
Parameter Efficient Fine-tuning for Multi-task
Learning

Stanford CS224N Default Project

Chih-Ying Liu
Department of Electrical Engineering

Stanford University
ying1029@stanford.edu

Jeffery Shen
Department of Computer Science

Stanford University
jshen7@stanford.edu

Abstract

This project aims to implement, utilize, and improve upon the BERT model to
perform sentiment analysis and other downstream tasks. In the first part of our
project, we fully implement the original BERT model and test it on sentiment
analysis – in the second part, we fine-tune and extend the model for optimal
performance on paraphrase detection and semantic textual similarity. To do so,
we implement Projected Attention Layers (PALs) Stickland and Murray (2019),
adapters Houlsby et al. (2019), and prefix tuning Li and Liang (2021) to achieve
optimal performance over multi-tasks while being efficient. We also experiment
with changes to the BERT model architecture by implementing Sentence-BERT
Reimers and Gurevych (2019) and modifying the downstream classifier head
architecture.
We experiment with different model architectures, adaptation modules, samplers,
adding additional training data, and hyper-parameter configurations. We find
Sentence-BERT learns more semantically meaningful sentence embeddings and has
better performance on the paraphrase and similarity tasks. PAL, prefix, and adapter
improve average performance by about 8% when pretraining, and have comparable
performance to full fine-tuning with less than 10% of trainable parameters.

1 Key Information to include

• Mentor: Tathagat Verma

• External Collaborators: N/A

• Sharing project: N/A

2 Introduction

In this publication, we present an implementation of minBERT, a baseline BERT model for use in
single-task learning. We then further expand on the model with the goal of optimizing for multi-task
learning without having to finetune different models for individual tasks.

At release time, BERT was able to obtain new state-of-the-art results on eleven natural language
processing tasks, including pushing the GLUE score to 80.5% (a 7.7% point absolute improvement)
(Devlin et al., 2018). However, there are still areas to improve upon. One point of interest is parameter
efficiency – BERT’s state-of-the-art results used transfer from unsupervised pre-training with BERT,
with a separate BERT model fine-tuned for each individual task. Our goal is to introduce a BERT
model that can build robust embeddings that perform well across a large range of different tasks,
without having to finetune individual models for individual tasks. We aim to improve upon the
minBERT model’s scores across the provided three tasks.

Stanford CS224N Natural Language Processing with Deep Learning

To do so, we will explore two main pathways of optimization: changes to the model architecture
itself, and adding in additional adaptation modules. In our changes to the model architecture, we will
implement Sentence-Bert by Reimers and Gurevych (2019), which should result in greatly increased
performance on the STS task. We will also investigate modifications to the downstream classifier
head architecture, modifying aspects such as layer type, number of layers, and how we feed the inputs
through BERT. In addition to these changes, we will also implement additional adaptation modules
such as Projected Attention Layers (PALs) Stickland and Murray (2019), prefix tuning Li and Liang
(2021), and adapter Houlsby et al. (2019). We seek to investigate how these adaptation modules can
achieve optimal performance while being parameter efficient, and also will experiment with different
sizes (configurations) of these modules.

3 Related Work

BERT is a transformer-based model that generates contextual word representations. BERT uses a
cross-encoder: Two sentences (with a SEP token in-between) are passed to the transformer network
and the target value is predicted. BERT, when first released, set new state-of-the-art results for various
NLP tasks, including question answering (QA), sentence sentiment classification, and sentence-pair
regression, such as semantic similarity (STS).

However, this setup is unsuitable for various pair regression tasks (such as STS) due to the amount of
possible combinations and O(n2) number of inference computations required. Instead, to address
these tasks, mapping each sentence to a vector space such that semantically similar sentences are
close is usually a better approach – one common approach is to use the output of the [CLS] token.
But, even these approaches result in sub-optimal performance, often even worse than just averaging
GLoVe embeddings. To alleviate this issue, Sentence-BERT adds a pooling operation to the output
of BERT to derive a fixed sized sentence embedding, computing the mean of all output vectors.
(Reimers and Gurevych, 2019)

Prior state-of-the-art results across multiple natural language understanding (NLU) tasks have previ-
ously used transfer from a single large task: unsupervised pre-training with BERT, where a separate
BERT model was fine-tuned for each downstream task. However, this requires a different model to be
trained and stored for each individual task. With the goal of multi-task learning, there is a need to be
parameter efficient. Taking this into account, Projected Attention Layers (PALs) , a kind of adaptation
module, allow for a multi-task approach that shares a single BERT model backbone with a small
number of additional task-specific parameters. This allows for comparable performance as compared
to separately fine-tuned models, using significantly less parameters. (Stickland and Murray, 2019)

For a more general perspective of transfer learning, in which we aim to transfer the knowledge
of pre-trained model to various downstream tasks, it is parameter inefficient to fine-tune each task
separately. As an alternative, adapter and prefix-tuning add only a few trainable parameters and keep
the backbone model fixed. They achieve comparable performance to fine-tuning with less than 3.6%
(adapter) and 0.1% (prefix tuning) trainable parameters. Furthermore, since the backbone model is
fixed, new tasks can be added without revisiting the old ones, and therefore also eliminates negative
task interference in multi-task settings. (Li and Liang, 2021) (Houlsby et al., 2019)

4 Approach

With the goal of improving upon the default BERT base model to achieve optimal multitask perfor-
mance, we explore two main pathways of optimization: changes to the model architecture itself, and
adding in additional adaptation modules.

Model Architecture We will experiment with changing the downstream classifier head architecture.
First, the default classifier head only consists of a single linear layer – to improve performance,
we will add an additional linear layer with an activation function in between. For example, for the
sentiment classification task, our classifier head is:

LinLayer1(hiddenSize -> hiddenSize) → ReLU() → LinLayer2(hiddenSize -> numLabels)

We also seek to implement cosine similarity for improvement on the Semantic Textual Similarity
(SST) task. Instead of concatenating the 2 pooled outputs from BERT and passing them through a

2

linear layer, we will get the cosine similarity of the two outputs and then map the similarity (in the
range [−1, 1]) to [0, 5] (the range of outputs for SST) using the equation (cosSimilarity + 1) ∗ 5

2 .

Additionally, we will also implement Sentence-BERT as described by Reimers and Gurevych (2019).
Sentence-BERT feeds sentence pair inputs separately through the BERT model, and adds a mean
pooling operation across sequence outputs to derive the sentence embedding. Sentence-BERT uses
different model designs for different objective functions. For the semantic similarity task, we calculate
the cosine similarity between sentence embeddings and use a regression objective. For the paraphrase
classification task, we concatenate two sentence embeddings u and v with the absolute value of their
element wise difference |u− v|, and feed these three vectors into our classifier head. Figure 1 shows
our model architecture.

Figure 1: Model architecture for sentiment, paraphrase, and similarity tasks. We follow Sentence-
BERT architecture for parphrase and similarity tasks.

Adaptation Modules In our second exploration pathway, we seek to implement and add additional
adaptation modules to the base BERT model.

The first method we will implement to extend the base model are PAL layers, with reference to
Stickland and Murray (2019). PALs involve a task-specific function:

TS(h) = V Dg(V Eh)

where V D and V E are some projection layer shared across layers, and TS(.) is self attention function.
This task-specific function is added parallelly to BERT layers, from the input of BERT layer to the
last layer norm layer.

The second method we will implement is prefix-tuning from Li and Liang (2021). Prefix-tuning
prepends some trainable parameters to the input of transformer layers. Since prefix tuning is sensitive
to initialization, and random initialization leads to low performance and high variance, we initialize
the prefix with hidden states calculated by the first batch of SST data. By doing so, we ensure that the
prefix is more similar to meaningful words in the embedding space.

The third method we will implement is adapter from Houlsby et al. (2019). Adapter contains a linear
down projection function, an activation function, a up projection function, and a skip connection from
input to output. We add the adapter module twice to each BERT layer: once after the feed forward
layer following multi-head attention and once after the two feed-forward layers. For adapter tuning,
we learn task specific adapter modules, layer normalization parameter, and downstream heads. Figure
2 shows the architecture for these three adaptation modules.

Additional Methods Finally, we also seek to improve upon the default round-robin sampling
method that the current base model uses when choosing which task it selects a datapoint to train from.
We will implement the training scheduling method as described by Stickland and Murray (2019) for
our training pipeline – proportional, square root, and annealed sampling. Instead of the traditional
"round-robin" sampling of training examples (which can lead to overfitting on smaller datasets and
vice versa for larger datasets), we will select examples from a task i with a probability:

pi ∝ Nα
i

3

Figure 2: Illustration of BERT layer with PAL, prefix, and adapter.

When α = 1, the above equation represents proportional sampling. If α < 1, we reduce the disparity
between choosing tasks. When α = .5, this is square root sampling. When α changes with each
epoch e (and the total number of epochs is E), this is annealed sampling:

α = 1− 0.8
e− 1

E − 1

5 Experiments

Data The default datasets given to us include the Stanford Sentiment Treebank (SST) dataset, the
CFIMDB dataset, the Quora (QQP) dataset, and the SemEval STS Benchmark dataset. These are
described in Socher et al. (2013), Agirre et al. (2013), and the project proposal. However, we notice
that our collection of datasets is heavily skewed towards the Paraphrase detection task. To alleviate
concerns of poor performance on the SA and STS tasks due to insufficient data, we explored adding
additional data to provide more context. In the interest of space, detailed information about the
additional datasets and their formatting is in A.1.

Name Task? Size (Total) Size (Train)

Stanford Sentiment Treebank (SST) SA 11,855 8,544
CFIMDB SA 2,438 1,705

Quora (QQP) Paraphrase 202,151 141,506
SemEval STS STS 8,628 6,040

SemEval SICK 2014 STS 10,000 4,500
Amazon Kindle Reviews SA 982,619 variable

Rotten Tomatos SA 634,251 variable
Table 1: The above table describes the datasets we used in our project. Bolded names represent
datasets not originally provided to us. SA represents Semantic Analysis, STS represents Semantic
Textual Similarity, and Paraphrase represents Paraphrase Detection.

In our testing, we find that combining the original STS dataset with the SICK 2014 train data and
combining the original SST data with 15k (evenly distributed) entries from the Rotten Tomatos datset
results in optimal performance. Table 2

Task Final Train Set Size

SA SST Train + Rotten Tomatos (15k) 23,544
Paraphrase Detection Quora Train 141,506

STS SemEval SST Train + SICK2014 Train 10,540
Table 2: Final datasets selected for training.

4

Evaluation method To evaluate the 4 datasets provided to us, we will be evaluating them using a few
different metrics. As described in the project spec, for datasets with binary labels (SST, CFIMDB,
Quora), we will utilize accuracy as our evaluation metric. For datasets with non-binary labels (STS),
we will utilize the Pearson correlation of the true similarity values against the predicted similarity.

Baselines As a lower bound, we have a pre-trained, fixed BERT model with only a single additional
linear layer to the head (or final step) of the BERT model. We find that this model returns results of
.411 for SST, .675 for Paraphrase Detection, and .272 for STS with an average accuracy of .453.

For an upper bound, we will also compare our scores for the Quora (QQP) and SemEVAL STS
dataset (STS-B) against a default BERT base model’s (with fine-tuning) result from the original
BERT paper Devlin et al. (2018) at Figure A. Because the datasets given to us are not the exact same
as the ones in the GLUE benchmark, the results from Devlin cannot be used as an exact comparison.

Experimental details We experiment with different model architectures, including the BERT-Base
model, which uses [CLS] token as sentence embedding and single linear downstream heads, and
also Sentence-BERT as described in Section 4. We add dropout with probablity 0.1 to the sentence
embeddings. We also experimented with different adaptation modules, samplers, and datasets. We
train the model with both finetune mode (in which we tune all parameters) and pretrain mode (in
which we only tune adaptation modules and downstream heads).

We sample each task data at each step utlilizing the sampling methods described in our approach 4.
We optimize with AdamW optimizer, and use Noam scheduler with ten percent of warmup steps. The
Noam scheduler increases learning rate linearly during warm up steps, and decreases it thereafter
proportionally to the inverse square root of the step number. We tune the learning rate for backbone
model, adaptation module, and downstream classifier separately. We use a learning rate 1e-5 for
backbone model, and choose the best learning over range [1e-5, 1e-3] for adaption modules and
downstream heads. We run experiments with batch size 16, number of steps per epoch 2400, and
number of epochs 25. We save the model with best average validation across over three tasks each
epoch.

Results

Result of SST and CFIMDB Table 3 below shows our result for minBERT implementation.

Finetune/Pretrain SST CFIMDB

Finetune 53.8 96.7
Pretrain 40.8 78.0

Table 3: Results of default minBERT implementation. The evaluation metric is accuracy.

Parameter/Performance Trade-Off for Multi-Task Fine-Tuning Table 4 and Figure 3 shows
result of multi-task learning for different methods. We experimented with two backbone models:
Base BERT and Sentence BERT, three adaptation modules: PAL, prefix, and adapter, and two training
modes: pretrain and finetune. Base BERT uses the [CLS] token as sentence embedding and double
linear downstream heads. Sentence BERT as described in section 4 uses mean pooling as sentence
embedding and cosine similarity for similarity task. In pretrain mode, only task specific parameters
are tuned, while in finetune mode, all parameters are tuned. To make the adaptation modules sizes
comparable, we set prefix length 10, PAL size 204, and adapter size 64.

Sentence-BERT outperforms Base BERT in the paraphrase and similarity task. It achieves 32.2%
improvement in similarity task. Our result shows that Sentence-BERT learns more semantically
meaningful embeddings. Further investigation of Sentence-BERT’s features is in in section 6.

Adaptation modules make about 8% to 10% average score improvement in pretrain mode. In
finetune mode, it only makes 3.7% improvement with Base BERT, and 0.6% percent improvement
with Sentence-BERT. Because in finetune mode, the benefits of these adaptation modules changing
attention activation will be alleviated by tuning the weights directly. Note that the main benefits of
these adaptation modules is parameter efficiency. These adaptation modules in pretrain mode achieve

5

comparable results to full fine-tuning with less than 3% to 9% of trainable parameters. For example,
Sentence-BERT + Prefix in pretrain mode achieves 65.6% average score with only 3% of trainable
parameters compared to Sentece-BERT in fine-tune model, which has average score 69.4%.

Among the three adaptation modules, we found generally prefix has the best performance, and PAL
has the second. We infer that the reason is prefix and PAL is parallely inserted into BERT layers,
while adapter is sequentially inserted into BERT layers. Prefix is the most parameter efficient amongst
the three methods. PAL is more parameter efficient than adapter, because it shares the projection
layers across different layers.

Table 5 shows our best result on dev and test sets. We obtain our best result by slightly modifying the
Sentence-BERT structure. We use double feed forward classification classifier that takes sentence
embeddings u, v and |u− v| as input for both paraphrase and similarity tasks, instead of calculating
cosine similarity for similarity task. Further discussion of Sentence-BERT structure is in 6.

Finetune/Pretrain Backbone Adaptation Trainable Param (M) SST Quora STS Avg

Pretrain Base BERT - 3.0 41.1 67.5 27.2 45.3
Pretrain Base BERT PAL 8.4 52.0 73.9 34.9 53.6
Pretrain Base BERT Prefix 3.2 50.5 72.3 36.7 53.2
Pretrain Base BERT Adapter 10.2 50.3 75.5 33.8 53.2
Pretrain Sentence-BERT - 2.4 45.0 72.2 49.5 55.6
Pretrain Sentence-BERT PAL 7.8 48.1 73.1 74.4 65.2
Pretrain Sentence-BERT Prefix 2.6 47.0 77.5 72.3 65.6
Pretrain Sentence-BERT Adapter 9.6 43.7 76.5 68.1 62.8
Finetune Base BERT - 112.4 50.0 81.5 43.7 58.4
Finetune Base BERT PAL 117.9 50.6 79.2 47.6 59.2
Finetune Base BERT Prefix 112.7 49.9 82.9 53.6 62.1
Finetune Base BERT Adapter 119.7 51.5 81.6 46.2 59.8
Finetune Sentence-BERT - 111.8 49.9 82.3 75.9 69.4
Finetune Sentence-BERT PAL 117.3 51.2 83.4 74.6 69.7
Finetune Sentence-BERT Prefix 112.1 50.5 81.9 77.5 70.0
Finetune Sentence-BERT Adapter 119.7 50.5 79.3 72.7 67.5

Ensemble x3 53.2 83.5 78.5 71.7
Table 4: Results of multi-task learning on SST, Quora, and STS datasets. SST and Quora are evaluated
by accuracy. STS is evaluated by Pearson coorelation. All scores are evaluated on dev set. Pretrain
means only task-specific parameters are tuned; Finetune means all parameters are tuned. Ensemble
x3 is obtained by calculating weighted sum over logits of Sentence-BERT + PAL, Sentence-BERT +
Prefix, and Sentence-BERT models.

Figure 3: Performance v.s. trainable parameters of different methods. P means only tasks-specific
parameters are tuned; F means all parameters are tuned.

6

SST Quora STS Avg

Dev 51.8 83.1 85.8 73.6
Test 52.5 83.3 84.9 73.6

Table 5: Best result on dev and test set with mean pooling and adding absolute difference term.

6 Analysis

Sentence-BERT feature analysis We found that Sentence-BERT outperforms Base BERT on
paraphrase and similarity tasks. The three main differences between Sentence-BERT and Base BERT
are:

• Uses cosine similarity instead of linear classifier for the similarity task.

• Uses mean pooling of sequence output instead of the [CLS] token for sentence embedding.

• Given sentence embeddings u and v, uses (u, v, |u−v|) instead of (u, v) as input of sequence
pair classifier.

Table 6 shows that the most important feature in Sentence-BERT is adding the |u− v| term, which
improves performance by 30.9% on similarity task. Taking meaning pooling and adding absolute
difference term can further improve similarity task by 11.2%. The best model architecture uses mean
pooling as sentence embedding and trains double feed forward classifiers that takes (u, v, |u− v|) as
input for both paraphrase and similarity tasks.

SST Quora STS Avg

Base BERT 50.0 81.5 43.7 58.4
+ cos-sim 48.6 81.5 51.7 60.6
+ mean pooling 51.9 81.2 47.1 60.6
+ |u− v| 51.7 82.8 74.6 69.7
+ cos-sim + mean pooling 50.9 79.4 68.6 66.3
+ cos-sim + |u− v| 48.9 80.1 55.5 61.5
+ mean pooling + |u− v| 51.8 83.1 85.8 73.6
+ cos-sim + mean pooling + |u− v| 51.0 82.2 72.3 68.5

Table 6: Analysis of Sentence-BERT features

Benefits of multi-task setting To analyze the capacity of our model, we fine-tune on the SST,
Quora, and STS data sets separately. Table 7 shows that fine-tuning on the paraphrase task has
better performance on the similarity task than fine-tuning on the similarity task itself. Note that in
Sentence-BERT, we calculate the cosine-similarity between the mean pooled sequence output, so
there is no trainable weight in the similarity downstream head. This result shows the importance
of positive knowledge sharing across tasks. Recall that in the original design of prefix tuning and
adapter, the backbone model is frozen, which prevents negative influence between tasks – but, this also
eliminates positive information share between tasks. We infer this is the reason why the performance
gap between our adaptation modules in pretrain mode and full fine-tuning is bigger than that reported
in original prefix tuning and adapter papers.

Fine-tune dataset SST Quora STS

SST 52.1 38.6 34.3
Quora 22.4 83.8 76.6
STS 18.6 41.7 66.1

Table 7: Result of fine-tuning on only single dataset, w/Sentence-BERT backbone.

7

Attention analysis To better understand how adaptation modules activate attention layers and how
Sentence-BERT differs from Base BERT, we will analyze their attention maps. All attention maps
in table 8 and table 9 are obtained from feeding a sentence selected from STS dev set: "Some guy
sitting on a couch watching television." We draw the attention score after softmax, and average across
attention heads.

Table 8 shows how prefix tuning activate different attention patterns for different tasks. We feed
a sentence to the sentiment and similarity heads of Base BERT + prefix. Prefix tuning generates
different attention map for the same sentence, which may enable the model to adapt to different tasks.
In comparison, without adaptation modules, the attention map will be the same, because all tasks
share the same backbone model.

Table 9 shows the attention patterns for Base BERT and Sentence BERT models for low, middle, and
high layers. In general, Base BERT model will mostly attend at [CLS] token and have some diagonal
attention at low layers, and attend at the end of sentence at high layers. Sentence BERT roughly has
the same pattern at low layers, but its attention at high layers are distributed across tokens.

Last but not least, we would like to discuss why adaptation modules slightly gain improvement on
Sentence-BERT in finetune mode. Table 9 shows that Sentence-BERT has very different attention
map compared to Base-BERT. We infer that it it resulted from mean pooling and absolute difference
term for sentence pair classification. A possible reason may be the attention change in Sentence
BERT is much larger than the attention change induced by adaptation modules.

Downstream head layer 1 layer 6 layer 12

SST

STS

Table 8: Attention map for Base BERT + prefix trained in pretrain mode by feeding the same sentence
into SST and STS heads.

Backbone layer 1 layer 6 layer 12

Base BERT

Sentence-BERT

Table 9: Attention map for Base BERT and Sentence-BERT trained in finetune mode.

7 Conclusion

Our goal was to introduce a BERT model that can build robust embeddings that perform well across
a large range of different tasks, without having to finetune individual models for individual tasks. We

8

have successfully completed this task, through changes to the BERT-Base model’s architecture as
well as adding different adaptation modules and experimenting with how we train/what we train our
model with.

We find that Sentence-BERT and mean pooling combined with using cosine similarity as our down-
stream classifier head for the STS task was critical to improving baseline scores. We showed an
improvement of 32.2% in performance for the STS task when using Sentence-BERT with no adapta-
tion modules as compared to Base-BERT when finetuning. This difference was even more dramatic
in when pretraining with PALs – Sentence-BERT was able to improve by 39.5% over the base model
with PALs.

9

References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. *SEM 2013

shared task: Semantic textual similarity. In Second Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic
Textual Similarity, pages 32–43, Atlanta, Georgia, USA. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding.

Ruining He and Julian J. McAuley. 2016. Ups and downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. CoRR, abs/1602.01585.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning for nlp.

Stefano Leone. 2021. Rotten tomatoes movies and critic reviews dataset.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous prompts for generation.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks.

SemEval. 2014. [link].

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

Asa Cooper Stickland and Iain Murray. 2019. Bert and pals: Projected attention layers for efficient
adaptation in multi-task learning.

A Appendix

Fig A. Baseline results for Base BERT from Devlin et al.

A.1 Dataset Information

The SICK-2014 dataset contains 10,000 English sentence pairs, each annotated with a semantic
similarity score 0-5, following the structure of the SemEval STS benchmark dataset. SICK was
created to fill the gap that the SemEval STS benchmark leaves – namely, that training examples deal
with issues, such as identifying multi-word expressions, recognizing named entities or accessing
encyclopedic knowledge, that semantic models are not expected to handle. Instead, SICK aims
to capture only similarities on purely language and common knowledge level, without relying on
domain knowledge. (SemEval, 2014)

The original Rotten Tomatos dataset contains ∼18k records representing movies, with each entry
including the movie tile, description, genres, duration, director, actors, users’ ratings, and critics’
ratings. We then further cleaned the dataset to get ∼634k individual review entries, where each entry
is structured like the SST dataset with a review and sentiment score 0-4. Reviews were skimmed to
ensure that all entries had a rating on a scale of 1 to 5, and were then mapped to a scale of 0 to 4.
(Leone, 2021)

10

https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
http://arxiv.org/abs/1602.01585
http://arxiv.org/abs/1602.01585
https://doi.org/10.48550/ARXIV.1902.00751
https://www.kaggle.com/datasets/stefanoleone992/rotten-tomatoes-movies-and-critic-reviews-dataset?fbclid=IwAR0gEvDW4b7jI7YD_UEPL-cABC6M7A11lGnk169C-Qcib0Hha0RHGC005Ck
https://doi.org/10.48550/ARXIV.2101.00190
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://alt.qcri.org/semeval2014/task1/
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.48550/ARXIV.1902.02671
https://doi.org/10.48550/ARXIV.1902.02671

The Kindle review dataset contains 982,619 reviews from the Amazon Kindle store during the period
of 2007 - 2014. We experiment with pulling reviews to create different sizes of datasets for training
(80k, 40k, 20k) – in each cleaned dataset, reviews are mapped from 1 to 5 stars to a rating of 0 to 4 in
accordance to the SA task. (He and McAuley, 2016)

A.2 Ablation Studies

Prefix length Longer prefixes may have better expressive power. Figure 4 shows that with the
Base BERT backbone, the performance increases as the prefix length increases up to 15. With the
Sentence-BERT backbone, the benefit of prefix isn’t obvious.

Figure 4: Prefix length v.s. performance for Base BERT and Sentence-BERT backbone in finetune
mode.

Sampling method Table 10 shows the performance differences between choosing different sam-
pling methods in our training pipeline. We see that annealed sampling is the method with highest
overall performance.

Sampling Method SST Quora STS Avg

Round Robin 51.4 77.9 73.1 67.47
Proportional 50.7 81.0 75.5 69.07
Square Root 49.8 80.0 72.0 67.27

Annealed 49.8 84.3 74.0 69.37
Table 10: Result of different sampling methods on performance for fine-tuning. Prefix-tuning with a
Sentence-BERT backbone was used for these tests.

Dataset Studies Table 11 shows the performance differences between choosing different training
datasets in our training pipeline. We see that only adding the SICK dataset results in the highest
overall performance. We tried to make the sentence length and label distribution of the additional
Kindle and Rotten datasets similar to the SST dataset, but the domain difference and bias in score
still make them a lot different than the SST dataset.

Datasets SST Quora STS Avg

Default 51.0 82.2 72.3 68.50
+ SICK 52.8 82.3 74.4 69.83
+ Rotten 46.8 82.1 75.9 68.27
+ Kindle 51.0 82.3 72.2 68.50

+ SICK, Rotten 50.0 82.3 77.1 69.80
+ SICK, Kindle 49.9 82.3 74.4 69.37

Table 11: Result of different training datasets on performance for finetuning. Sentence-BERT
backbone was used for these tests.

11

	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Analysis
	Conclusion
	Appendix
	Dataset Information
	Ablation Studies

