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Abstract

The anisotropy problem limits the expressiveness of sentence embeddings learned
from pretrained large models, and contrastive learning with the SimCSE framework
is a simple and effective method to alleviate this problem. In this paper, I introduce
the SimCSE framework as a pretraining method for minBERT optimization, and
the optimized model achieves an average score of 0.763 in multiple downstream
tasks. In comparison with in-domain and cross-domain pretraining with the Masked
Language Modeling task, the advantage of the supervised SimCSE approach is
further revealed. The result of the ablation study indicates that cross-domain
pretraining improves the general performance of the model, and the anisotropy
problem of minBERT is shown to be alleviated with SimCSE in the case study.
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2 Introduction

Sentence embedding is the cornerstone of many natural language processing (NLP) tasks. In the
past, studies on building sentence embeddings are mainly through either predicting the neighboring
sentences of a given sentence with the distributional hypothesis (Kiros et al., 2015; Hill et al., 2016),
or incorporating n-gram embeddings into the idea of word2vec (Pagliardini et al., 2017; Mikolov
et al., 2013). BERT (Bidirectional Encoder Representations from Transformers), on the other hand,
adopts the transformer architecture and generates sentence embeddings by processing the entire
input sequence of tokens through multiple layers of self-attention and feed-forward neural networks
(Devlin et al., 2018). These contextually rich embeddings are well-suited for a wide range of NLP
tasks, including text classification, question answering, and natural language inference. However,
for both pretrained large language models and models trained with tied word embedding matrix, the
anisotropy problem has been shown to be widespread in their language representations (Gao et al.,
2019; Ethayarajh, 2019). The distribution of word and sentence embeddings over the vector space is
direction-dependent and even crammed into a narrow cone-shape space, making a positive correlation
between any two arbitrary vectors, greatly impairing the expressiveness of these embeddings and
rendering useless metrics such as cosine similarity that directly compare embeddings.

In this project, I introduce the SimCSE (simple contrastive sentence embedding) framework (Gao
et al., 2021) to improve the sentence embeddings learned from our minBERT model for multiple
downstream tasks, i.e., sentiment classification, paraphrase detection, and semantic textual similarity
(STS). Both the supervised and unsupervised approaches of this framework are applied as further
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pretraining methods, and their effects are compared to the MLM (masked language modeling) task
described in Devlin et al. (2018). The results show that after being pretrained with the supervised
SimCSE approach, the model is able to outperform both a directly finetuned version of the model and
the version that is pretrained with MLM or unsupervised SimCSE approach, on all three downstream
tasks.

To further understand the optimization effect of the SimCSE framework under different task and
dataset scenarios, I also perform in-domain pre-training and cross-domain pre-training for a single
task, and use MLM as a reference. I find that though the effect of different pretraining methods is
task-specific, supervised SimCSE approach can generally beat the unsupervised approach and MLM
pretraining. Finally, the ablation experiment and case study demonstrate that cross-domain data
are more likely to improve the generalized task performance of the pretrained model, and that the
anisotropy problem of the SimCSE pretrained model is alleviated with signs, respectively.

3 Related Work

Since the anisotropy problem was spotted, many researchers have developed different methods
to approach the solution. In the original paper that identifies the anisotropic embeddings learned
from models trained with tied word embedding matrix by Gao et al. (2019), the authors show that
a regularization method can mitigate the representation degeneration problem. Another natural
way is post-processing. Li et al. (2020) proposes the BERT-flow method to map the anisotropic
sentence embedding distribution from BERT to an isotropic Gaussian distribution, and reaches a new
state-of-the-art performance. On top of this, BERT-whitening simplifies the post-processing process
into a simple linear transformation, which achieves comparable results with BERT-flow while making
the dimensionality reduction operation possible (Su et al., 2021).

Unlike the above methods, contrastive learning aims to bring similar instances closer and push
dissimilar ones farther. Based on the work of Gao et al. (2021), the contrastive object has been
proven to be effective in alleviating the anisotropy problem. In addition, the SimCSE framework also
provides an efficient solution to construct positive pairs, namely semantically close neighbors, for
contrastive learning, which is applying the standard dropout twice on intermediate representations
of the same sentence for an unsupervised approach, and using the entailment pairs from the natural
language inference (NLI) datasets for a supervised approach. This framework not only is simple, but
also outperforms previous (more complex) discrete operators for data augmentation such as word
deletion, reordering, and substitution (Wu et al., 2020; Meng et al., 2021), so it has a broad application
in NLP tasks, especially for the unsupervised approach that does not need additional resources.

However, the success of SimCSM in the original paper is still built on a large amount of (general)
training data and emphatically evaluated only on STS tasks without other finetuning, leaving its
effect with small within-task datasets in tasks other than STS as an auxiliary step an open question.
Our default project fits this study because the three required downstream tasks are the STS task,
paraphrase detection that is somewhat related to the STS task, and sentiment classification that is
different from the STS task, and all data provided are labeled. By employing the SimCSE framework
as a pretraining method and comparing it to the MLM task, we can learn its optimization effect on
the minBERT model for both different single-task scenarios and simultaneous multiple tasks, and
explore the fundamental factors that bring this optimization.

4 Approach

4.1 Model Architecture Optimization and Baseline

The BERT model itself has been described in detail in the original paper by Devlin et al. (2018) and
our default project handout, but how to choose the architecture of the heads for downstream tasks
remains a challenging problem.

In this paper, I use a simple brute-force method to experiment with various possible (light) head
architectures, including linear layers combined with different activation functions. Due to time
constraints, it is not feasible to use grid search to examine all reasonable combinations of layers with
different hyperparameters, but through this preliminary experiment, the significant performance gains
of my model compared to the initial intuitive implementation, and the closeness to the state-of-the-art
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in performance in three tasks demonstrate the effectiveness of this optimization process (details are
in the Results section).

I take this optimized model after finetuning on the downstream tasks (but without further pretraining
before finetuning) as the baseline to show the effect of my pretraining methods. This finetuning is
conducted with a straightforward round-robin strategy with three datasets (that are described more in
the Data section) to train the model against three objectives simultaneously. Different batch sizes are
chosen to make the number of batches from each dataset in the same epoch approximately equal.

4.2 Comparative Analysis of SimCSE Framework

The comparative analysis consists of two parts: 1) the comparison between unsupervised and
supervised approaches with different datasets and 2) the comparison between the integration of
SimCSE and further pretraining with MLM task, which are both implemented by myself with
reference to the original BERT and SimCSE paper. Unlike the approach in the SimCSE paper which
trains the model with a large amount (1m) of general data, this project would train the model with the
within-task datasets to study the effect of in-domain, cross-domain, and cross-dataset (in sentiment
classification) training.

Figure 1: SimCSE framework schematics for the (a) unsupervised approach and (b) supervised
approach in this project.

As illustrated in Figure 1, in the unsupervised approach, we obtain two different embeddings for
semantically close neighbors by passing the same sentence to our model with the standard dropout
twice, and use the embeddings as positive pairs. In the supervised approach, the original paper
employs the "entailment" pairs from natural language inference (NLI) datasets as positives. However,
for our downstream tasks, I think it is reasonable to use the "Is Paraphrase: Yes" question pairs from
the Quora dataset and sentence pairs with a similarity label greater than or equal to 3.0 from the
SemEval STS Benchmark dataset as positive instances, since both the labels indicate the existence
of similarity between the corresponding sentences. For both approaches, the negative instances are
simply other sentences within the same mini-batch.

Based on the goal of contrastive learning of keeping semantically related neighbors together and
pushing non-neighbors apart for better representation, the training objective to predict the positive
pairs (xi, x

+
i ) among negatives with a mini-batch of N pairs is:

ℓi = −log
esim(hi,h

+
i )/τ∑N

j=1 e
sim(hi,h

+
i )/τ

(1)

where hi and h+
i denote the representations of xi and x+

i , τ is a temperature hyperparameter, and

sim(h1,h2) is the cosine similarity hT
1 h2

∥h1∥·∥h2∥ .
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5 Experiments

5.1 Data

The datasets used in this project are the Stanford Sentiment Treebank (SST) dataset and the CFIMDB
dataset for sentiment classification, the Quora dataset for paraphrase detection, and the SemEval STS
Benchmark dataset for semantic textual similarity (STS) task, which have already been described in
detail in the handout.

5.2 Evaluation Method

The evaluation metrics used in this default project for downstream tasks are accuracy for sentiment
classification and paraphrase detection, and Pearson score for semantic textual similarity. The Pearson
score which comes from the original SemEval Paper (Agirre et al., 2013) is calculated based on the
true similarity values against the predicted similarity values across the dev or test dataset.

For supervised and unsupervised contrastive learning, I get the [CLS] embeddings from the model for
each sentence pair and figure out the cosine similarity values following the SimCSE paper, but adopt
the Pearson correlation for the comparison between the similarity values and the STS dataset labels
instead of Spearman’s correlation in the original paper to maintain consistency with the downstream
STS task within the scope of this paper. Additionally, the Pearson correlation is also a commonly
used metric in other STS research. For MLM pretraining, the accuracy of predicted word embeddings
against the true masked embeddings is calculated.

5.3 Experimental Details

5.3.1 Model Architecture Optimization

The minBERT model is built following the instructions of our handout, which utilizes a WordPiece
tokenizer and consists of a trainable embedding layer (where the token embeddings, the segmentation
embeddings, and the position embeddings are added), 12 Encoder Transformer layers, and a linear
layer with activation function for the [CLS] embedding output.

To find the optimal head architecture for each downstream task, I use the default hyperparameters
for training, including 10 epochs, a learning rate of 1e-5, a hidden dropout probability of 0.1 for
BERT, a batch size of 32 to fit in the Deep Learning AMI GPU PyTorch 1.12.0 (Ubuntu 20.04)
20220913 (g5.2xlarge). My initial intuitive implementation is adding a linear layer for the sentiment
classification to project the [CLS] embedding to logits for 5 classes, calculating the cosine similarity
between the two [CLS] embeddings obtained by feeding each sentence of a pair to the model
separately as the logit before a sigmoid function for paraphrase detection, and rescaling the cosine
similarity obtained in the same way to 0-5 by multiplying 2.5 and adding another 2.5 for the STS
task. Of the scores obtained by round-robin multitask training, the STS task has the largest gap from
the state-of-the-art, so I decide to experiment with different architectures for the single STS task first,
which can significantly save time compared to multitask training. It must be acknowledged that the
optimal head architecture for a single task is not necessarily optimal for simultaneous training of
multiple tasks, but it is the most feasible approach given the limited time available.

For the STS task, I experiment with the following 9 head architectures ("cos" stands for cosine simi-
larity calculated on two vectors, and "linear" stands for a linear layer): linear -> cos×2.5+2.5, linear
-> ReLU(cos×2.5+2.5), linear -> ReLU(cos×5), ReLU(cos×2.5+2.5) only, ReLU(cos×4.5+0.5),
ReLU(cos×4.25+0.75), GELU(cos×4.25+0.75), a single linear layer projecting an embedding ob-
tained by feeding BERT a long sentence concatenated by each pair of sentences to a scalar logit, and
the single linear layer with a dropout layer before it. The ReLU and GELU functions are chosen
based on the thought that cosine similarity values less or equal to 0 all indicate dissimilarity and could
probably be zeroed out. Since paraphrase detection is also a task that identifies similarities between
sentences, the architecture that performed best in the STS task is directly adapted to paraphrase
detection and also shows significant enhancements over the original implementation.

For sentiment classification, the head architectures I experiment with include: linear, ReLU ->
linear, GELU -> linear, Tanh -> linear, linear -> ReLU, linear -> GELU, and linear -> Tanh. The

4



combinations of the top two best architectures in each individual task are then trained by multitasks
to determine the best multitasking architecture.

5.3.2 SimCSE Contrastive Learning and MLM Pretraining

For multitask in-domain pretraining, the three datasets are mixed for MLM task and unsupervised
SimCSE approach. Each sentence pair from the Quora dataset and the SST dataset is split into two
separate pieces of data. The "Is Paraphrase: Yes" question pairs from the Quora dataset and sentence
pairs with a similarity label greater than or equal to 3.0 from the STS dataset are mixed for the
supervised SimCSE approach. For single-task in-domain pretraining, the SST dataset is used for
MLM task and unsupervised SimCSE task before finetuning in the same downstream task, while the
STS dataset is used for the MLM task, unsupervised and supervised SimCSE task.

For the cross-domain pretraining, the Quora dataset is used for the MLM task, unsupervised and
supervised SimCSE approach pretraining before finetuning in sentiment classification and STS
task. In addition, the CFIMDB dataset is also adopted for cross-dataset pretraining with MLM and
unsupervised SimCSE tasks in sentiment classification.

Based on experiments with learning rates of 1e-5, 2e-5, and 3e-5, a learning rate of 3e-5 is used for
the supervised SimCSE approach with the STS dataset and unsupervised SimCSE approach with
all the three single datasets, and 2e-5 for the supervised approach with the Quora or mixed dataset
and unsupervised approach with the mixed dataset. A dropout probability of 0.2 or 0.3 corrupts the
embeddings excessively through experiments, so I select a probability of 0.1 for all the unsupervised
SimCSE pretraining. Since the loss value decreases too quickly for the unsupervised approach, the
model evaluation is conducted every 1,000 batches with a size of 32 instead of a whole epoch through
the training process with 25,000 batches. The supervised approach uses 10 epochs. Similarly, a
learning rate of 3e-5 and a dropout probability of 0.1 are chosen for the MLM pretraining with 10
epochs for single datasets and 20 epochs for mixed dataset.

5.4 Results

5.4.1 Model Architecture Optimization

Figure 2: The dev accuracy curves of finetuning for (a) STS head architecture experiments and (b)
SST head architecture experiments.

As illustrated in Fig 2 (a), by using different activation functions and removing the linear layer
in the head architecture, the accuracy of finetuning in the STS task improves from around 0.4 to
beyond 0.6, but concatenating the two sentences and feeding them to BERT as a whole with a single
projection linear layer performs well beyond expectation. An accuracy of 0.874 indicates that the
minBERT model can understand both the data and the task itself without much additional support.
Then the same architecture is directly adapted to the paraphrase detection task, and beats the original
implementation again with an accuracy of 0.889.

5



In the sentiment classification task in Fig 2 (b), the performance gap between different head archi-
tectures I experiment with is smaller. Among them, the "Tanh -> linear" architecture and "linear
-> ReLU" architecture both achieve the highest accuracy of 0.548, so they are both experimented
with in the multitask finetuning scenario combined with the optimal architectures in the other two
tasks. The final optimal model architecture from my experiments includes a Tanh function with
a subsequent linear layer for sentiment classification and a single linear layer without dropout for
paraphrase detection and the STS task. This model achieves an accuracy of 0.518 with the SST dev
set, an accuracy of 0.877 with the Quora dev set, and a Pearson score of 0.874 with the STS dev set.
These results not only improve significantly from my initial implementation as listed in Table 1, but
also approaches the state-of-the-art results for each single tasks, which are 0.562 (Brahma, 2018),
0.924 (Baevski et al., 2022), and 0.929 (Jiang et al., 2019), respectively. The model shows the effect
of this optimization process and serves as the baseline for the following pretraining methods.

5.4.2 In-domain Pretraining with SimCSE Framework and MLM Task

Model Version SST Acc Para Acc STS Corr Avg Score
Initial intuitive architecture 0.479 0.524 0.553 0.519
Optimized architecture 0.518 0.877 0.874 0.756

pretrained by MLM 0.496 0.873 0.866 0.745
pretrained by Unsup. SimCSE 0.516 0.875 0.865 0.752
pretrained by Sup. SinCSE 0.527 0.880 0.882 0.763

Table 1: The performance of different model versions on the dev sets by multitask finetuning.

As shown in Table 1, the performance of the model pretrained with the supervised SimCSE approach
before multitask finetuning outperforms the baseline in all three downstream tasks, and improves
the average score by another 0.007. This is my best-ever model. In our test set leaderboard, it ranks
8th with a sentiment classification accuracy of 0.527, a paraphrase detection accuracy of 0.880, an
STS correlation of 0.882, and an overall score of 0.763. However, the model pretrained with the
unsupervised approach or the MLM task performs worse in the downstream tasks. This gap may be
due to the inherent differences in the mixed data from different sets, the hyperparameters of these
training methods not all tuned to the optimum, and the generalization performance limitations of the
unsupervised SimCSE approach to produce positive instances based on exactly the same sentences,
e.g., the model would tend to see sentences of the same length as more semantically similar ones
(Wu et al., 2021). Although pretraining gives subsequent finetuning a "first-mover" advantage at
the beginning, the continuous updating of the parameters may make this advantage disappear as the
finetuning proceeds, especially in the case of potentially conflicting gradients in multitask training.

Figure 3: The dev accuracy curves of finetuning following different in-domain pretraining methods
in (a) the STS task and (b) the sentiment classification task.

Among the in-domain further pretraining methods for the single STS task in Fig 3 (a), the supervised
SimCSE approach achieves the best effect, again indicating the effectiveness of contrastive learning
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with labeled positive instances that are similar to each other but not the exact same. In the sentiment
classification task in Fig 3 (b), neither of the two unsupervised pretraining methods obtain better
results than direct finetuning, which may be related to the small size of the SST dataset.

5.4.3 Cross-domain Pretraining with SimCSE Framework and MLM Task

Figure 4: The dev accuracy curves of finetuning following different cross-domain pretraining methods
in (a) the STS task and (b) the sentiment classification task.

According to Figure 4, we see that in the STS task, none of the pretraining methods gives a significant
improvement to the model, while in the sentiment classification task, the model after pretraining
using all three methods performs better than direct finetuning, with MLM pretraining slightly
outperforming the other two methods. Comparison between the two tasks suggests that the effect of
different pretraining methods is task-specific.

In the sentiment classification task, I also employ cross-dataset pretraining with the CFIMDB dataset.
The pretrained model only achieves the same high accuracy as the directly finetuned model, but
achieves it much earlier, which validates the first-mover advantage from pretraining mentioned earlier.

6 Analysis

6.1 Ablation Study

Though using the supervised SimCSE approach as a pretraining step offers a performance gain to my
model, I am interested in why it works. In particular, the data it uses is derived from my intuition to
divide the labels of the Quora and STS datasets, and I am curious about what role each of the two
datasets plays in the optimization process. Therefore, I conduct an ablation study to use data from
only one of the datasets for pretraining, and the results are as follows:

Datasets Employed SST Acc Para Acc STS Corr Avg Score
Quora only 0.521 0.878 0.870 0.756
STS only 0.523 0.872 0.875 0.757
Quora + STS 0.527 0.880 0.882 0.763

+ MLM objective 0.525 0.875 0.872 0.757

Table 2: The performance of model pretrained with different datasets using the supervised SimCSE
approach.

Through this ablation study, we can find that supervised SimCSE pretraining using a single dataset
improves the model’s performance on the corresponding task in that dataset, but not on the other
dataset, compared to the baseline in Table 1. A more generalized model optimization can only be
obtained by learning the cross-domain mixed datasets simultaneously. Notably, pretraining using
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only one of the two datasets, Quora or STS, both increase the accuracy of the model on the sentiment
classification task, which also illustrates the effectiveness of cross-domain pretraining. In addition, I
also attempt to incorporate the MLM objective during the pretraining process by multiplying it by a
weight of 0.01 and summing it with the contrastive objective, but do not obtain better results. If time
permits, more tuning and research on this part should be carried out.

6.2 Anisotropy Case Study

Sentence Pairs Raw BERT Finetuned MLM Unsup. Sim. Sup. Sim.
Deep learning
World 0.818 0.510 0.845 0.265 0.472

I like you.
I love you. 0.993 0.672 0.566 0.866 0.771

I like you.
Deep learning is

not an easy class.
0.988 -0.497 -0.305 -0.600 -0.139

I can’t do it
without you.

You’re the must
for me to do it.

0.994 0.757 0.550 0.635 0.766

Table 3: The cosine similarity values for sentence pair samples calculated between the two [CLS]
embeddings from different model versions.

To further understand how the SimCSE framework improves the performance of the model, I manually
construct several sentence pair samples and feed them into different versions of the model to see
whether the anisotropy problem of BERT is alleviated. As shown in Table 3, the relative magnitudes
between the values obtained from cosine similarity calculation on the sentence embeddings generated
by the original BERT model are basically in line with human perceptions of the similarity of these
samples, i.e., the two sentences of samples 2 and 4 are semantically close to each other, while the two
sentences of samples 1 and 3 differ more. However, these values are too close in absolute magnitude,
proving that the anisotropy problem does exist. Compared to the original BERT, the model directly
finetuned on multitasks and the model pretrained with the MLM task and then finetuned both capture
the dissimilarity of sample 3, but the distinguishability of their cosine similarity results for samples
1 and 2 is small, and the MLM pretrained model even considers sample 1 more similar than 2. In
contrast, the model that is pretrained by the SimCSE framework before finetuning can distinguish the
difference in similarity between samples 1 and 2 using cosine similarity as the metric, and the results
for the other two samples are reasonable as well. Although the case study cannot mathematically
or comprehensively describe the improvement effect of the SimCSE framework on the anisotropy
problem of BERT, it is sufficient to illustrate that the difference in sentence embedding expressiveness
is one of the candidate reasons why SimCSE pretraining is able to increase model accuracy.

7 Conclusion

In this paper, I introduce the SimCSE framework as a pretraining method to optimize the BERT
model and study the effect of the framework in comparison with pretraining through the MLM task.
The results show that this framework, especially the supervised learning approach in the SimCSE
framework, can improve the model performance. Further in-domain and cross-domain pretraining
experiments illustrate that while the effects of different pretraining methods are task-specific, the
supervised SimCSE approach tends to outperform the unsupervised SimCSE approach and MLM
pretraining, which is in line with my expectation. Based on the ablation study and the case study,
I argue that cross-domain pretraining can better improve the generalized task performance of the
model, and the SimCSE framework shows signs of alleviating the anisotropy problem of BERT.
However, it is worth stating that although my model achieves an average score of 0.763 in the three
downstream tasks, the hyperparameter tuning does not strictly follow the grid search approach due
to time constraints, and there is room for optimization in the data processing and the experiment
setup. In future work, a more quantitative analysis of the anisotropy problem should be performed,
for example, by using alignment and uniformity identified in Wang and Isola (2020).
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