially led to a block, and the requirement to submit government issued ID to LinkedIn to
unlock the account. The ideal number of profiles to scrape on a given day is between 50-80. The third
challenge was that this number should be spread throughout the day time hours, and at any point in
time, no more than 10 profiles should be scraped. Ultimately, this is what led to having only collected
1000+ LinkedIn profiles as of this final report. Data pre-processing steps were applied only to the job
description bullet points. The most important step was to first split this string by the newline ’
n’ delimiter, and store the result into a Python list. This was repeated for each user’s employment
history. The next step was to remove bullet points and numbered lists: some users precede their job
description sentences either with a bullet, or a number. We cannot just remove all numbers, as this
would remove quantitative metrics appearing later on in the sentence. We also cannot just remove
non-alphanumeric characters, as this would remove apostrophes, slashes, and hyphens.

One final challenge with this stage was how some users did not list any job description bullet points
in their LinkedIn profiles: they only listed the company, their job title, and date range of employment.
These could not be omitted during the scrape jobs, however during pre-processing, these profiles
could be identified. To handle them later on, their job description bullet point set was assigned to be
an empty string. Therefore to skip over them in future, we simply check if the attribute ’description’
is empty.
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Cover letter data for Task 3: To train a model to autoregressively generate cover letters conditioned
on a resume, and job posting, cover letters are needed in addition to the LinkedIn profiles (acting
as a proxy for resumes) that have been collected. The closest representation of cover letters which
correspond to each LinkedIn profile is the header. Unfortunately, most users do not list a header, and
for those that do, the header is not as rich and detailed as a real cover letter. Again, real cover letter
data is confidential, and furthermore, we had already devoted substantial amount of time to collect
the LinkedIn profiles. Ideally, we would want a representation of a cover letter related in some way
to each individual LinkedIn profile. The next best approach that was implemented was to generate
cover letters from the LinkedIn profiles and job postings using the gpt-3.5-turbo API. This step also
had substantial challenges.

The first challenge was having to write a loop to call the gpt-3.5-turbo for each resume, and job
posting combination. A few test run calls to gpt-3.5-turbo conditioning on the resume, and job
postings showed impressive results. The issue was now with scaling this data collection job: calls
to gpt-3.5-turbo costed $0.002 per 1K tokens, and so mistakes could be costly. Also, with APIs,
some calls were likely to fail (because of widespread adoption of chatGPT), and so some re-start
mechanism should be implemented so that we would never have to start over again with resume
1, and job posting 1. The best solution found was to persist loop variables to an outside CSV file
stored locally, and write the data collection loops in an atomic way such that API calls which fail, do
not persist or store any data (despite generating the cover letter). This is an "all or nothing" type of
operation.

The second challenge was with automating this data collection job. The solution was to write the
main data collection loop to process in batches specified by the number of resumes, and number of
jobs. For example, if the resume batch was set to 3, and the job posting batch was set to 10, then
3 ∗ 10 = 30 many cover letters would be generated by gpt-3.5-turbo. The third challenge was related
to keeping track of costs, and execution times. For this, a separate analytics data frame and CSV was
created to keep track of the cumulative costs, just to make sure they were within reason.

The fourth challenge was with linking all of the CSV tables. We have a table for resumes (collected
from LinkedIn), job postings (collected from Google Jobs), and now cover letters (generated by
gpt-3.5-turbo), as well as an analytics CSV file. These tables needed to be linked relationally in
order for creating the Hugging Face dataset object later on as input to model training. To perform
this linking, primary and foreign keys were created within each table. The final result of this data
collection step was a set of cover letters containing resume bullet point sentences from LinkedIn,
keywords from the job posting (Task 3a), and skills keywords from the user’s resume (Task 3b),
and keywords from both the job posting, and resume (Task 3c). Figure 6 in Appendix B shows a
screenshot of a comparison between cover letters generated for Task 3b, and Task 3c. The user’s name
is not shown for privacy reasons. The cover letter on the right (green) shows a more personalized
cover letter generated around the user’s resume bullet points from their LinkedIn profile. Figure 7 in
shows a screenshot of the data frame object used to store the generated cover letters, while Figure 8
shows a screenshot of the analytics data frame for the cover letters.

Web-form question-answer data for Task 4: Again, to train a model to autoregressively answer
web-form questions on a company’s job application website, examples consisting of ((question,
resume, cover letter), answer) tuples were needed, where ’answer’ is the label. Two of these, we have
already obtained from the previous data collection steps: resumes and cover letters. The most accurate
way to obtain the questions is to go to each company’s website and scrape the web-form questions.
The issue is that most company websites require a login, and so this would not be feasible from the
perspective of time. The next best approach found was to generate a question set consisting of a mix
between gpt-3.5-turbo, and public websites which provide a list of similar questions, such as "why
do you want to work here?". In doing this, 101 questions were generated. The next step was now to
generate answers to each of these 101 questions per resume, conditioned on the resume job description
points, but this time, also conditioned on the user’s work experience: company name, and job title.
An example response to the previous question from the collected data can be found in Appendix C.1.
As seen in this example, the answer correctly integrates the user’s company (Deloitte Digital), job
title (Senior Consultant), and a variety of skills (React, Java, JavaScript, Node.js). The challenges
with this step also involved having to write batch processing loops, and persistent and atomic CSV
writes. An analytics file was also written to save the gpt costs. The resulting question-answer CSV
file was linked to the other tables in the current database under development through resume id, and
gpt id (to link to the question-answer analytics table). Figure ?? shows what a typical web-form
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question box looks like on a job application website, while Figure ?? shows a screenshot of the data
frame object used to store the question-answer pairs for training, and 11 shows the data frame object
to track analytics such as execution time, and cost.

Interview data for Task 5: In Task 4, the labels or targets were autoregressively generated answers.
Task 5 performs a similar task but instead generates a question set given some answer. The answers
are contained in documents such as the resume, cover letter, and job posting. The goal here is to
generate a question set in order to anticipate potential interview questions that might be asked. In Task
5, the job applicant is further downstream in the job application process: they have searched for a job
posting, customized their resume and cover letter towards that job posting, submitted their application
online, and have been shortlisted and invited to an interview. In order to generate the question set,
gpt-3.5-turbo was again used, this time feeding in job description, and education description bullet
points from the LinkedIn resume, as well as the skills attribute previously collected. Many job
interviews will often question the candidate about the skills they claim on their resume, so these are
a good input to condition on when generating the question set. Most of the data generation scripts
followed the same procedure as with Task 4: examples were generated in batches, with the loop
variables saved into a CSV file on the hard disk (to prevent incomplete data being written to the
data frame and corpus in case API calls failed). Again, an analytics file was written to keep a log
on variables like execution time, the gpt-3.5-turbo tokens used, and the cost. Figure 12 shows the
data frame used to store the answer and interview question-set pairs, while Figure 13 shows the
analytics data frame. The field of ’questions’ is a list of the generated interview questions. Appendix
C.2 shows a print out of two example interview questions generated conditioned on the applicant’s
resume.

5.2 Evaluation method:

For Task 1, the evaluation method for the main approach was accuracy. Unfortunately, there were
too many job postings to manually label each one. So in order to autogenerate the labels, gpt-3 was
used. This produced tuple pairs of (job description, list of skills keywords), where the list of skills
keywords was the label. Fine-tuning BERT on this task produced a model which we could then feed
in unseen job posting data from the test data set, and check if it outputted the correct skills keywords.
For example, if the model outputted at least 75% of the skills keywords, we take this as a successful
prediction. Therefore, accuracy defined here is the ratio of successful predictions (as previously
defined) to the total number of examples.

To evaluate Task 2, the evaluation method was top-k accuracy as previously defined in the project
milestone. Again, after training the model using MLM on the resume data (randomly masking out
tokens, with the objective of reconstructing them), for inference, we pass in an unseen resume from
the test data set. Recall that this resume is just a sentence set of bullet points collected from LinkedIn
profiles. For a given placement of a <mask> token in a sentence, we produce the top-k predictions
using the model, and compare this to the word list. If any word appears, we perform the insertion, and
remove from the word list. If multiple words appear as candidate solutions, we take the top scoring
one. Top-k accuracy is therefore the ratio of predictions where the keyword, w|i ∈W to be inserted
in sentence s ∈ S appears in the top-k scores output of the MLM, to the total number of examples.
For Tasks 3, 4, and 5, the evaluation method was with semantic textual similarity. Since the output is
pure text data (cover letter, an answer, and a question set), and the target is also pure text data, we can
calculate the STS scores.

5.3 Experimental details:

Each task was completed in sequence, often using data collected or generated from the previous task
as a feed in to the next task. To run these experiments, Google Colab was used with a Pro subscription,
along with the the provided AWS credits. For each task, after the data was collected, pre-processed,
and stored into a CSV file. This was then uploaded to Google Drive, and read into a data frame in the
Colab notebook. From here, a step was needed to transform the data frame into a JSON line-delimited
data set. This step was needed in order to create Hugging Face dataset objects (regular JSON files did
not work). A temporary Hugging Face dataset was created with splits of either 60-40 or 75-25. The
resulting test set was then split 50-50 into a final test set, and a validation test set. A final Hugging
Face data set object was then created from the train, test, and validation split. Only features required
for training were included in this data set. The features here contain the example features, along with
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the target label. The dataset object was saved to Google Drive for use in model evaluation later on.
The next step was to tokenize the examples. For many of the tasks, the RobertaTokenizer was used
with the ’codet5-small’ model. For Tasks 3, 4, and 5, a prefix was appended to the model inputs
before tokenization. The prefix typically consisted of the instruction, such as "generate a cover letter
condition on ____", along with the conditional data such as the resume, and/or job posting. The max
input lengths, and max target lengths were set to be 3000, and 1500 respectively, because some of
the prompts were very long. The labels were also tokenized (no prefix was needed here). This was
repeated for all examples in the train, test, and validation Hugging Face dataset objects using the
map() function. The last step before fine-tuning was to specify the batch sizes using DataLoader from
torch.utils.data, and setting the format. Each batch was a dict object with the keys of the tokenized
input_ids, the attention mask, and the labels. For fine-tuning, I made use of a class object based on
PyTorch Lightning. This was only script which I did not write. This script was taken from Hugging
Face, and defined the forward method, training step, validation step, and test step methods, along
with a function to configure the optimizer. AdamW was used. In the training loop, EarlyStopping
was used, along with learning rates of 5e-5, 15 training epochs, and 1000 warmup steps. The max
epochs was set between 50 and 100 for most tasks. Training was done using 1 GPU with the Premium
Class, and High-RAM options in Google Colab. When finished, the model was saved to Google
Drive storage. During inference for each task, the model was loaded, along with the same tokenizer.
The model.generate() function was used to generate predictions for Tasks 3, 4, and 5, and the result
was decoded back and compared with the target label. For Task 2, a separate script was required for
inference which involved tokenizing the unseen data, and obtaining the mask token index and top-k
prediction IDs from the logits. The top-k prediction token IDs were then decoded, from which the
candidate word list and scores could be outputted for model evaluation.

5.4 Results

Using the evaluation methods outlined in section Section 5.2, the following results in Table 1 were
obtained.

Task evaluation metric baseline fine-tuned
1 accuracy 73.7% 78.3%
2 top-k accuracy 37% 48%
3 STS 0.65284 0.34436
4 STS 0.61836 0.14566
5 STS 0.68131 0.43527

Table 1: Results of fine-tuning domain NLP tasks compared to baselines

As we can see, for Tasks 1, and 2, the main approach using fine-tuning improved the results over the
baseline, while for Tasks 3, 4, and 5, the main approach could not outperform the baseline. There are
a few possible explanations for this. First, for Tasks 1, and 2, the baseline models were gpt-3, and
pretrained DistilRoBERTa respectively. Although these models were already very good, it was found
that some niche software related terms could not be re-produced in the MLM task, nor identified in
the NER task. Even with a few examples (1000 job descriptions, and 1000 LinkedIn profiles), an
improvement in the downstream NLP tasks was realized. With Tasks 3, 4, and 5 however, there was
not an improvement obtained with fine-tuning. The problem of small example size here was more
prevalent: comparing the autoregressively generated output sometimes produced very different results
to the target, for example with the cover letters, and interview question sets. Some cover letters also
were not as coherent. The other issue was that gpt-3.5-turbo was already a very large language model,
and was difficult to complete with using the transfer learning approach here. For future, it might
be worth while to attempt to fine-tune gpt-3.5 or experiment with gpt-4, which was released in the
middle of this project.

6 Analysis

As mentioned in the results, one limitation of this project is with the small examples collected, and
generated. The target number of LinkedIn profiles to scrape was between 6000 and 10,000, but it
was not anticipated how strict LinkedIn’s rate limitation rules would be. This likely led to some
undesirable side-affects, namely with grammatically incorrect sentences in the cover letter. Despite
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these imperfections, the models seem to indeed condition on the input data: for Task 5 where we
generated potential interview question sets conditioned in a user’s resume, and job posting they
would have applied to, the model did quite well at generating question sets based on this input. Two
examples can be found in Appendix C.2 which show content from the resume conditional input
appearing in the question set.

For Task 2, in the two algorithms that were developed to identify <mask> token positions, and
the top-k candidate words, there was a performance bottleneck: the algorithm for determining the
position as of this final report submission uses a simplistic brute force approach, where all positions
are checked until an insertion is made. This algorithm therefore has an O(n3) type of time complexity.
To be exact, the complexity is approximately O(|S|maxisi|W |) where |S| is the number of sentences
in the resume (made up of job description bullet points), maxisi is the maximum word length of all
the sentences in S, and |W | is the size of the skills keyword list obtained from Task 1 (NER). Upon
running this brute force search algorithm on some examples, the run time was under 25 seconds each
time. In production, this could still be acceptable. However, to improve the search, some heuristics
were developed (but not implemented due to time constraints). The most plausible heuristic involved
building a topic sentence classifier, and running this classifier first on the resume bullet points. The
output of this classifier is a word representing the topic of some sentence. For example, a bullet point
describing some tasks a user performed at their previous job related to Jenkins might output "DevOps"
as the topic for that resume bullet point sentence. Then, for each keyword in W , we first check to
see whether any of the keywords closely resemble "DevOps". This closeness can be represented
using cosine similarity. The highest cosine similarity score can then be obtained, and the original
insertion algorithm can be applied to only that sentence. Since the topic sentence classifier only has
to run once for each resume, we can cache the results. This would reduce the time complexity to
approximately O(maxisi|W |).
The last point to be made is on the comparison between the transfer learning methods here, and large
language models (LLM) like GPT-3.5 or GPT-4. As of this final project submission, these LLMs are
extremely fast, and cost effective to consume. In each task where data generation was used, the run
time was less than 60 seconds, and the costs were astonishingly small. Most outputs only consumed
between 4000 to 7000 tokens, and the cost of each API call was therefore between $0.006 - $0.014.
Based on this, if one’s goal is to build a production-ready product and deploy as fast as possible, it
might be better to consume the GPT APIs. The only way to really complete with these LLMs in the
context of the domain problem of this project, is to collect data the LLMs almost have no chance at
seeing or being trained on, such as the LinkedIn profiles. As mentioned, other plausible solutions
might involve fine-tuning on the GPT LLMs, which is possible with gpt-3.5-turbo.

7 Conclusion

In conclusion, this project outlined how transformer-based transfer learning solutions could be used
to solve downstream tasks in the domain of the job application process. What this project achieved
was the collection of real-data, and its post-processing in order to fine-tune pretrained models for
solving the downstream problems. The result is a proof-of-concept which could legitimately offload
the manual efforts job applicants face. For future work, more data can be collected, in addition to
implementing the insertion algorithm for Task 2 to improve run-time, using the proposed heuristic
discussed in Section 6. Some additional work could also be devoted to the deployment of the model,
and architecting a Front-End and Back-End solution in which real users could consume the models
developed here for Tasks 1-5. The way they consume the models could also impact future NLP
solutions. Lastly, there was an initial Task 6, and Task 7 related to dialog, and sentiment analysis
respectively. This would have involved a task where, after the interview questions were generated
from Task 5, the applicant could then engage in a two-way conversational dialog with a simulated
interviewer.
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Appendix A

The first of the candidate solutions was with the use of vector embeddings, and cosine similarity to
solve Task 2 on skills keyword insertion. The algorithm was simple: given a set of sentences, S, and
word list, W , for wi ∈ W , define: sij as the new sentence that is formed when inserting wi into
position j of original sentence s ∈ S. We then take the solution, s′i as:

s′i,l =
sij[j− 1] ·wi

||sij[j− 1]||||wi||
(1)

s′i,r =
wi · sij[j+ 1]

||wi||||sij[j+ 1]||
(2)

s′i = argmax
j

s′i,l + s′i,r
2

(3)

The expression (3) just maximizes the average cosine similarity between wi and both the left, and
right neighbouring words for a given position, j. This solution did not produce good results because
it resulted in several new sentences s′i, which were not grammatically correct. The next approach
built on top of this by using a language judgement acceptability task whereby we iteratively, and
exhaustively try all possible positions j in a sentence for which we insert wi. For each candidate
sentence, we then run a grammar acceptability check: if the new sentence is grammatically correct,
we store it as a candidate solution. The problem with this algorithm however, is both computational
expense, and in the end, we usually still have "too many" solutions. When CS 224n got into language
models, the third approach was to consider the use of n− gram language models. The algorithm
developed at that stage was to insert word wi into position j for which the average conditional
probability of:

p(wi|sj−1,wi
) + p(wi|sj+1,wi

)

2
(4)

was largest, where:

p(wi|si−1,wi
) =

counts(si−1,w)
counts(wi)

(5)

p(wi|si+1,wi) =
counts(si+1,w)

counts(wi)
(6)

Again, this approach failed because depending on the corpus and vocabulary, one of the counts
expressions in the numerator or denominator of (5) or (6) could be zero for some n−gram model. In
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the last few weeks of the course, the most promising approach so far was found to be with transformer-
based solutions which circumvent the need for recurrence and convolutions through implementation
of self-attention. This led to the first plausible solution to task 2: the use of masked-language models
(MLM) to predict mask tokens inserted into sentences in very much the same way as the 3 previous
algorithms developed here. The other factor which made this approach the most feasible was through
the availability of pretrained models. Using one of these pretrained models solved issues related to
grammatical correctness, but the issue of words not appearing in the vocabulary persisted. This was
solved by taking a fine-tuning approach, where the pretrained model was fine-tuned on examples
related the the domain NLP task. It was in fact this same approach of finding an appropriate pretained
model, and fine-tuning it, that also led to solutions within the other NLP tasks (Task 1, 3, 4, and 5).

Appendix B

Figure 1: Typical job posting on Google Jobs board: this figure shows the Job Highlights portion of
the posting, which was not included in the job posting corpus.
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Figure 2: Job description portion of the same posting in Figure 1. This is the body of text which was
added to the corpus for each posting.
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Figure 3: Data frame object showing the fields of scraped job postings from Google Jobs. Shown
here are job postings in Toronto, ON, Canada using the query of "software".
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Figure 4: Typical Work Experience section of a LinkedIn profile. The text descriptions in for each
job (if they are not empty) were assumed to resemble resume bullet points. This data was the core of
the resume corpus.
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Figure 5: Data frame object showing the fields of scraped LinkedIn public profiles. The fields of
’jobs’, and ’schools’ contain lists of dictionaries for each job, and education the user has added to
their profile. Each of these also contains a key called ’description’.

Figure 6: Comparison of generated cover letters between Task 3b (left), and Task 3c (right). The
cover letter from Task 3c shows a more personalized cover letter generated around resume bullet
points from the use.
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Figure 7: Data frame object of the generated cover letters for Task 3a (cover letter 1 posting), Task
3b (cover letter demographics), and Task 3c (cover letter resume).
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Figure 8: Data frame object of the analytics collected for the cover letter generation jobs. Wall time
is the execution time, usage stores the prompt tokens used by gpt-3.5-turbo, cv cost is the cost in
dollars.

Figure 9: Typical web form question box from a job application website (Wealth Simple, using
Lever ATS). Task 4 is able to autogenerate responses to these types of questions which the applicant
can insert in.
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Figure 10: Data frame object of the question-answer pairs corpus. Data generation works by
generating an answer for each question, for each resume in the resume corpus (Figure 5). This is why
the resume id is the same for the first four rows. Appendix C.1. shows a printout of the full answer
for row 2.

Figure 11: Data frame object of the analytics collected for the question-answer generation jobs. gpt
wall time is the execution time, gpt usage stores the prompt tokens used by gpt-3.5-turbo, and gpt
cost is the cost in dollars.

Figure 12: Data frame object of the interview question set generated for 3 different resumes. The
’target’ is the original question, while the field ’questions’ is a list of generated interview questions.
Appendix C.2 shows a print out of two of these interview question examples.
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Figure 13: Data frame object of the analytics collected for the interview question generation jobs.
gpt wall time is the execution time, gpt usage stores the prompt tokens used by gpt-3.5-turbo, and gpt
cost is the cost in dollars.

Appendix C

C.1 A printout of a cover letter response of Task 3 is shown below. Here, the cover letter is
conditioned on the resume, and job posting, as evident through keywords of the applicant’s previous
work experience appearing in the generated cover letter:

"In my experience as a Senior Consultant in front-end engineering at Deloitte Digital, I have learned
the importance of following rigorous quality standards. I ensure that my work is of high quality
by utilizing my skills in Agile methodologies, software development using React, Java, JavaScript,
Node.js, Cascading Style Sheets (CSS), Redux, and Git. My leadership skills also play a key role in
coordinating with team members to ensure that we work together effectively to produce a high-quality
end product. Additionally, my previous experiences as a behavioral aid for children with autism
and as a quality assurance assistance intern at Computer Modelling Group Ltd. have honed my
attention to detail and ability to maintain and automate test cases to ensure consistent, high-quality
performance."

C.2 A printout of two interview questions generated conditional on the applicant’s resume:

"1. Can you walk us through your experience working as a Senior Software Developer at Scotiabank?",
and

"2. How have you utilized your skills in Linux and COMSOL to the University of Texas at Dallas?"
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