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Abstract

We perform sequential ablation studies over a number of approaches, including
additional pre-training, more expressive prediction headers, and gradient surgery to
improve a BERT architecture (minBERT) for three classification tasks: sentiment
analysis, paraphrase detection, and semantic textual similarity. Our best model’s
average performance across tasks improved significantly upon our baseline round-
robin training approach. We show that using MLM pre-training in conjunction with
NLI pre-training increases model performance as opposed to either pre-training
approach alone. We also demonstrate that for the STS task, optimizing the MSE
objective function with the cosine similarity score of our two sentences works
much better than optimizing MSE over just a linearly predicted logit.

1 Introduction
Many classic NLP tasks such as sentence classification and sentiment analysis rely on language model
pre-training [4]. One of the most successful models in this field is the Bidirectional Encoder Represen-
tations from Transformers (BERT) model introduced by Devlin et al. [4] which is a transformer-based,
pre-trained deep neural network that has been shown to achieve state-of-the-art results on numerous
NLP tasks. As BERT shows, pre-trained models can improve performance on a variety of NLP tasks
when fine-tuned; however, one challenge is ensuring that the model’s contextual embeddings are
generalizable across a diverse set of NLP tasks. Since BERT’s inception, many studies have sought to
further train BERT layers to improve performance [6, 9]. In this study, we explore different techniques
for fine-tuning minBERT, a simplified version of BERT, to simultaneously improve performance
upon the minBERT baseline[2] on three NLP tasks: sentiment analysis (SST), paraphrase detection
(Para), and semantic textual similarity (STS).

We explore three types of additions to our baseline minBERT model: (1) General Multi-Task
Training Variations. This includes training our model on each task sequentially versus performing
multi-task learning on the added losses from each task, taking various sampling approaches on
our different-sized training datasets, and using gradient surgery to try to balance conflicting and
different-magnitude gradient steps. With these, we aim to improve generalization across each of
our tasks. (2) Additional Pre-Training. Here, we explore training the underlying minBERT layers
on both the masked-language-modelling task (MLM) for our training dataset, and on the natural
language inference task (NLI) for the Stanford NLI dataset [10]. These approaches generally aim
to create more robust and generalizble minBERT sentence embeddings before we fine-tune for our
specific classification tasks. (3) Improving our Task-Specific Predictions. Here, we add additional
layers to our prediction headers, and modify our STS-specific prediction head and loss function to
incorporate the Cosine Similarity of our minBERT pooled outputs.
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2 Related Work
Sun et al. [9] presents a detailed framework for using pre-training and finetuning techniques to
improve BERT’s performance on a target task. Significantly, they found that pretraining on in-domain
and within-task training data, is highly effective for improving accuracy on the downstream target
classification task since it shifts BERT’s contextual embeddings closer to the distribution of their
ultimate application texts [9]. This motivates our approach of doing MLM pre-training on the STS,
Para, and SST data sets.

Liu et al. [6] propose a multi-task BERT (MT-BERT) model that jointly trains multiple tasks using
shared BERT parameters. They show that MT-BERT outperforms single-task BERT models on
several NLP tasks [6], and that multi-task enables more efficient learning by sharing structure across
multiple tasks; thus we choose to implement multitask learning for our three objectives following the
algorithm outlined in Liu et al. [6]. However, limitations have been identified; multi-task learning
presents a number of optimization challenges and makes it difficult to make large efficiency gains
compared to learning tasks independently. Based on the success of [11] in implementing gradient
surgery for Multi-Task Learning, we also experiment with projecting conflicting gradients (PCGrad)
which works as such: if two gradients are conflicting, PCGrad alters the gradients by projecting each
onto the normal plane of the other, preventing the interfering components to be seen by the network
[11].

Finally, Reimers et a. [7] presents Sentence-BERT, which specifically seeks to improve the quality
of sentence embeddings for the STS task. The authors found that using an MSE objective function
on the cosine similarity of sentence embeddings ouputted by BERT as well as finetuning BERT on
the NLI task significantly improves upon state-of-the-art sentence embedding models [7]. Thus, we
decide to adopt both these approaches in our experimentation.

More generally, by implementing a variety of existing approaches in the literature for improving
minBERT’s performance within one architecture, we aim to demonstrate how these approaches
complement each other.

3 Approach
3.1 Baseline

For our baseline, we build minBERT, a minimal version of the BERT model (Bidirectional Encoder
Representations from Transformers) [4] described in the project handout [2]. We first train the
model solely on sentiment classification with the SST and IMDB datasets (see Experiments), as
instructed. We then add modifications that allow our baseline minBERT to perform well across our
three classification tasks.

3.2 Main Approach: Basic Model Architecture

As a general overview of our proposed model architecture, we choose to share the same minBERT
underlying layers among our three tasks, and add task-specific linear layer(s) for predictions. When
training, we train both our prediction headers and our underlying minBERT layers, which improves
our model’s expressiveness but requires more careful consideration of conflicting losses which we
consider in our extensions. For the SST task header, we add a linear layer Wsst ∈ RpooledX5 that takes
in the pooled output of a sentence from minBERT, and outputs a logit vector with the dimensionality
of our 5 sentiment classes. We use cross-entropy loss over these predicted logits for each class (0 to
4). For the Paraphrase task header, we take the BERT pooled output of each of the two sentences,
apply a dropout to each, concatenate them, and then use a linear layer Wpara ∈ R2∗pooledX1 on
the concatenation to get a single logit. We use binary cross entropy loss over the final logit (with
respect to our binary classes of paraphrase or non-paraphrase). For the STS task, we apply the
same model architecture as with paraphrase to the BERT pooled output, but with its own linear
layer Wsts ∈ R2∗pooledX1. Since our dataset includes non-integer similarity scores from 0 to 5
up to the first decimal place, i.e. 4.2, we choose to treat our prediction header as completing a
regression task, and used MSE loss when training on STS. Note that for cross entropy loss, we
optimize −

∑M
c=1 yo,c log(po,c) and for MSE lose we optimize

∑D
i=1(xi − yi)

2. Using this general
architecture of prediction headers, we explore a number of architectures and training procedures,
which we outline below.
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3.3 Round-Robin vs. Multi-Task Training (General Multi-Task Training Variations)

We first explore the performance of training on each task separately within an epoch ("round-robin"
training), versus examining each of our tasks together in a batch and back-propagating the sum of
their losses. Specifically, for our round-robin fine-tuning model, which we will consider our general
baseline, we take the following approach within each epoch: Sequentially iterate through each dataset
individually, and for each dataset, fine-tune on all batches of the dataset using the task-specific loss.
The order we iterate through the datasets was: SST, Para, and STS. In contrast, for our multi-task
learning approach, we first cycle the training examples of the shorter datasets, SST and STS, so
that they were the same length as the longest dataset (Para). Then, within each epoch, we take
mini-batches of examples from each dataset, compute the respective losses for each task, add the
losses, and backpropagate the across-task loss sum for that mini-batch. Note that we initially choose
to cycle the shorter datasets so that each mini-batch optimization step contains examples for each
task, although we explore this decision later. As described before, the objective loss function we
optimize for multitask learning is: L = LSTS + LPara + LSST

3.4 Adding Layers to our Prediction Headers (Task-Specific Predictions)

Taking the better-performing training procedure between Round-Robin and Multi-Task Training, we
next explore how adding layers to our prediction headers can improve our task-specific performance
through increased expressiveness. Specifically, we experiment with increasing from 1 to 2 or
3 linear-layers for the task-specific heads (i.e. converting from Wsst ∈ Rpooled×1 to Wsst1 ∈
Rpooled×pooled, RELU,Wsst2 ∈ Rpooled×1). Note that we add non-linearity by applying ReLU
before our second layers, and added an additional dropout between layers 2 and 3.

3.5 Sub-Sampling Our Data (General Training-Iteration Approach)

After taking the better-performing architecture from 3.4, we explore the benefits of sub-setting our
data. In the prior approaches, for each epoch, we use upsampling where we cycle our smaller
datasets (SST and STS) so that they were the same length as our largest dataset (Paraphrase); thus,
in each epoch our model trains over all of the paraphrase dataset once, all of the SST dataset 17
times, and all of the STS dataset 14 times. However, we wonder whether up-sampling may lead to
over-fitting our training datasets for SST and STS, and whether we can get comparable results with a
subsampling approach that would also require less training time. Thus, we explore two alternatives:
down-sampling and intermediate sampling.

In down-sampling, during each epoch, we take an entirely random subset of Paraphrase and STS
so that they have the same number of examples as our smallest dataset, SST. We then apply our
Multi-Task Learning approach from 3.4 over the SST dataset, the STS subset, and the Paraphrase
subset. We train this model for 10 epochs, as compared to 5 epochs with the up-sampling model.
In intermediate sampling, which balances our up and down-sampling approach, we instead take a
random sample with 28,300 training examples (1/5 of the paraphrase training data size). We then
cycle the SST and STS examples up until this length, and perform batched multi-task training. We
choose to sample 1/5 of the Quora training dataset for our intermediate experiment, so that we can
1) run for 15 epochs and still take roughly the same training time, and train on the same frequency
of each dataset in expectation, as only 3 epochs of up-sampling, while still 2) training for enough
iterations on each dataset to compare models meaningfully.

3.6 MLM Pre-Training (Additional Pre-Training)

Next, we explore adding additional MLM pre-training, prior to fine-tuning our model on our classifi-
cation tasks. Specifically, following the MLM pre-training algorithm described in Devlin et al. [4],
we concatenate all of the SST, Para, and STS training data and code our own masked training dataset
for the MLM task in which certain tokens are masked according to the fixed probabilities outlined in
Devlin et al. [4]. When creating labels for the masked data we put the actual token as the label for
masked data and -100 for any tokens that were not masked. We only predict tokens that are masked
and ignore non-masked tokens.
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3.7 Cosine-Similarity Scores in our STS Header (Task-Specific Predictions)

Because STS is one of our harder prediction tasks, we next explore modifying our prediction header
and loss function for STS. Since we ultimately want to predict the similarity between two sentences,
we explore whether using the cosine similarity score of their minBERT embeddings, rather than a
simple linear transformation, can allow our model to learn better sentence embeddings that capture
textual similarity. Specifically, we compare:

1. MSE Loss: Our previous STS header, which concatenates the pooled, dropped-out minBERT
outputs for each sentence, and applies a two-stage linear prediction head to get a single logit

2. Cosine MSE Loss: Compute the cosine similarity (Equation 1, Appendix A) between each
minBERT pooled, dropped-out outputs (a value between -1 and 1), apply a ReLU (to require
a value between 0 and 1), and then multiply by 5 to get a single logit prediction between 0
and 5

3. Linear + Cosine MSE Loss: Apply a single linear layer to the first sentence’s minBERT
pooled and dropped-out output, and a separate linear layer to the second sentence’s min-
BERT pooled and drop-out output, and then compute the cosine-similarity, ReLU, and *5
transformation as described above to get a single logit prediction

Note that for each model, we train using MSE loss between our logit and the ground-truth similarity
score. We add option 3) to see whether our predictions improve through the addition of a more
expressive, linear transformation to our embeddings before applying cosine similarity.

3.8 Natural Language Inference Pre-Training (Additional Pre-Training

Next, we perform pre-training on the Stanford NLI dataset. The NLI task is to determine the inference-
relationship of two input texts: specifically, whether there’s entailment, contradiction, or neutrality
[10]. We hypothesized that training our underlying minBERT layers on NLI, prior to our specific
classification tasks, could be beneficial since it requires learning notions of semantic similarity that
are used in the paraphrasing and STS tasks we are evaluating on. Our approach to NLI pre-training is
as follows: we run a forward pass through minBERT on each of the two sentences to get their pooled
output, apply a dropout to each, concatenate the outputs, and then apply a linear layer (W ∈ Rpooled,3

over the concatenation with an outputted logit for each of our three NLI classes. We then train our
model using cross-entropy loss between our logits and the true labels. We train for two epochs on the
SNLI dataset, prior to fine-tuning any of our three classification tasks. For the first epoch, we freeze
the underlying minBERT layers and only train the header - this is to limit an initial large shift in our
underlying minBERT layers from our pre-training phase. During the second epoch, we unfreeze the
underlying minBERT layers and train those layers and the header. We compare this NLI pre-training
approach in combination with and separately from MLM pre-training to assess the extent to which it
is beneficial to shift our underlying minBERT layers prior to fine-tuning. We also explore training
on a subset of the SNLI data (65500 samples) versus the whole SNLI data set (550152 samples), to
determine the optimal data set size for in domain pre training.

3.9 Gradient Surgery (General Training-Iteration Approach)

We lastly explore applying Gradient Surgery to each of our task-specific losses within a mini-batch,
rather than simply summing them. We use the PC Grad implementation and Python package outlined
in Yu et al. [11], to see how it may help reconcile conflicting and different-magnitude gradients.

4 Experiments
4.1 Data

We use six datasets: the Stanford Sentiment Treebank (SST) dataset [8] the CFIBDM dataset [2], the
Quora dataset [5], the SemEval STS Benchmark Dataset [3], the SICK 2014 Data set [1] (contains
sentence pairs for STS task) and the Stanford NLI (SNLI) dataset [10]. We concatenate 4501 sentence
pairs from the SICK 2014 train data to the STS train dataset, increasing the length of the STS training
set to 10541 samples.
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Table 1: Dataset Information and Characteristics

Task Dataset Labels Size
Sentiment Analysis SST 0-4 215,154 unique phrases
Paraphrase Detection Quora 0-1 400,000 question pairs\
Semantic Textual Similarity SemEval STS 0.0-5.0 8,628 sentence pairs
Semantic Textual Similarity SICK 14 0.0-5.0 4501 sentence pairs
Natural Language Inference SNLI 0-2 570,00 sentence pair

4.2 Evaluation method

We evaluate our SST and Quora datasets using accuracy (the number of correct sentiment classifications / total
number of predictions) as our score metric. For STS, we round our outputs to discretized labels like the true
dataset, and use Pearson correlation as our evaluation score, where the x’s are predictions and y’s are the true
labels (Equation 2, Appendix A)).

4.3 Experimental details

We first run our baseline minBert and our Round Robin training approach as a baseline, described in approaches.
Then, we outline the configurations of all our multitask models in the table below. As described in approaches,
we adopt a greedy approach for selecting our extensions; thus, we bold our best model for each experiment, and
use that as the control in the next experiment we run. We ran all of our models with a learning rate of 1e-5 until
convergence was observed (usually 5-7 epochs, but 10-15 for down and intermediate sampling). On average
it took about 4-6 hours to train each model. We implemented all of our models and extensions in PyTorch,
extending upon the code provided in the Default Project. We present our model configurations in Table 2.

Table 2: Model Configurations. The best model from each experiment is bolded

Experiment Configuration
Number of Layers

Multitask + 1 Layer
MultiTask + 2 Layers (2-L)

Multitask + 3 Layers
MLM Pretrain

2-L + 3 epochs pretrain
2-L + 5 epochs pretrain (2-L + 5-PT)

2-L + 10 epochs pretrain
Sampling

2-L + 5-PT down sampling
2-L + 5-PT + intermediate sampling

2-L + 5-PT + up sampling (US): same as previous experiment
Loss function

2-L + 5-PT + US + Cosine MSE Loss (CMSE)
2-L + 5-PT + US + Cosine MSE Loss with Linear Layers

NLI Pretrain
2-L + 5-PT + US + Cosine MSE Loss (CMSE) + All NLI data
2-L + 5-PT + US + Cosine MSE Loss (CMSE) + Subset NLI data

2-L + US + Cosine MSE Loss (CMSE) + All NLI data
PC Grad

2-L + 5-PT + US + Cosine MSE Loss (CMSE) + All NLI data + PC Grad
2-L + 5-PT + US + Cosine MSE Loss (CMSE) + PC Grad

4.4 Results

First, in Table 3, we present our baseline results when we tested minBERT and our single linear classification
header on the SST and CFIDM sentiment classification datasets. We see that for both models, the finetune dev
accuracy (where both the underlying BERT layers and header are trained) is much higher than the pretrain dev
accuracy (where just the header is trained); this is likely because with finetune, we are able to fit more parameters
for the task. We also note that the CFIDMB dev accuracy is much higher than SST; this may just be because the
CFIMDB data set is an easier classification task (only binary labels) while the SST task has five labels.
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Table 3: MinBERT Model from Default Project Part 1

Task Pretrain Dev Accuracy Finetune Dev Accuracy
SST 0.409 0.525
CFIMDB 0.788 0.967

Next, we present the combined results for all of our models across our extensions on the dev set in Table 4. We
see that multitask learning outperforms Round Robin training, as our Multitask 1-layer prediction model offers a
0.036 increase in average dev score over the Round Robin baseline. Notably, our best model (starred) uses our
2-linear-layer prediction heads for SST and Para, up-sampling, MLM-Pretraining for 5 epochs, Cosine MSE
Loss for STS, and trains on the full NLI dataset. Collectively, this approach improves our average dev score by
0.15 over our baseline Round Robin model. We present the test scores for our best model Table 5 We also note
that for the best model, the average test score of 0.672 is slightly lower than our average dev score of 0.682; this
is not surprising, since during our model selection process we choose the model that performed best on the dev
set, which likely caused some slight overfiting to our dev set. We analyze the results in each of our experiments
in more detail in the Analysis section.

5 Analysis
As outlined in our approaches, we follow a greedy approach in which we begin with a multi-task baseline, and
for each experiment, iteratively choose the best model before trying the next approach. This allows us to consider
the effect of an extension as an ablation. First, note that we found that applying Multi-task Learning over our
Round Robin baseline offered a 0.026 increase in our Para score, a 0.023 % increase in our SST score, and a
0.06 % increase in our SST score. The across-the-board increase in performance on each task suggests that
multi-task learning is able to better generalize over our tasks, so we use it in all ablations discussed below.

5.1 Ablation 1: Changing Number of Layers in Task Prediction Heads

In Table 4, we see that across all prediction tasks, our two-layer prediction head architecture performs the best,
with a 0.027 increase in average dev score over the one layer architecture. This suggests that the increased
expressiveness of the 2-layer architecture seems to help the model to perform well on each specific classification
task. However, with the 3-layer architecture, we see a higher average dev score than our 1-layer model but a
lower score than 2-layers. Thus, perhaps the 3-layer architecture overfit to our training data or was too complex
(i.e., contained too many transformations) for our prediction tasks — at least for our current limitations on
learning rate and training epochs. Thus, for Ablations 2-6, all models use the 2-layer architecture.

5.2 Ablation 2: Changing Data Sampling Approach

As presented in Table 4, our original up-sampling approach performs the best, exceeding intermediate sam-
pling’s average score by 0.012 %. Downsampling performs considerably worse than both upsampling and
intermediate sampling both in terms of average dev score and on each task, which initially was surprising since
we hypothesized that reducing representation of the majority dataset and the number of cycles for our smaller
datasets would help with generalization. Instead, it seems that repeating the minority class several times, and
maintaining all the data from the majority data set, helped the model more for our chosen number of epochs
(5 for upsampling, 10-15 for downsampling and intermediate sampling). However, as one limitation of this
ablation, we expect that running downsampling or intermediate sampling for even more epochs would have
helped even out performance, as each training example could then be seen in expectation the same number of
times as up-sampling. For example, note that in down-sampling for 10 epochs, not every paraphrase training
example will necessarily even be trained on by our model, which reduces our performance. However, given
the lack of immediate improvement in generalization, we move forward with up-sampling for our models in
Ablations 3-6, and note the need for higher epochs of down-sampling or immediate sampling as a limitation.

5.3 Ablation 3: Within Task Pretraining with MLM

Overall, we found that MLM pre-training for 5 epochs proved to offer the most improvement (0.07 % increase in
average dev score from 0.585 to 0.592) over our best model from Ablation 2 (Table 4). We see that the training
and dev scores for STS and SST also increase significantly with the addition of MLM pretraining, with only a
minimal decrease in Para dev score. Thus, within-task MLM pre-training for 5 epochs seemed to be successful
at improving the quality of our underlying minBERT layers to the specific data distributions for our datasets.
However, it’s notable that pre-training for 3 epochs and 10 epochs actually decreased the average dev score
compared to our no pre-training model. We theorize that with 10 epochs, we may start to over-fit our underlying
minBERT layers on the pre-training task, while pre-training for 3 epochs was likely not enough to make sufficient
changes to the BERT embeddings, and perhaps only hurt by slightly deviating from the 224N-provided weights.
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Table 4: Model Results on Dev Data Set Across All Extensions Compared to Round Robin Baseline

Round Robin Baseline
Para Dev SST Dev STS Dev Average

0.76 0.479 0.326 0.522
Ablation 1: Number of Layers in Prediction Head

Para Dev SST Dev STS Dev Average

1 (initial Multi-Task Learning Model) 0.786 0.502 0.386 0.558
2 0.811 0.5 0.443 0.585
3 0.804 0.49 0.409 0.568

Ablation 2: Sampling Approaches
Para Dev SST Dev STS Dev Average

Down 0.751 0.493 0.35 0.531
Intermediate 0.792 0.504 0.425 0.573
Up 0.811 0.5 0.443 0.585

Ablation 3: MLM Pretrain Epochs
Para Dev SST Dev STS Dev Average

3 0.814 0.508 0.419 0.58
5 0.802 0.517 0.457 0.592
10 0.813 0.491 0.419 0.574

Ablation 4: STS Loss Function
Para Dev SST Dev STS Dev Average

MSE 0.802 0.517 0.457 0.592
Cos MSE 0.821 0.508 0.669 0.666
Linear+ Cos MSE 0.807 0.506 0.515 0.609

Ablation 5: NLI Pre-training
Para Dev SST Dev STS Dev Average

*PT-5 + NLI 0.836 0.51 0.7 0.682
NLI 0.804 0.51 0.653 0.655
PT-5 + NLI Subset 0.836 0.509 0.67 0.661

Ablation 6: PC Grad
Para Dev SST Dev STS Dev Average

2-L + PT-5 + Cos MSE + PC Grad 0.837 0.482 0.67 0.672
2-L + PT-5 + Cos MSE + NLI + PC Grad 0.826 0.488 0.691 0.669

Table 5: Best Model Evaluated on Test Set

Model Para STS SST Average
2L + US + 5-PT + CMSE + NLI 0.524 0.831 0.661 0.672
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5.4 Ablation 4: Changing Loss Function for STS Prediction Task

We found that Cosine MSE Loss offered an impressive 0.212 % increase in the STS dev pearson correlation over
the standard linear MSE loss we used in Ablation 3 (Table 4). This shows that the Cosine MSE Loss is indeed
extremely effective in helping the model identify similar sentences, by helping drive more similar sentence
embeddings closer to one another in the vector space. We found, however, that the Linear + Cosine MSE Loss
was not as effective in improving the STS dev score (0.15 point increase in dev score). The linear layer actually
allowed for increased performance on the training set due to higher expressivity, but the added transformation
seemed to sacrifice some of the benefit of directly pushing our similar sentence embeddings closer together.
Lastly, we note that implementing Cosine MSE loss for STS actually improved our paraphrase-task development
accuracy too (from 0.802 to 0.821), while inducing a slight decrease in SST accuracy. It seems possible that
since detecting similarity is relevant for both paraphrase and STS, that training our embeddings to increase
cosine similarity among similar sentences for the STS task provides an added benefit to detecting paraphrases.
Meanwhile, these similarity-trained embeddings may have shifted our underlying layers further from the ideal
for the largely separate domain of sentiment analysis. Generally, our net increase in the average dev score is very
significant (0.074 %), largely due to the increase in pearson correlation for our STS task, so we use it for the
models in Ablations 5-6.

5.5 Ablation 5: Cross Domain Pre-Training with NLI

We first compare the impact of MLM pre-training in combination with 1) pre-training on a subset of NLI and 2)
pre-training on all NLI data. We see that pre-training on a subset of NLI data (dev score of 0.661) performs
worse than on all the NLI data (dev score of 0.682)(Table 4). This suggests that for the model to sufficiently learn
notions of semantics that apply to the STS/SST/Para tasks, training on more NLI data is needed. Additionally,
the combined MLM and full-NLI pre-training results in a 0.016 % increase in the average dev score from our
best model in Ablation 4, and indeed, is our best model overall. Specifically, we note that MLM + NLI offers
a 0.15% increase in the Paraphrase dev accuracy, and a 0.03 % increase in the STS dev score, supporting our
hypothesis that NLI helps the model learn notions of semantic similarity that are particularly applicable to
Para/STS. Finally, we see that pre-training with MLM + NLI (average dev = 0.682) and pre-training with just
MLM (average dev = 0.666) both outperform just pretraining with NLI (average dev = 0.655), highlighting
that within-task pre-training alone seems to be more effective than pre-training on a separate task alone — but,
cross-domain pre-training and within-task pre-training together performs better than either alone.
Error Analysis on Ablation 5: Following the success of NLI+MLM over just MLM, we examined what types
of inputs on which NLI seemed to aid performance, specifically on the most-improved paraphrase task. We
noticed that additional NLI training seemed to improve performance on sentences that were essentially identical,
but with a swapped-out word or two. Consider the following example from the Quora dataset:
SENTENCE 1: What are the legal separation laws in PA and how do they compare with the ones in Washington?
SENTENCE 2: What are the legal separation laws in PA and how do they compare with the ones in Oregon?
The true label is that the sentences are not paraphrases, which our NLI+MLM-pre-trained model correctly
predicts, but just MLM-pre-trained doesn’t. Along with similar cases, it seems that our additional NLI-pre-
trained approach does a better job at detecting the relevance of swapped-out-words, perhaps by virtue of seeing
words like Washington and Oregon more in the SNLI training dataset (which we confirmed), and in theory
learning explicitly to detect entailment or contradiction among other-wise similar sentences in the SNLI dataset.

5.6 Ablation 6: Applying Gradient Surgery (PC Grad) Optimization

Here, we compare our best models from Ablation 4 (MLM) and Ablation 5 (MLM + NLI), and analyze the
impact of adding gradient surgery with PCGrad. Notably, we see that for the best model from Ablation 4, PC
Grad increases the average dev score by 0.012 % and the dev score for Para by 0.016 % but decreases the dev
score for SST by 0.026 % (Table 4). For the MLM + NLI model, PC Grad actually decreases the average dev
score by 0.022 % and causes a decrease in all the per-task scores. It is not immediately intuitive why PC Grad
would improve our MLM baseline but not MLM+NLI, beyond perhaps if NLI moved our embeddings to a
more generalized starting-point where gradient-surgery is less useful for reducing conflicting gradients. We did
note that PCGrad caused convergence much sooner for the model it improved (i.e., its best performance on the
development set was Epoch 2), so it could be that reducing conflicting and different-magnitude gradients with
gradient surgery reaches convergence faster, even if it doesn’t necessarily improve our maximum performance.

6 Conclusion
Overall, we were able to successfully improve upon our baseline minBERT implementation to improve clas-
sification on the sentiment analysis, paraphrase detection, and semantic textual similarity scoring. Our best
model achieved an average test score of 0.672 (Table 5) and average dev score of 0.682, which is an increase
of 0.16 in the average dev score from the baseline round-robin model. As an overview, we demonstrate that a
two-layer architecture for the prediction heads is optimal, up-sampling outperforms downsampling and interme-
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diate sampling with our chosen number of epochs, and MLM pretraining in conjunction with NLI pre-training
performs better than solely pre-training on either technique alone. Lastly, we demonstrate that optimizing the
MSE objective function with the cosine similarity score of our two sentences works much better than optimizing
MSE over solely a linear prediction logit, for the STS prediction task.

While we were able to significantly improve on the baseline, we highlight a few limitations. For both of the
MLM and NLI pretraining approaches, we used the default learning rate of 1e− 5; however, papers such as Sun
et al. [9] and [6] have shown that varying the learning rate for pre-training tasks from the learning rate for the
prediction tasks can often be optimal and limit over-fitting those tasks. Due to time constraints, we were also
not able to perform the same in-depth ablations we did with the prediction header and loss for STS, with the
paraphrase and SST tasks; future work could explore adding other loss functions, such as Multiple Negatives
Ranking Loss and Contrastive Loss for the paraphrase task.
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A Appendix
Equation for Cosine Similarity between sentence embedding A and sentence embedding B

cos(θ) =
A ·B

∥A∥2 ∥B∥2
(1)

Equation for Pearson Correlation Coefficient

r =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(2)
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