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Abstract

Recent interest in Large Language Models (LLMs) and human alignment calls
for effective finetuning methods. In this work, we investigate how reinforcement
learning (RL) can be used to finetune the downstream performance of pretrained
Language Models (LMs). Recently, on-policy RL algorithms have shown promise
for text generation tasks. However, they face several empirical challenges, including
(1) training instability due to the large action space and (2) sample inefficiency. In
this paper, we explore methods to address both of these limitations. First, we imple-
mented a variety of sampling techniques which effectively restrict the total action
space without compromising performance, and which show significant improve-
ment over vanilla proximal policy optimization (PPO). Second, we implemented an
off-policy and value-based algorithm: Deep-Q Learning (DQN). We demonstrate
the DQN can be applied to finetuning langauge models for downstream applica-
tions. However, futher exploration and tuning is required to determine whether it
can achieve better sample efficiency compared to on-policy algorithms.

1 Key Information to include
• Mentor: Jesse Mu
• Sharing project: Paul is sharing this project with CS234
• Late days: Wanqiao and Gary have 4 late days left each (8 total) and Paul has 0. However

we are submitting 3 days late. As per the Ed post on fractional late days, Wanqiao and Gary
have enough days remaining, whereas Paul will incur a 1 day late penalty.

2 Introduction

With the recent surge of interest of LLMs, there has been much recent interest in finetuning pretrained
models to align with human preference [1]. The finetuning process on natural language generation
(NLG) tasks can be naturally framed as a sequential decision-making problem,where the model
generates subsequent tokens based on context and aims to maximize sentence-level performance
metrics. Indeed, there have been heated discussions around the effects and necessity of reinforcement
learning with human feedback (RLHF) in fine-tuning LLMs.

The use of RL for NLG encounters several challenges, such as training instability due to the com-
binatorially large action space, high variance in automated language metrics, and reward hacking.
Recently, the authors of RL4LM [2] proposed a novel on-policy RL algorithm named Natural Lan-
guage Policy Optimization (NLPO). Notably, NLPO aims to address the large sample space issue by
merging an on-policy PPO algorithm with a top-p truncation sampling technique. However, NLPO
has two primary limitations that we aim to improve in this work.

First of all, naive truncation sampling methods like top-p can hinder high-quality generation. For
example, top-p may truncate the action space too aggressively if only a few tokens take up the upper
p% of the sampling distribution, resulting in repetitive text [3]. Meanwhile, if most tokens have
low probabilities of getting sampled, top-p does not guarantee that the generated text will be of
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high quality. Alternative sampling algorithms have been proposed that may produce more desirable
behavior [3].

Second of all, the RL4LM library only implements on-policy algorithms, and does not implement any
off-policy RL algorithms. Off-policy algorithms learn a policy function by evaluating or improving
another policy, while on-policy algorithms learn a policy function from the same data that the policy
is executed on. The former may offer several advantages, including better sample efficiency and more
flexibility in data usage. These benefits could be especially critical for finetuning language tasks,
since human labeling of data is prohibitively expensive or sometimes infeasible [4]. Inspired by this
line of work, we aim to design RL algorithms that efficiently finetune pretrained LMs to align with
preference metrics in NLP tasks. Specifically, we aim to explore methods to address both of the
above-mentioned limitations. In this report, we detail our improvements to the sampling component
of NLPO as well as our implementation of an off-policy algorithm.

3 Related Work

In the NLP context, RL has been used to improve model behavior in many tasks such as automatic
translation [5, 6], question generation [7], summarization [8, 9], dialogue generation [10, 11], and
text-based games [12, 13], to name a few. RL has recently been actively applied to ensure that LMs
align with human preferences [8, 14, 15, 1, 16]. The use of RL in NLP is a fast-growing subfield with
potential applications to various downstream tasks, yet it is still up for debate if RL is the right route
or even necessary for improving language modeling and alignment.

On the RL side, large action space has been a challenge to efficient exploration. Common tasks in
NLG involve generating the next token, which in principle has the whole vocabulary as candidates.
When cast as an RL problem, the set of possible next tokens becomes a huge discrete action space.
This poses challenges to many RL algorithms which are usually designed to deal with much smaller
action spaces. Prior studies utilize sampling ideas [17, 18] and penalization of less likely actions in a
critic [19, 20] to address the large action space problem. Since then, there have also been follow-up
papers that attempt to eliminate actions [21] or generate small candidate action sets [22] for more
efficient and stable exploration.

Many of these previous efforts at integrating RL and NLP exclusively focus on on-policy algorithms
such as PPO. However, in certain settings, off-policy RL may be more sample efficient, as this
approach allows for reusing datasets collected from prior interaction with a potentially different
behavior policy [4]. Several prior papers have applied offline RL to NLP and more broadly to
sequence generation problems [23] [24] [25], suggesting potential benefits of an off-policy approach.

4 Approach

Sampling algorithms. The first part of our project aims to improve the performance of the NLPO
algorithm by implementing other truncation techniques on top of PPO. We describe them in detail
below. In the following specifications, let V denote the vocabulary, x(i) the i-th token in an input
sentence, x<i the prefix before the i-th token, θ the parameters of the model, h the entropy of the
predictive distribution of the model, P the sampling probabilities, and A<i the set of tokens allowed
by a given sampling algorithm on the i-th step:

1. Typical decoding [26]: This approach extends the top-p method. The algorithm sorts tokens
in the vocabulary in order of |hθ,x<i

+ log pθ(x|x<i)|. Given a fixed probability p, the
algorithm then takes j highest-scoring tokens to cover p percent of the distribution. The
allowed set of tokens on the i-th step is Ax<i

= {x(1), ..., x(j)}.
2. ϵ-sampling [3]: This algorithm truncates any token with probability no greater than ϵ. The

allowed set of tokens on the i-th step is: Ax<i
= {x ∈ V : Pθ(x|x<i) > ϵ}.

3. η-sampling [3]: This algorithm extends ϵ-sampling by truncating tokens below a minimum
ϵ value and an entropy-dependent probability threshold. The allowed set of tokens can be
expressed as follows (where α and ϵ are hyperparameters):

Ax<i
= {x ∈ V : Pθ(x|x<i) > η, η = min(ϵ, α exp(−hθ,x<i

))}.
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4. Mirostat [27]: This algorithm uses an adaptive top-k sampling algorithm to actively tune
the value of k, so as to maintain the perplexity of the generated text at a desired value.
Specifically, the algorithm (1) estimates a value of s using minimum mean-squared errors
(assuming tokens follow Zipf’s law) and (2) estimates the value of k as a function of the
estimated s and a target surprise value (µ). The allowed set of tokens on the i-th step is
Ax<i

= {x(1), ..., x(k)} where k = ((s+ 1)2µ)/(1− |ν|−(s+1)))
1
s

The baselines we compare to are vanilla PPO and NLPO, where the latter uses a top-p sampling
technique on top of PPO to truncate the action set. Given a fixed probability p, the top-p algorithm
truncates tokens that are outside the mimimal set of (most probable) tokens that accounts for at least
p percent of the distribution [3]. Note that tokens with up to (1− p) probability may be truncated
simply because other high-probability tokens cover probability p, which is an important limitation of
this baseline sampling algorithm.

Delayed masking strategy. On a high-level, the NLPO algorithm masks out actions using top-p
sampling. The implementation of NLPO in RL4LM contains two distinct masking strategies. Both
train an unmasked policy. One strategy then masks out some actions under this policy at generation.
The other strategy is to maintain a temporally static masked policy, and generate new tokens under
the masked policy. The masked policy is synced with its unmasked counterpart every n > 1 training
steps. In the following, we will refer to the first strategy with perfect syncing as usual, but call the
second strategy with delayed syncing as “learned” versions of the sampling method, as it can be seen
as learning a separate masked policy.

We have leveraged the existing codebase for the NLPO algorithm [28], as well as a stand-alone
codebase Transformer Reinforcement Learning X repository (TRLX) [29]. RL4LM has NLPO with
top-p and learned top-p implemented. TRLX has vanilla PPO implemented but does not have any
existing implementation of sampling methods. Thus, we re-implemented top-p and learned top-p on
TRLX. The implementation of all other sampling algorithms described above, as well as their learned
counterparts, is entirely our own and coded from scratch in both codebases.

Off-Policy Algorithm. In the second part of our project, we implement Deep Q-Network (DQN)
[30], a vanilla off-policy RL algorithm, catered to language generation. The goal of DQN is to train
an action-value function Qθ : S ×A → R parametrized by a deep neural network.

Vanilla DQN performs ϵ-greedy exploration. At each time step, a random action is selected with
probability ϵ, and a greedy action is selected with probability 1− ϵ. The greedy action is one that
maximizes the action-value function given the current state s. In the NLP context, the action a
is the next token chosen from the set of possible next tokens in our vocabulary V , and the state s
corresponds to the context embedding of tokens seen thus far. Then, a next state s′ and a reward r
are observed. The reward r corresponds to a textual metric (e.g. BLEU score) that depends on the
particular NLG task. The loss function typically used is the temporal-difference (TD) loss, which
computes the squared difference between the value of a given state-action pair and the value of the
bootstrapped best future action (known as the target). More concretely, the loss function can be
expressed as L = E[(y −Q(s, a))2], where y denotes the value of the target. The target value can be
expressed as y = r + γmaxa′ Q(s′, a′), where γ denotes the discount rate.

As described, Q-learning is off-policy, as it tries to learn the greedy policy while using a different
behavior policy for acting in the environment.

The loss is minimized using stochastic gradient descent. In order to make the network updates more
stable, DQN leverages a technique known as Experience Replay. At each step of the data collection
process, each single-step transition gets added to a replay buffer. During training, rather than simply
using the latest data point to compute the loss, the algorithm samples a mini-batch of data from the
replay buffer. By using uncorrelated samples in each batch and reusing data throughout training,
this technique is both more stable and more sample efficient than vanilla Q-learning. To further
improve stability, the parameters of the network θ used in the target estimation are fixed for multiple
updates of the algorithm. This fixed target network therefore uses a different set of parameters θ−
than the parameters being updated, which mitigates potential instability stemming from the otherwise
non-stationary targets. The update step can be succinctly expressed as

θ ← θ + α(r + γmax
a′

Q̂(s′, a′; θ−)− Q̂(s, a; θ))∇θQ̂(s, a; θ),

where α is the learning rate. We include the detailed pseudo code for DQN in the appendix 1.
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The baselines we compare to are the on-policy algorithms detailed above (i.e., PPO and NLPO). We
leverage an off-the-shelf implementation of DQN [31] and modify it to perform language generation.
Please note that deep RL algorithms are usually extremely difficult to debug and tune, as training
is often unstable and takes a significant amount of time. Further more, adapting the codebase
and integrating it within the RL4LM framework has proven to be a conceptually ambiguous and
challenging task which requires substantial coding, troubleshooting, and debugging. Given the
computational and time limits in this course, we consider getting a working bug-free version of DQN
in RL4LM a success criterion for this part of the project.

5 Experiments

5.1 Data and evaluation method

We perform experiments on two separate NLG tasks: a synthetic task and an IMDB text continuation
task.

Synthetic generation of increasing numbers. Due to compute constraints, and to test the imple-
mentation of our sampling techniques, we first choose a synthetic task. The dataset is a dummy
dataset that contains prompts of only padding tokens. The task is to generate a sequence of increasing
numbers. The reward and evaluation metric is the percentage of number pairs in ascending order in a
sentence. We take each prompt length to be exactly 5, and for each rollout, the model generates 20
new tokens.

IMDB text continuation. With promising results on the synthetic task, we then run our methods on
an IMDB positive text continuation task (Hugging Face data id: lvwerra/gpt2-imdb). The task is to
complete a given snippet of a movie review as positively as possible. We take each prompt length
to be exactly 5, and for each rollout, the model generates 40 new tokens. The output is evaluated
using the sentiment-analysis pipeline in Hugging Face [32], which assigns a positiveness score
between [0, 1] to each sequence. As an additional evaluation metric for this task, we also examine the
perplexity of the output.

5.2 Experimental details

We use the smallest version of GPT-2 [33] with 124M parameters as our common backbone pretrained
model for all tasks, and then finetune each task using the downstream metrics detailed above. The
GPT-2 model utilizes a transformers design and is pre-trained in a self-supervised approach on text
data scraped from all outbound web page links on Reddit, excluding any Wikipedia pages. The
tokenizer used is a variant of Byte Pair Encoding (BPE) that operates on individual bytes, and the
size of the vocabulary is 50,257. The GPT-2 model used in the IMDB task is first fine-tuned on the
IMDB dataset, then loaded in for further finetuning using RL.

Sampling methods. The model configuration for the synthetic task is outlined in Table 2. We use the
Adam optimizer with minibatches of size 64. We use a learning rate of 0.00001. The PPO policy
network parameters are updated 5 gradient steps per minibatch, and for the learned or delayed version,
the masked policy is synced with the unmasked policy every 100 training steps. We train on this task
for 450 training epochs.

We also perform a hyperparameter sweep for all sampling methods on the synthetic task. These
values are outlined in the appendix in Table 3 in the appendix. Specifically, we sweep the values of µ
for mirostat, p for typical and top-p sampling, η for η-sampling, and ϵ for ϵ-sampling.

The model configuration for the IMDB text generation task is outlined in Table 5 in the appendix. We
use the Adam optimizer with minibatches of size 32. We use a learning rate of 0.00001. The PPO
policy network parameters are updated 5 gradient steps per minibatch, and for the learned or delayed
version, the masked policy is synced with the unmasked policy every 100 training steps. We train on
this task for 450 training epochs.

DQN. Our goal for the DQN implementation is to get a working bug-free vanilla version of the
algorithm for language generation tasks. Therefore, we leave the implementation and testing of
combining DQN with sampling methods to future work, which we will discuss in detail later. The
model configuration for DQN is outlined in Table 4 in the appendix. We use the Adam optimizer
with minibatches of size 32, and set the learning rate to be 0.0001. We load the pretrained GPT-2
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model as the value model, and add a multi-layer perceptron (MLP) module on top of the value model
as the action-value head. The MLP takes as input the output hidden state of dimension 768 from
the value model, and outputs an array of Q-values corresponding to the value of each token in the
vocabulary given the hidden state. The MLP has three linear layers with a hidden size of 64, with
ReLU activation functions in between. We include an illustration of the Q-network structure in
Figure 4 in the appendix. The target Q-network shares the same structure as the Q-network, but is
updated every 50 training steps. We set the replay buffer to be of size 1,500,000, essentially storing
all possible transitions during training. The exploration policy, or behavior policy, is ϵ-greedy with ϵ
annealed from 1 to 0.05 linearly over the first ten thousand steps and fixed at 0.05 afterwards. We
train on the IMDB task for 35,000 steps.

5.3 Results

Figure 1: Comparison of delayed (or learned) masking on sampling methods

Sampling methods. Due to compute constraints we performed a hyperparameter sweep for each
individual sampling method only on the synthetic generation of increasing numbers task. The results
of the hyperparameter sweep for each method are reported in the appendix in Figures 6, 7, 8, and
9. We then used the best performing hyperparameter for the IMDB text continuation task. Figure 1
demonstrates that the delay masking strategy (“learned" strategy) significantly decreases the variance
of the training process. Moreover, with the delay masking strategy, all algorithms (except Mirostat)
obtain better training scores after 400 steps. It is clear that the learned strategy improves performance.
Thus, we only consider the learned versions of the sampling algorithms moving forward.

Figure 2 shows the training performance of all the algorithms. For the sentiment score, we find
that ϵ, η, and top-p all perform better than the baseline PPO algorithm with no truncation sampling.
Notably, after 450 training steps, ϵ-sampling performs better than all other alternative methods, and
also outperforms the NLPO baseline which uses top-p sampling. We also observe an unexpected
behavior of our methods. Typical sampling and η-sampling are more sophisticated information-based
extensions of top-p and ϵ-sampling, respectively, yet perhaps surprisingly, their simpler counterparts
perform better on both tasks that we considered. Moreover, the most complicated method, Mirostat,
performs the worst. We suspect that more tuning is needed to improve these algorithms, as they may
be harder to optimize and more sensitive to hyperparameters.

For the perplexity score, we find that all methods result in higher perplexity scores than top-p, which
overall performs well on both evaluation metrics. We note that more complicated methods such
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as Typical, η, and Mirostat achieve larger perplexity scores than this baseline. An explanation for
this is that these methods tune the parameters according to an entropy threshold that may result in
generating sentences with higher perplexity. Notably, both ϵ and η sampling perform relatively well
across both metrics (though ϵ sampling’s high sentiment score does come at the expense of a high
perplexity score).

Figure 2: Performance of ϵ-sampling, η-sampling, typical sampling, NLPO, and PPO on the IMDB
text generation task validation set

Mirostat
µ = 4

Typical
p = 0.2

Top-p
p = 0.95

Eta
η = 3e−4

Epsilon
ϵ = 1e−7

No Truncation

Perplexity 106.13 73.49 64.35 81.45 96.93 46.75
Sentiment Score 0.678 0.8446 0.982 0.962 0.993 0.919

Table 1: Out-of-sample test results after 450 steps

As shown in Table 1, we find that the relative performance of our algorithms on the training and
validation data sets holds for the held out test set. ϵ sampling performs the best in terms of achieving
the highest sentiment score, however it also achieves the second highest perplexity score. Perhaps
unsurprisingly, no truncation results in the lowest perplexity score, as restricting the action space
may come at the expense of producing plausible text. Our results suggest that alternative sampling
techniques can be combined with PPO to effectively restrict the action space without compromising
performance on certain metrics, however further work is required to quantify the tradeoff between
sentiment score and perplexity for this particular task.

Here we show sample generations from each of the algorithms for a randomly picked prompt, which
exemplify the trends explained above:
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Prompt: I used to watch
Reference Text: <START-1>I used to watch this show when I was a little girl. When I
think about it, I only remember it vaguely. If you ask me, it was a good show. Two things I
remember vaguely are the opening sequence and theme song. In<END-1>
Mirostat: it regularly with the two-handed and the "G"-in-the-back-the-back-in-front-you-
and-then-the-back-right-side-
Typical: this before seeing it, I know it did look similar to the other original and the other
person got the real story of this great "Masters of the Past". The good about what they did is
Top p: movies in this movie I really recommend this movie for this site because I love this
movie. If you’re looking for a love of an epic adventure, this is an easy choice. This movie
was a
Eta: them a long time ago, so I knew that I am truly a great, great, great, great grandmother,
great-grandpa, great, great aunt-wife, great-grandmother,
Epsilon: a lot of films in the seventies and I saw this film in a high class and high school in
New York. I was introduced with this wonderful plot development that is very well done.
Unfortunately,
No Trucation: many films which attempt to depict America’s most popular culture (in terms
of cinema itself), but which in any case never fully captures or entertains. A truly incredible
film in its own right, "

Figure 3: Performance DQN on the IMDB text generation task validation set

DQN. We successfully implemented vanilla DQN in the RL4LM framework, which is catered
to language generation. The implementation and debugging turned out to be substantially more
challenging than we initially believed. Thus, due to computational and time constraints, we could
only run our DQN algorithm for approximately 30k steps. As shown in Figure 3, the algorithm is not
able to learn much over the short course of training, and the initial performance is relatively noisy
and unstable. We expect to potentially see convergence and improved performance by significantly
extending the training time.

It is important to note that for every 4 gradient steps of the PPO algorithm, 128 new sentences need to
be generated, which translates to 128× 40/4 = 1280 new tokens, or equivalently 128/4 = 32 new
sentences generated per step. In contrast, every gradient update of DQN corresponds to only 1 newly
generated token, or 1/40 = 0.025 newly generated sentences. Moreover, our implementation of
DQN only loads one GPT-2 model (as the value model), whereas PPO uses 2 GPT-2 models (one as
the policy model, the other as the value model). For a fairer comparison, we could consider off-policy
variants of actor-critic algorithms in the future.

DQN suffers from many well-known issues, which could partly explain why DQN performs so poorly
on the IMDB task. These include:
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1. Sensitivity to hyperparameters: DQNs can be more sensitive to the choice of hyperpa-
rameters, such as learning rate, discount factor, and network architecture. PPO is often
considered more robust to hyperparameter choices. Since we are constrained by time and
compute, we are not able to tune the hyperparameters of DQN.

2. Slow convergence: DQN usually takes a long time to converge. For the IMDB task this
is problematic especially because the reward is noisy and sparse (reward is only given at
the end of a sentence). Sparse rewards pose a challenge to TD-style updates and make it
hard for Q-values to converge. Additionally, in DQNs, the target Q-values change during
training, making the optimization problem non-stationary. This can also lead to instability
and slow convergence.

3. Correlated data: as an off-policy algorithm, DQN reuses samples from the replay buffer,
which consists of previously collected single-step transitions and rewards. Unlike PPO which
samples independent trajectories, the training data for DQN exhibits complex dependency,
which could lead to instability and slow convergence.

4. Inefficient exploration: the exploration strategy employed by DQN is naive dithering,
namely ϵ-greedy. Exploration is only performed uniformly randomly with a small probability,
which is highly inefficient in large state spaces (which are typical of NLG tasks). Indeed,
from our inspection of generated texts from DQN, the tokens are often repeated or random
(out-of-context).

The poor performance of DQN can also be explained by our specific implementation of the algorithm.
First of all, we used a randomly initialized MLP to model the Q-function on top of the GPT-2 language
model. The initial approximation of the Q-function would introduce errors in the estimates which
can propagate and accumulate during training and destabilize learning. We have tried to adapt DQN
to include a KL divergence reward (to penalize deviation away from GPT-2). However, our empirical
results, shown in Figure 11 in the appendix, are not successful, possibly due to the relatively large
scale of the KL term compared to the Q-function estimates. Another possible strategy to reduce
error propagation is to freeze GPT-2 and train the MLP to learn an accurate representation of the
Q-function before any fine tuning is performed.

Finally, we comment on the choice of architecture to implement DQN for NLG tasks. As discussed
above, using a randomly initialized MLP head can cause our model to lose a crucial amount of
representation power from the pretrained GPT-2 model. We suspect that this may be the reason why
our outputs from DQN are often incoherent sentences with many repeated tokens. A solution for
this is to implement an alternative architecture in the future where the output logits from GPT-2 are
directly finetuned, treating them as surrogates for initial Q-values. Intuitively, the higher the Q-value,
the more desirable the corresponding action. The same holds true for logits. Thus, the logits might be
a good starting point for learning the Q-values.

6 Conclusion

Our work addresses two of the key empirical challenges faced by on-policy RL algorithms for natural
language tasks: (1) training instability due to the large action space and (2) sample inefficiency. Due
to time and compute constraints, as well as the inherent complexities of debugging and tuning deep
RL algorithms, we were not able to complete all of the ambitious stretch goals that we outlined in our
project proposal. Nonetheless, our preliminary results suggest that it is possible to leverage truncation
sampling techniques to effectively restrict the action space without compromising performance on
certain evaluation metrics, though further work is required to quantify the tradeoff between task
preference metrics (such as sentiment score) and naturalness metrics (such as perplexity score). In
addition, our implementation of a functioning DQN algorithm suggests that off-policy algorithms may
be suitable for finetuning language models for downstream applications. Moving forward, potential
future directions for further research include: comparing the performance of our sampling algorithms
on a wide variety of NLG tasks (e.g. summarization, machine translation, question answering);
additional tuning and training of our DQN algorithm; and combining both outputs of our work, i.e.,
incorporating our sampling techniques into DQN. Overall, we hope that our work can inform how
RL can be used to improve language modeling and alignment, and provide a meaningful contribution
to a fast-growing subfield with many potential applications to various downstream tasks.
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A Appendix

Algorithm 1 Deep-Q Learning pseudo code
Input C, α, D = {}, maxIter
Initialize θ, θ− = θ, t = 0
while t < maxIter do

Sample action at given ϵ-greedy policy for current Q̂(st, a; θ)
Observe reward rt and next state st+1

Store transition (st, at, rt, st+1) in replay buffer D
Sample random minibatch of tuples (si, ai, ri, si+1) from D
for j in minibatch do

if episode terminated at step i+ 1 then
yi = ri

else
yi = ri + γmaxa′ Q̂(si+1, a

′; θ−)
end if
SGD on (yi − Q̂(s, a))2 for parameters θ, where δθ = α(yi − Q̂(si, ai; θ))∇θQ̂si, ai; θ)

end for
t = t+ 1
if mod(t, C) == 0 then

θ− ← θ
end if

end while

Figure 4: GPT-2 with an MLP head as a Q-network
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Model Params value
On-policy agent batch size: 64

learning rate: 0.00001
steps per update: 1280
total number of steps: 256000
epochs per update: 5
discount factor: 0.99
gae lambda: 0.9
clip ratio: 0.2
value function coeff: 0.1
target update iterations: 100 for NLPO/top-p, 1 for others

Off-policy agent batch size: 5
learning rate: 0.0001
replay buffer size: 1500000
warm start: 20
polyak target soft update rate: 0.005
discount factor: 1
exploration rate: annealed linearly from 1 to 0.05

decoding sampling: true
top k: null
min length: 20
max new tokens: 20

tokenizer padding side: left
truncation side: left
max length: 5

Table 2: Model configuration for each method on the synthetic task

Method Hyperparameters Best hyperparameter value
top-p p ∈ {0.89, 0.90, 0.92, 0.95, 0.99} 0.95

typical p ∈ {0.2, 0.9, 0.92, 0.95} 0.2
ϵ ϵ ∈ {0.0001, 0.00001, 0.000001, 0.0000001} 0.0000001
η η ∈ {0.004, 0.002, 0.0009, 0.0006, 0.0003} 0.0003

Table 3: Hyperparameter sweep for each method on the synthetic task

Model Params value
batch size: 32

learning rate: 0.0001
discount factor (γ): 1

target network update interval (C): 50
initial exploration fraction (ϵ): 1.0
final exploration fraction (ϵ): 0.05

Table 4: Model configuration of DQN
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Figure 5: Performance of all methods with the best hyperparameter

Model Params value
On-policy agent batch size: 32

learning rate: 0.0001
steps per update: 128
total number of steps: 12800
epochs per update: 4
discount factor: 1
gae lambda: 0.95
clip ratio: 0.2
value function coeff: 1
target update iterations: 1

Off-policy agent batch size: 5
learning rate: 0.001
replay buffer size: 1500000
warm start: 20
polyak target soft update rate: 0.005
discount factor: 1
exploration rate: annealed linearly from 1 to 0.05

decoding sampling: true
top k: null
min length: 0
max new tokens: 40

tokenizer padding side: left
truncation side: right
max length: 984

Table 5: Model configuration for each method on the IMDB task
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Figure 6: Hyperparameter sweep on NLPO (using top-p sampling)

Figure 7: Hyperparameter sweep on typical sampling
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Figure 8: Hyperparameter sweep on ϵ-sampling

Figure 9: Hyperparameter sweep on η-sampling
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Figure 10: Performance of ϵ-sampling, η-sampling, typical sampling, NLPO, and PPO on the IMDB
text generation task (from the TRLX repo)

Figure 11: Performance of DQN on the IMDB text generation task with KL regularization
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