
Multitasking with minBERT
Stanford CS224N {Default} Project

Jung-Suk Lee
Department of Computer Science

Stanford University
robin09@stanford.edu

Abstract

In this project, a variant of BERT, referred to as minBERT, is developed for multiple
tasks of natural language processing (NLP) . The developed minBERT can be
trained for both single-task and multi-task learning. Three NLP tasks of sentiment
classification, paraphrase detection and semantic textual similarity prediction are
targeted with minBERT. We found that the minBERT in the setting of the multi-task
learning that is trained in the finetune mode outperforms the minBERTs trained
in the single-task setup for two out of the three downstream tasks. The minBERT
achieved scores of 0.542 accuracy for sentiment classification, 0.827 accuracy for
paraphrase detection and 0.864 Pearson correlation for similarity prediction.

1 Key Information to include
• Mentor: CAs of cs224n

2 Introduction

Bidirectional Encoder Representations from Transformers (BERT) is a framework that generates
contextual embeddings of its input. Originally it was devised for natural language processing (NLP)
applications but it did not take long for BERT to start influencing other domains due to its powerful
pretrain-finetune concept. In this project, our goal is mainly to experience how well the concept of
pretrain-finetune works for NLP tasks by implementing a variant of BERT, referred to as minBERT,
and experience the procedure of pretrain-finetune for NLP downstream tasks. To this end, we first
implemented minBERT and trained it for the sentiment classification task (SST) and witnessed that a
pre-trained BERT for masked language modeling can be tweaked to perform (well) on a different
downstream task once trained further, even with a smaller dataset, in the finetune mode. In addition,
we extended our minBERT for two more downstream tasks: paraphrase detection (PARA) and
semantic textual similarity prediction (STS) . We designed individual layers that are placed on top of
minBERT for each extra downstream task and conducted training in the pretrain and finetune modes.
We further extended minBERT to enable multi-task training with which different datasets for different
downstream tasks can be used for training minBERT together, by feeding batches to minBERT from
each different dataset in a round-robin manner. We observed that minBERT trained in the multi-task
setup performs as good as, or better than when trained in the single-task mode for each task.

3 Related Work

In Devlin et al. (2018), BERT is proposed as a transformer Vaswani et al. (2017) based encoder
that can generate ‘contextual‘ representations of tokens given a pair of sentences as input. BERT
advertised the potential of pretrain-finetune procedure by applying BERT model pretrained on
the masks language model and the next sentence prediction tasks to other various NLP tasks with
finetuning. Due its nature, it is natural to consider multi-task learning scheme leveraging BERT. In Liu
et al. (2019) a BERT model pretrained as a language model is used as part of the multi-task learning

Stanford CS224N Natural Language Processing with Deep Learning

for various NLP tasks. The pretrained BERT model is shared by additional task-specific layers
for different NLP tasks and jointly finetuned with task-specific datasets. The proposed multi-task
learning scheme was able to obtain state-of-the-art results on ten NLP tasks.

4 Approach

4.1 Baseline minBERT

As the baseline model, minBERT is implemented following the guideline in cs224nStaffs and the
code template provided therein, which is originally designed to conduct SST task when finetuned
with relevant datasets. The input to the baseline minBERT is a set of tokenized sentences. The token
embedding and the position embedding of each input token are summed and fed to the encoder part
of the model. BERT model parameters pretrained for the mask language model are provided with the
code template. The output of the baseline minBERT is a set of contextual embedding whose element
has the dimension of M ×K where M is the number of input tokens and K is the size of a single
contextual embedding.

Figure 1: Baseline BERT model

4.2 Layer for sentiment classification task

For the sentiment classification task, a single sentence is passed to minBERT as input and the
contextual embedding of CLS (pooler output) goes through a dropout layer and a linear layer to
generate the output of dimension (N × C) where N is the batch size and C is the number of classes
(labels) that the groundtruth data spans over. The cross-entropy is used for training as the loss function.

Figure 2: Layer for sentiment classification task

2

4.3 Layer for paraphrase detection task

For the paraphrase detection task, a pair of sentences are passed to minBERT as input. The mean of
contextual embeddings is first taken separately for each sentence and the concatenation of the two
means gives the intermediate variable of dimension (N × 2K). After the dropout layer, the linear
layer and the Sigmoid function, output of dimension (N × 1) is generated. The binary cross-entropy
is used as the loss function for which the output of this task-specific layer and a binary groundtruth
label are taken as input.

Figure 3: Layer for paraphrase detection task

4.4 Layer for semantic text similarity prediction task

For the semantic text similarity prediction task, a pair of sentences are passed to minBERT as input.
The contextual embeddings of CLS from each sentence are concatenated together and passed to the
dropout layer, the linear layer and the Relu function sequentially. The final output of this taks-sepcific
layer is of dimension (N ×1). The mean square error (MSE) between the output and the groundtruth
label is then computed as the loss for training Liu et al. (2019).

Figure 4: Layer for semantic text similarity prediction task

4.5 Multi-task training scheme

In order to facilitate multi-task learning with minBERT for three downstream tasks of SST, PARA
and STS, a multi-task training scheme that can jointly take task-specific datasets is devised and
implemented following Liu et al. (2019). The DSST , Dpara, DSTS , the data sets for STS, PARA and

3

STS tasks, respectively, are merged as one unified dataset D as following:

D = [bSST (1), bpara(1), · · · bpara(R1), bSTS(1), · · · , bSTS(R2),

bSST (2), bpara(R1 + 1), · · · , bpara(2R1), bSTS(R2 + 1), · · · , bSTS(2R2)

· · ·
bSST (BSST), bpara(BSSTR1 −R1 + 1), · · · , bpara(BSSTR1), bSTS(BSSTR2 −R2 + 1), · · · , bSTS(BSSTR2)]

(1)

where bSST , bpara, bSTS denote single batches from each data set, respectively. BSST , Bpara, BSTS

are the numbers of mini batches for each task, respectively. R1 = floor(
Bpara

BSST
), R2 =

floor(BSTS

BSST
)1 are the ratios of Bpara, BSTS relative to BSST with the assumption that BSST

is the smallest number among others. The way that the batches from each dataset are defined and
distributed in D to address the discrepancy of minibatch numbers is proposed by us based on Liu
et al. (2019). In training, all of the minibatches in D are swept for each epoch. At each iteration
on minibatches, the loss function associated with the minibatch type is computed and the model
parameters are updated through backpropagation. Disproportionate weightings that are inverse of
R1, R2 are applied to loss functions to mitigate the bias arising from discrepancy in the number of
minibatches. This way, different task-specific datasets can be jointly used for the multi-task training.

5 Experiments

5.1 Data

Details about the datasets for each downstream task conducted for the project can be found in Table
(1).

Name Task size(train/dev/test) type of groundtruth
Stanford Sentiment Treebank Dataset SST 8544/1101/2210 Discrete 5 points

CFIMDB Dataset SST 1701/245/488 Binary
Quora Dataset PARA 141506/20215/40431 Binary

SemEval STS Benchmark Dataset STS 6041/864/1726 Discrete 6 points
Table 1: Datasets for downstream tasks

5.2 Evaluation method

For SST task and PARA task, Accuracy is computed as the metric to evaluate the performance of
the model. Accuracy is defined as

Accuracy =

∑Ntotal

n 1(ŷ(n) = ytrue(n))

Ntotal
(2)

where ŷ and ytrue denote the model prediction and the corresponding groundtruth label of the nth

sample. Ntotal is the total number of samples in the dataset. For STS task, the Pearson correlation
(will also be referred to as the similarity score henceforth) between the total model predictions and
the groundtruth labels is used as the metric for evaluation.

5.3 Experimental details

We have ran experiments in the single-task as well as the multi-task setup both in pretrain and finetune
modes for all three downstream tasks. Hyperparameters used for each training case can be found in
Table (2). For all training cases, AdamW optimizer was employed to update the model parameters.
All of the cases in Table (2) were run with 10 epochs.

1Due to the floor operation, certain amount of data are undesirably discarded. If the ratios are small or the
size of the datasets are not large enough, then this scheme could be problematic.

4

Task Dataset Training scheme Training mode Learning rate Batch size
SST CFIMDB single-task Pretrain 1e-3 8
SST Sentiment Treebank single-task Pretrain 1e-3 64

PARA Quora single-task Pretrain 1e-3 16
STS SemEval single-task Pretrain 1e-3 16
SST CFIMDB single-task Pretrain 1e-5 8
SST Sentiment Treebank single-task Finetune 1e-5 64

PARA Quora single-task Finetune 1e-5 16
STS SemEval single-task Finetune 1e-5 16
SST Sentiment Treebank multi-task Pretrain 1e-3 64

PARA Quora multi-task Pretrain 1e-3 16
STS SemEval multi-task Pretrain 1e-3 16
SST Sentiment Treebank multi-task Finetune 1e-5 64

PARA Quora multi-task Finetune 1e-5 16
STS SemEval multi-task Finetune 1e-5 16

Table 2: Hyperparameters for training

5.4 Results

Metric scores of each training case can be found in Table (3). It is shown that training in the finetune
mode yields better scores then the pretrain mode for all tasks, for all training schemes. This is
somewhat expected as it has been shown by many research works that BERT-based finetuning results
in better performance in many NLP tasks by thoroughly leveraging pretrained BERT core . It is
also shown from the experiment results that the multi-task training generates scores as good as, or
higher then the single-task training, as opposed to the expectation that the results from the signal-task
training would be as good as, or higher than the multi-task training.

Task Dataset Training scheme Metric Score (pretrain/finetune)
SST CFIMDB single-task 0.722 / 0.959
SST Sentiment Treebank single-task 0.382 / 0.53

PARA Quora single-task 0.761 / 0.885
STS SemEval single-task 0.615 / 0.852
SST Sentiment Treebank multi-task 0.256 / 0.542

PARA Quora multi-task 0.760 / 0.827
STS SemEval multi-task 0.001 / 0.864

Table 3: Scores of each training case. Scores in boldface are the best scores for each dataset.

6 Analysis

Overall, it was possible to observe that finetuning improves the performances of all downstream tasks,
regardless of training scheme. It is encouraging to see that the performance of the multi-task setup is
as good as, or better than the performance of the single-task setup in the finetune mode. However in
the pretrain mode, this was not necessarily the case. The scores obtained from the single-task setup
are higher then those from the multi-task setup. It would mean that conducting training only on the
tasks-specific layers is not good for the multi-task setup. Once parameter update is allowed for the
BERT layers as well as the task-specific layers in the finetune mode, the benefit of multi-task setup
starts appearing. We also noticed that in the multi-task setup, STS prediction results in scores that are
quite off from those from the single-task setup when trained in the pretrain mode. The best similarity
score we had obtained was 0.001 out of 10 epochs while for some epochs the similarity scores were
negative values and for some epochs the scores were NaN (Not a Number). Especially in the case
of NaN score values, we noticed that the predicted values from the model were all zeros, causing
division-by-zero when computing the Pearson correlation. However when in the finetune mode, these
undesirable STS scores were not observed in all epochs.

5

7 Conclusion

We have implemented minBERT and extended it to conduct multiple NLP downstream tasks. A
multi-task training scheme is also proposed and implemented, with which different task-specific
datasets can be jointly trained. Our model can carry out three different NLP tasks both in the single-
task and the multi-task training setup and the results from the multi-task training setup are shown to
be as good as, or better than those from the single-task training setup. Our model revealed its limit
when the model is trained in the pretrain mode for multi-task learning, especially a noticeable failure
in conducting STS task. However in the finetune mode, all three downstream tasks are successfully
conducted in the multi-task setup.

References
cs224nStaffs. Cs 224n: Default final project: minbert and downstream tasks.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-task deep neural
networks for natural language understanding. arXiv preprint arXiv:1901.11504.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information
processing systems, 30.

6

	Key Information to include
	Introduction
	Related Work
	Approach
	Baseline minBERT
	Layer for sentiment classification task
	Layer for paraphrase detection task
	Layer for semantic text similarity prediction task
	Multi-task training scheme

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

