
SimCSE Lessens your Need to Seek BERT’s Attention
Stanford CS224N {Default} Project

Andre Klawa
Department of Computer Science

Stanford University
aklawa@stanford.edu

Abstract

The goal of this project is to apply recent research findings to finetune the sentence-
embeddings of a single BERT model such that it performs well on three semantic
tasks. We demonstrate a computationally efficient way to compare sentence em-
beddings from our model, which delivers a performance on par with BERT models
finetuned for specific downstream tasks.

1 Key Information to include

• Mentor: none

• External Collaborators (if you have any): none

• Sharing project: none

2 Introduction

This report is part of the CS224N Winter 2023 default final project. The task was to implement a
major part of the logic of BERT and to find and apply methods from recent research papers to finetune
BERT in such a way that it would simultaneously perform well on three downstream tasks: sentiment
analysis, paraphrase detection, and semantic textual similarity (STS). Our BERT implementation is
based starter code adapted from the minBERT assignment developed for Carnegie Mellon University’s
CS11-711 Advanced NLP class. Despite minBERT being a minimal implementation, we are using
pretrained weights from Huggigface’s “bert-base-uncased” for our model.

When optimizing a neural network for multiple tasks, the objectives of different tasks may conflict
with one another. Optimizing for one task can deteriorate the performance of another task, a
phenomenon known as catastrophic forgetting (Chen et al., 2020a). In one of our experiments we
will look into what happens if we simply finetune minBERT on all three tasks. There are multi-task
leaning approaches to lessen the problem. We refrain from finetuning BERT on the three given
downstream tasks. Instead our approach is to employ algorithms, that make sentence-embeddings
more easily distinguishable for regression functions.

SimCSE is a contrastive learning framework that is built on the premise to make dissimilar sentence-
embeddings more distinguishable. Notably, SimCSE has demonstrated improved state-of-the-art
performance on many benchmarks involving sentence-embeddings. We are using SimCSE as the sole
set of algorithms to finetune BERT’s weights.

When dealing with sentence-embeddings in BERT, it is important to understand cross-encoders and
bi-encoders. There are two ways to compare sentences using BERT: cross-encoders and Bi-encoders.
Cross-encoders usually outperform Bi-encoders on regression-pair tasks(Reimers and Gurevych,
2019). In a cross-encoder we feed BERT two input sentences separated by a [SEP] token. BERT
can apply attention across both sentences and outputs a single CLS embedding for both sentences.
This resulting CLS embedding is no longer a sentence-embedding but a vector- encoding of two
sentences. For the final decision the CLS gets fed to a regression layer. Though superior in accuracy,

Stanford CS224N Natural Language Processing with Deep Learning

this process is computationally very expensive and therefore infeasible for most downstream tasks:
“Finding the most similar pair in a collection of 10,000 sentences requires about 50 million inference
computations (65 hours) with BERT.” (Reimers and Gurevych, 2019)

In the Bi-encoder paradigm one sentence at a time gets fed to BERT to obtain a CLS embedding
for a single sentence. The resulting sentence-embeddings can then be compared with each other to
determine which are similar. The comparisons can be performed via regression or via cosine-similarity.
A comparison via cosine-similarity of 10,000 sentence embeddings can now be performed in seconds
and not requiring GPUs, versus the aforementioned 65 hours with a cross-encoder. The sentence
embeddings can be stored in a database for later reference. However, the sentence-embeddings coming
out of plain BERT are not suitable for cosine-similarity comparison. For this BERT must be finetuned
with a framework like SBERT or SimCSE. Regression is more accurate than cosine-similarity, but
computationally more expensive.

3 Related Work

BERT has achieved state-of-the-art performance on sentence comparison tasks, but its inference
costs are often prohibitive for practical applications. SBERT (Reimers and Gurevych, 2019) was
developed as a framework to fine-tune BERT to create sentence-embeddings that can be compared
using cosine similarity, while maintaining BERT’s accuracy. In computer vision, Chen et al. (2020b)
introduced SimCLR, a contrastive learning framework. SimCSE (Gao et al., 2021) builds on the
idea of fine-tuning BERT to improve sentence embeddings from SBERT and applies the learning
algorithm from SimCLR to further enhance its performance.

4 Approach

4.1 SimCSE

SimCSE is a contrastive learning framework developed to fine-tune BERT to improve the quality
of its sentence embeddings such that more accurate comparisons through methods such as cosine
similarity or regression are possible. It that has improved state-of-the-art performance on many
sentence-embedding benchmarks. BERT’s “learned embeddings occupy a narrow cone in the vector
space” Gao et al. (2021) which makes it difficult to distinguish dissimilar sentences from each
other. SimCSE pushes dissimilar embeddings further away from each other, making them easier to
distinguish, while keeping similar ones close. In mathematical terms, we use alignment to measure
how close similar items are

ℓalign = E(x,x+)∼Ppos
||f(x)− f(x+)||2 (1)

and uniformity to measure how well the embeddings are uniformly distributed

ℓuniform = log Ex,y∼Pdata
e−2||f(x)−f(y)||2 (2)

In contrastive learning, a model learns to predict whether two items are similar or not. It needs
positive examples i.e. two items that are similar (a “positive pair”), as well as negative examples.
Unsupervised SimCSE obtains two different sentence-embeddings for the same input sentence by
feeding the same sentence to BERT twice; but with a different dropout mask on each run. These
two sentences become "positive pairs", while all other sentences in the same batch act as negative
examples. For training, Unsupervised SimCSE uses the following cross-entropy loss function:

ℓi = −log esim(h
zi
i

,h
z′i
i

)/τ

∑N
j=1 e

sim(h
zi
i

,h
z′
j

j
)/τ

(3)

Where hi, hj are BERT sentence-embeddings, sim(hzi
i , h

z′
i

i) is the cosine similarity, and z, z
′
are

different dropout masks. Supervised SimCSE is being trained on natural language inference (NLI)
datasets. NLI datasets are made up of entailment pairs, neutral pairs, and contradiction pairs. We now
have (hi, h

+
i , h

−
i) where hiis the premise, h+

i is the entailment, and h−
i is the contradiction. The loss

function for Supervised SimCSE is:

2

ℓi = −log esim(hi,h
+
i

)/τ∑N
j=1 e

sim(hj,h
+
j

)/τ
+e

sim(hj,h
−
j

)/τ
(4)

4.2 SimCSE Algorithm Implementation

We developed a class to train a minBERT model for SimCSE. We implemented both the unsupervised
and supervised SIMCSE training algorithms according to equations (3) and (4). In contrast to the
original SimCSE implementation, we omitted the Masked Language Model (MLM) training task,
which has been shown to significantly improve SimCSE’s benchmark scores.

4.3 Neural Network Implementation

We developed a class that hosts a minBERT model and network layers for each of the three given
downstream tasks, ensuring that training for one task does not affect the other tasks. Our downstream-
task implementations are as follows:

• Sentiment Analysis: One CLS token as input, one hidden layer with a dropout rate of 0.1
leading to a softmax function.

• Paraphrase Detection: Two concatenated CLS tokens as input, with two hidden layers
using ReLU activation.

• STS: Two concatenated CLS tokens as input, with three hidden layers using ReLU activation.
• Cross-Encoder: Two concatenated CLS tokens as input, with one hidden layer. There is

one cross-encoder layer for the paraphrase task and one for STS.

Our implementation can load a Huggingface model, a SimCSE supervised model, or a SimCSE
unsupervised model. Since BERT cross-encoders are known to outperform other implementations on
benchmarks, we implemented a cross-encoder function for each Paraphrase Detection and STS tasks.
We originally implemented the STS task using a single linear layer with an input size of two CLS
embeddings and an output size of 1. This gave us a maximum Pearson score of 0.36 for supervised
SimCSE. We tested our implementation on an original SimCSE model from Huggingface and got
the same poor results. Once we implemented a multi-layer network to compare two CLS tokens, we
obtained a Pearson score of 0.715. We suspect that there may be a numerical issue with PyTorch in
this implementation. Interestingly, we found that non-SimCSE embeddings were less susceptible to
this problem.

In total, we have the following models:

• SimCSE-supervised: minBERT finetuned on SimCSE supervised.
• SimCSE-unsupervised: minBERT finetuned on SimCSE unsupervised.
• BERT-bi-encoder: minBERT using the regular layers for paraphrase and STS.
• BERT-cross-encoder: minBERT using the cross-encoder layers for paraphrase and STS.
• BERT-finetuned-single: We finetuned three minBERT cross-encoder models on single

tasks exclusively, one for each of the STS, paraphrase, and sentiment tasks.

4.4 Baselines

At the low end, BERT bi-encoder serves as a baseline. On the high end, we finetuned three BERT
finetuned-single models, each for a single task, to determine what might be achievable with the given
training data.

5 Experiments

5.1 Data

The training data for the downstream tasks was provided by the CS224N starter code (ber, 2023).
To finetune BERT via SimCSE we use the original SimCSE training data(Gao et al., 2021). For
the unsupervised part we use wiki1m_for_simcse, which consists of 106 sentences from English

3

Wikipedia. For the supervised part we use nli_for_simcse, which consists of 275,000 examples,
where each example consists of a sentence, a positive example, and a negative example.

5.2 Evaluation method

We use the f1 score and Pearson score as metrics:

• The Pearson score is a measure of linear correlation between two sets of data. We are
computing the Pearson between the predicted values and the gold labels on STS tasks.

• The f1 score is a measure of a test’s accuracy and is computed as the harmonic mean of
precision and recall.

5.3 Experimental details

5.3.1 Hardware

We trained all our models on an NVIDIA 3090 GPU with 24GB of RAM.

5.3.2 Training of SimCSE Unsupervised

We finetuned one minBERT model on the original SimCSE training data (wiki1m_for_simcse), which
consists of 106 randomly sampled English Wikipedia sentences. To ensure consistency with the
original SimCSE implementation, we used the same training parameters and limited the maximum
sentence length to 32 words like the original SimCSE implementation. Failing to do so caused our
GPU to run out of memory. We trained minBERT for one epoch using a batch size of 64, a learning
rate of 3e-5, and a dropout probability of 0.1, which is a critical component of the unsupervised
SimCSE approach. The training took 2604 seconds. We must mention that our SimCSE algorithm
implementations do not include any safeguards against overfitting. The original implementation
employs Senteval as a safeguard to obtain the best model. As such, our minBERT model may suffer
from overfitting.

5.3.3 Training of SimCSE Supervised

Similarly to the unsupervised part, we finetuned one minBERT model with supervised SimCSE using
the original training data and original training parameters. In this part we use nli_for_simcse, which
consists of 275,000 examples, where each example consists of a sentence, a positive example, and a
negative example. We trained the model for 3 epochs with a batch size of 128, dropout of 0.1, and
learning rate of 5e-5. The training took 2645 seconds. As in the unsupervised case, there was no
protection against overfitting.

5.3.4 Training of Downstream Models

We trained all our models with the same configuration, at 10 epochs for the sentiment task, 20 epochs
for STS, and 5 epochs for the paraphrase task. We used a learning rate of 1e-3 and a batch size of 64.
To avoid overfitting model checkpoints were only saved if accuracy of the dev set improved. Note
that we never finetuned minBERT. The BERT cross-encoder-finetuned models, which were each
finetuned for one task each were trained at a learning rate of 1e-5. We used the same task specific
number of epochs as for the downstream models.

5.4 Results

We report the accuracy for the paraphrase and the sentiment analysis tasks, while we use the Pearson
score for the STS task.

5.5

On the official CS224N “Test Set Leaderboard” we achieved the following scores with a SimCSE-
supervised model:

• SST test Accuracy: 0.500

4

Table 1: Evaluation metrics for various models

Model Paraphrase Acc. Sentiment Acc. STS Corr.
SimCSE-unsupervised 0.809 0.449 0.696
SimCSE-supervised 0.819 0.479 0.715
BERT-bi-encoder 0.771 0.467 0.524
BERT-cross-encoder 0.722 0.468 0.561
BERT-finetuned-single 0.884 0.528 0.869

finetuned SimCSE-su SimCSE-un bi-encoder cross-encoder
0

0.2

0.4

0.6

0.8

Model

A
cc

ur
ac

y

Paraphrase Acc. Sentiment Acc. STS Corr.

Figure 1: Accuracy comparison of different models on paraphrase, sentiment, and STS tasks.

• Paraphrase test Accuracy: 0.814

• STS test Correlation: 0.700

• Overall test score: 0.671

6 Analysis

6.1 SentEval

SentEval (Conneau and Kiela, 2018) is a widely used toolkit for evaluating the quality of sentence
embeddings. Similar to our implementation for the three given downstream tasks, SentEval applies a
regressor to sentence embeddings and provides a comprehensive set of tasks for evaluation, including
sentiment analysis, STS, and paraphrase detection.

6.2 Results from the SimCSE Paper for Comparison

Model MR CR SUBJ MPQA SST TREC MRPC

BERT-[CLS]embedding 78.68 84.85 94.21 88.23 84.13 91.40 71.13
SimCSE-BERTbase-unsupervised 81.18 86.46 94.45 88.88 85.50 89.80 74.43
SimCSE-BERTbase-supervised 82.69 89.25 94.81 89.59 87.31 88.40 73.51

Table 2: Performance comparison of models on SentEval tasks. The data was condesed from table
E.1 in Gao et al. (2021)

To get a feel for what to expect from our experiments we reduced table E.1 from the original SimCSE
paper (Gao et al., 2021) to models that are equivalent to ours. To produce the original table Gao et al.
(2021) trained regression classifiers for their sentence-embeddings, following the SentEval protocol,
which is similar to our downstream regression approach. The tests given in the table are all part of

5

the SentEval battery. BERT-[CLS]embedding is comparable to our BERT-bi-encoder model. MR,
CR, and SST are sentiment analysis tasks, while MRPC is a paraphrase detection task.

Your report should include qualitative evaluation. That is, try to understand your system (e.g. how it
works, when it succeeds and when it fails) by inspecting key characteristics or outputs of your model.

6.3 Sentiment Analysis

Table 2 shows the SentEval tasks MR, CR, and SST, which test sentiment evaluation. We can see that
the SimCSE models only marginally outperformed vanilla BERT on these tasks. In our experiments,
unsurprisingly, SimCSE supervised performed the best with an accuracy of 0.479, slightly better than
plain BERT at 0.467. However, SimCSE unsupervised performed the worst at 0.449. As mentioned
earlier, our implementation of the SimCSE algorithms did not have protection against overfitting like
the original implementation. Therefore, we suspect that our implementation to perform worse than
the original. If the margins are small, as in this case, minor defects can quickly become noticeable.
SimCSE was the best performer at 0.479. However, there is still a noticeable gap to the models
finetuned for a single task, scoring at 0.528.

6.4 Paraphrase Detection

On the paraphrase detection task we should expect SimCSE supervised to outperform all others.
Paraphrases can use synonyms and thus have little lexical overlap with their original sentences.
Supervised SimCSE is trained on triplets consisting of a premise, an entailment, and a hard negative.
The data is obtained from human-produced NLI datasets, which consist of a given sentence (premise),
a statement that is true given the premise (entailment), a statement that might be true given the
premise (neutral), and a statement that is false given the premise (contradiction). SimCSE uses the
NLI contradiction as the hard negative, giving it a chance to learn that two sentences with great
lexical overlap may not be the same. This could benefit paraphrase detection, as two sentences that
differ only in word order may have different meanings. If we had had more time, we would have
tested supervised SimCSE and plain minBERT on the HANS dataset to explore this further and to
investigate whether SimCSE introduces any unwanted heuristics. As expected, SimCSE supervised
performed best with a score of 0.819, surprisingly closely followed by SimCSE unsupervised at 0.809.
Interestingly the BERT cross-encoder performed worse at 0.722 than our vanilla BERT bi-encoder at
0.771, considering that a cross-encoder may apply attention across both input sentences. As described
in the STS discussion, we double checked our cross-encoder implementation. Paraphrase detection
is the category in which the gap between SimCSE supervised, with a score of 0.819, and finetuned
model’s score of 0.884 is the smallest. A contributing factor may be that the NLI data used to train
SimCSE is similar in nature to the paraphrase detection training data.

6.5 Semantic Textual Similarity (STS)

In theory, the cross-encoder should beat all other implementations, since it can leverage attention
across both input sentences(Reimers and Gurevych, 2019). Our single task cross-encoder, finetuned
on STS obtained a Pearson score of 0.869, which agrees with Reimers and Gurevych (2019) results.
If we do not finetune minBERT on the STS task, supervised SimCSE is a clear winner with a score of
0.715, followed by unsupervised SimCSE at 0.696, while the cross-encoder scores a mere 0.561. The
huge performance gap between 0.869 for the finetuned cross-encoder and 0.561 on the non-finetuned
cross-encoder model, makes us question if attention across two sentences is an important factor as
Reimers and Gurevych (2019) suspects.

6.6 Finetuning BERT on Downstream Tasks and Catastrophic Forgetting

We finetuned a single BERT-cross-encoder model on all tasks to investigate the possibility of
encountering catastrophic forgetting. In Table 3, we compare this model to the models that were
finetuned on a single task and to the non-finetuned BERT-cross-encoder. The paraphrase task had
by far the largest dataset and was trained last. Therefore, it is not surprising that the accuracy for
this task is the same as that of the single task models. The performance on the STS task is far below
that of the single task models but still close to that of the BERT-cross-encoder, which has a score of
0.561. The sentiment task, on the other hand, had a relatively small dataset and was trained first. Still

6

Model Paraphrase Acc. Sentiment Acc. STS Corr.
BERT-cross-encoder 0.722 0.468 0.561
Finetuned on single tasks 0.884 0.528 0.869
Finetuned on all tasks 0.884 0.135 0.404

Table 3: Finetuned on single vs. all tasks

the drop in performance to 0.135 is dramatic compared to the non-finetuned BERT-cross-encoder,
which performs at 0.468. Without proof we suspect that the performance loss was due to training the
paraphrase tasks. Based on this belief, it comes as a surprise that finetuning BERT on a small dataset
for the paraphrase tasks with 141,498 examples can have such a profound impact on BERT itself.

7 Conclusion

In conclusion, we successfully implemented our own BERT model and utilized SimCSE, a set of
contrastive algorithms to improve BERT’s sentence-embeddings to perform well on three downstream
tasks: sentiment analysis, paraphrase detection, and semantic textual similarity (STS). SimCSE
performed almost on par with fine-tuning BERT on a single downstream tasks. When fine-tuning
BERT on multiple downstream tasks we encountered significant catastrophic forgetting. It was
surprising to observe the considerable impact a small dataset of 100K examples had on BERT when
fine-tuning. Our experiments also raised interesting questions regarding the effectiveness of cross-
encoders on benchmarks, specifically whether their attention apllied to two input sentences at once
or their pretraining on NLI datasets led to their superior performance. Further research examining
SimCSE with HANS to identify any unwanted heuristics in its sentence-embeddings would also be
valuable.

References
2023. Cs 224n: Default final project: minbert and downstream tasks. https://web.stanford.
edu/class/cs224n/project/default-final-project-bert-handout.pdf. Accessed on
March 18, 2023.

Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che, Ting Liu, and Xiangzhan Yu. 2020a. Recall
and learn: Fine-tuning deep pretrained language models with less forgetting. arXiv preprint
arXiv:2004.12651.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020b. A simple framework
for contrastive learning of visual representations. In International conference on machine learning,
pages 1597–1607. PMLR.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. Simcse: Simple contrastive learning of sentence
embeddings. arXiv preprint arXiv:2104.08821.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

7

https://web.stanford.edu/class/cs224n/project/default-final-project-bert-handout.pdf
https://web.stanford.edu/class/cs224n/project/default-final-project-bert-handout.pdf

	Key Information to include
	Introduction
	Related Work
	Approach
	SimCSE
	SimCSE Algorithm Implementation
	Neural Network Implementation
	Baselines

	Experiments
	Data
	Evaluation method
	Experimental details
	Hardware
	Training of SimCSE Unsupervised
	Training of SimCSE Supervised
	Training of Downstream Models

	Results
	

	Analysis
	SentEval
	Results from the SimCSE Paper for Comparison
	Sentiment Analysis
	Paraphrase Detection
	Semantic Textual Similarity (STS)
	Finetuning BERT on Downstream Tasks and Catastrophic Forgetting

	Conclusion

