
minBERT for Sentiment Analysis, Paraphrase
Detection, and Semantic Textual Similarity

Stanford CS224N Default Project
Mentor: Shai Limonchik

Shelly Goel
Department of Computer Science

Stanford University
shelly23@stanford.edu

Haya Hidayatullah
Department of Statistics

Stanford University
hayah@stanford.edu

Yoko Nagafuchi
Institute for Computational and Mathematical Engineering

Stanford University
yokongf@stanford.edu

Abstract

In this project, we focus on improving the performance and generalization of natural
language processing (NLP) tasks such as sentiment analysis (SST), paraphrase
detection, and semantic textual similarity (STS) by implementing a multitask-based
model. We proposed using a BERT-based architecture called minBERT adapted for
multitask learning and experimented with various additional model architectures,
pre-training, and fine-tuning techniques to improve the performance of the baseline
model. We found that using Cosine similarity (Cos) and increasing the model size
through hidden MLP layers and ReLU activation (ReLU) were particularly effective
for the STS and Paraphrase tasks, respectively. We also used GradNorm and
PCGrad to balance gradients across diverse tasks and address conflicting gradients
between tasks in multitask learning. Additionally, we employed data engineering
techniques (such as looping over smaller datasets (Loop) and normalizing labels)
and used ensembling to determine the most optimal model architecture. The best
overall model incorporated the Cos, ReLU, and Loop extensions, improving the
baseline average score by 0.13 on the Dev set and significantly improving the
task-wise scores for Paraphrase and STS by 0.22 and 0.17, respectively. Our results
demonstrated that a BERT-based multi-task learning architecture, combined with
various pre-training, fine-tuning, and ensembling techniques, can significantly
improve the performance of NLP tasks such as our three downstream tasks.

1 Introduction

In the field of NLP, there are various tasks such as sentiment analysis, paraphrase detection, and
semantic textual similarity which help us understand the nuances of language and semantic rela-
tionships better. These tasks can be challenging as they require an understanding of the underlying
relationships of different pieces of text with each other, which can be very context-dependent, have
complex meanings, or be ambiguous. The goal of our project was to implement a multi-task-based
model to improve performance and generalize well across all three tasks as we recognize that all
three tasks are inherently related to each other in how we understand language and the relationships
that texts have with each other semantically. Many existing methods for these tasks rely on separate
models that perform each task independently. However, we believe that training a model that learns a
shared encoding can help improve the performance of each task and also generalize well across all
three tasks.

Stanford CS224N Natural Language Processing with Deep Learning



We pre-trained the model using masked language modeling on the SST dataset and fine-tuned it with
Cosine similarity to capture the semantic similarity between similar sentence pairs. We used both
GradNorm and PCGrad to balance gradients across diverse tasks and address conflicting gradients
between tasks in multitask learning. We also modified the number of MLP hidden layers and
ReLU activations, employed data engineering techniques, and used ensembling to determine the
most optimal model architecture. Our best overall model incorporated the Cos, ReLU, and Loop
extensions, improving the baseline average score by 0.13 on the Dev set and significantly improving
the task-wise scores for Paraphrase and STS by 0.22 and 0.17, respectively.

Our project aims to contribute to the development of more effective NLP models that can better
understand the semantics of the language by making use of shared relationships between similar NLP
tasks.

2 Related Work

Our project aims to refine BERT embeddings for multiple downstream tasks using multi-task learning
and gradient optimization techniques. Several recent papers have explored similar approaches and
have shown improvements in model performance.

The ’MTRec: Multi-task Learning over BERT for News Recommendation’ (Bi et al. (2022)) intro-
duced a novel multi-task learning framework that incorporates downstream tasks as auxiliary tasks.
This approach results in deeper and more representative BERT embeddings, leading to improved
performance over baseline single-task learning. The paper also successfully utilizes the Gradient
Surgery (Tianhe Yu (2020)) technique to resolve conflicting gradients and further improve model
performance. The 2019 state-of-the-art model on 10 NLU tasks Liu et al. (2019) also uses multi-task
learning to improve performance across tasks and text data in different domains. This paper shows the
potential of combining language pre-training and multi-task learning to overcome major challenges
in NLP, such as language representation and generalization across tasks.

Other papers combine gradient optimization techniques with multi-task learning to improve overall
model performance; GradNorm (Zhao Chen (2018)) normalizes gradient magnitudes and task learning
rates whereas Gradient Surgery (Tianhe Yu (2020)) resolves conflicting gradients between tasks.

For our specific downstream tasks, various papers suggest extensions that improve single-task
performance as well. The original BERT paper showed how additional pretraining helps in fine-
tuning for text classification problems (Devlin et al. (2018)). Another paper on single task finetuning
(Nils Reimers (2019)) show how Cosine similarity improves task performance for the semantic textual
similarity task.

Overall, these papers highlight the potential of multi-task learning, along with ensemble mulitask
models combining gradient optimization techniques and single task finetuning techniques to improve
model performance and refine BERT embeddings.

3 Approach

3.1 Tasks

We build a multitask model for three downstream tasks. Sentiment Analysis (SST) The model takes
in single sentences and predicts their sentiments as negative, somewhat negative, neutral, somewhat
positive, or positive. Paraphrase Detection (Para) The model takes in pairs of sentences and predicts
whether each pair is a paraphrase of one another or not. Semantic Textual Similarity (STS) The
model takes in pairs of sentences and predicts how similar they are, on a scale from 0 to 5.

3.2 Models

Our baseline is a BERT-based multitask model called minBERT CS224N. This backbone BERT
consists of 12 transformer layers with multiheaded self-attention and outputs bidirectional word
embeddings(Devlin et al., 2018). To adapt to multitask learning, we add a prediction head for each
downstream task; each head consists of a single linear layer mapping the embeddings of length 768
to five logits or a scalar, depending on the task. The losses for the three tasks are summed before

2



Figure 1: Overview of Workflow and Extensions

backpropagating through the model 3. To improve our baseline model, the following extensions were
implemented and applied to the baseline individually or combined as ensembles.

Additional Pretraining with Masked Language Modeling We chose to further pre-train our
model on the SST dataset to particularly focus on improving upon the sentiment analysis task. Our
model was trained using the masked LM objective, similar to the training in the original paper Devlin
et al. (2018), predicting the ‘masked’ word piece tokens using the surrounding context. The ‘masked’
tokens were chosen from the input sequence with a 15% chance, 80% of which were then replaced
with the [MASK] token, 10% with random tokens from the vocabulary, and 10% left untouched.
The masked embedding was passed into a two-layer network with ReLU activation to predict the
tokens under the mask, i.e. the logits corresponding to each token in the vocabulary of size 30,522.
The logits were then passed through a softmax function to obtain the predicted token for each of
the masked positions. Cross entropy loss was used to evaluate the model performance. The Dev.
accuracy was 5% after 25 epochs with lr=1e-3.

Cosine-Similarity Fine-Tuning We experimented with using Cosine similarity for both the STS
and Paraphrase detection because both tasks involve semantic similarity, and therefore we can measure
the similarity between the two embedding vectors of the sentences in a high-dimensional space. We
experimented with using Cosine Embedding loss for the paraphrase task since its labels are discrete
and Cosine Similarity for the STS task which has continuous labels. We found that Cosine similarity
was most effective on the STS task. Specifically, we passed each sentence in a pair through the BERT
model to obtain the corresponding embedding vector of size 768. We then passed these embeddings
through the Cosine_similarity method from PyTorch to calculate the Cosine similarity score between
the two sentence embeddings, as shown below. Since Cosine similarity returns values between -1 and
1 but our labels are between 0 and 5, we then normalized the ground truth STS labels to be at the
same scale. Finally, we used mean squared error (MSE) loss for evaluation of the predicted logit.

similarity(x1, x2) =
x1 · x2

max{∥x1∥2 · ∥x2∥2, 1e−8}

Multitask Fine-tuning with GradNorm The GradNorm algorithm Zhao Chen (2018) allows us to
learn the weight functions wi(t) for the multitask loss function

∑
wi(t)L(t). We define the notations:

• W: subset of full network weights where we apply GradNorm. This is the last shared layer
of weights i.e. the pooler dense layer.

• G(i)
W (t) = ∥∇Wwi(t)L(t)∥2: L2-norm of the gradient of the individual weighted task loss

with respect to W.

• ḠW (t) = Etask[G
(i)
W (t)]: average at training time t.

• L̃i(t) = Li(t) / Li(0): measure of the inverse training rate of task i.

3



• ri(t) = L̃i(t) / Etask[L̃i(t)]: relative inverse training rate of i.

The algorithm (1) places gradient norms for different tasks on a common scale through which we can
reason about their relative magnitudes and (2) dynamically adjusts gradient norms so different tasks
train at similar rates. To accomplish (1), we use the average gradient norm ḠW (t) as the common
scale, which establishes a baseline at each time-step t by which we can determine relative gradient
sizes. Meanwhile, the relative inverse training rate of task i, ri(t), can be used for (2) to rate balance
our gradients. The higher the value of ri(t), the higher the gradient magnitudes should be for task i in
order to encourage the task to train more quickly.

Thus, our desired gradient norm for each task i is then: G(i)
W (t) → ḠW (t)× [ri(t)]

α (1) where α is
an additional hyperparameter. α sets the strength of the restoring force which pulls tasks back to a
common training rate and can be thought of as an asymmetry parameter.

We then update our loss weights wi(t) to move gradient norms towards Equation (1) as our target
for each task. GradNorm is implemented as an L1 loss function Lgrad between the actual and target
gradient norms at each timestep for each task, summed over all tasks which gives us Equation (2):
Lgrad(t;wi(t)) =

∑
i∥G

(i)
W (t)− ḠW (t))− [ri(t)]

α∥1. Lgrad is then only differentiated with respect
to wi and the gradients are updated. The pseudo-code is attached in Appendix A, and we adapted the
code from Sharifi-Noghabi (Nov 2021).

Multitask Fine-tuning with PCGrad PCGrad is an implementation of gradient surgery, which
removes conflicting gradients among tasks that interfere with smooth optimization in multitask
learning Tianhe Yu (2020). We apply the PyTorch implementation Tseng (2020). PCGrad compares
pairwise gradients in a round-robin manner and projects a conflicting gradient onto the normal plane
of the other. A visualization is attached in Appendix A. When two gradients are conflicting, i.e. their
dot product is negative, one gradient gi is updated as follows:

gi := gi −
gi · gj
∥gj∥2

gj

Model Size: Number of Layers and Nonlinearity To combat underfitting, we increased the
model complexity by adding more linear layers with ReLU activation in the prediction heads for the
downstream tasks. Specifically, for SST, the linear layers accepted inputs of size 768, 256, and 64;
they output 5 logits for the number of sentiment classes. For Para and STS, the layers accepted inputs
of size 768 × 2, 256 × 2, and 64; they output 1 scalar, which was a logit for Paraphrase.

Data Engineering We experimented with two sizes of training data. First was taking a random
subset of the SST and Quora datasets to match the size of the STS dataset, which has the smallest
number of samples. To make more use of the available data, we decided to increase our training
dataset by using the full SST dataset, while repeating samples in the STS dataset and taking a random
subset of the Quora dataset, such that all datasets match the length of the SST dataset.

4 Experiments

4.1 Data

For SST, we used the Stanford Sentiment Treebank dataset1. This dataset consists of 11,855
single sentences extracted from movie reviews, which are split into 8,544/1,101/2,210 examples for
train/dev/test. Each sentence is parsed with the Stanford parser; overall, there are 215,154 unique
phrases, and each is labeled negative, somewhat negative, neutral, somewhat positive, or positive.
For Para, we used the Quora dataset2, which contains 400,000 question pairs with binary labels,
indicating if a question pair is a paraphrase. The dataset is split into 141,506/20,215/40,431 examples
for train/dev/test. For STS, we used the SemEval STS Benchmark datasetEneko Agirre and Guo.
(2013). This dataset contains 8,628 sentence pairs with labels from 0 to 5, indicating sentence
similarity from unrelated to equivalent meaning. The dataset is split into 6,041/864/ 1,726 examples
for train/dev/test. Additionally, we conducted initial sentiment analysis using the SST and CFIMDB

1https://nlp.stanford.edu/sentiment/treebank.html
2https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs

4

https://nlp.stanford.edu/sentiment/treebank.html
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs


dataset3; CFIMDB contains 2,434 sentences of movie reviews, each labeled negative or positive. The
dataset is split into 1,701/245/488 examples for train/dev/test.

The input into our model is either single or paired sentences with their labels, which varies depending
on the downstream task. The backbone BERT model converts these sentences into token sequences
using the Word Piece tokenizer. The input into our multitask model is the output of the backbone
BERT model, which is the last hidden state of the [CLS] token of length 768. We experimented with
two dataset sizes, as described for the Data Engineering extension.

The output of our model also varies among tasks; for sentiment analysis, the model outputs logits for
the five classes that are passed into a softmax function to obtain a single predicted sentiment. For
paraphrase detection, the model outputs a scalar that is passed into a softmax function and compared
against the true binary label. For textual similarity, the model also outputs a scalar, which is compared
against the true label on a scale of 6.

4.2 Evaluation method

For the sentiment analysis and paraphrase detection tasks, we evaluate our model with the cross
entropy loss and accuracy scores. For the textual similarity task, we evaluate our model using MSE
and Pearson correlation, which measures the linear relationship between two variables on a scale
from -1 to 1.

4.3 Experimental details

We use the following abbreviations to denote the extensions:

• ReLU: Increased model size i.e. number of layers and added nonlinearity
• Cos: Cosine-similarity fine-tuning
• GN(α): Multitask fine-tuning with GradNorm (asymmetry parameter α)
• PCG: Multitask fine-tuning with PCGrad
• MLM: Additional pretraining with masked Language Modeling on the SST dataset
• Loop: using repeated samples from STS dataset to match the size of the SST dataset.

Model configurations Our multi-task baseline model was the baseline BERT with 3 linear pre-
diction heads for each of the 3 tasks. This baseline BERT was trained with batch size = 8, epochs =
25, learning rate = 1e-5, hidden dropout probability = 0.3, optimizer=AdamW, and using the option
finetune. We saw in our initial sentiment analysis that finetune increased scores significantly over
pretrain, by more than 0.12 1. finetune requires the parameters in the backbone BERT model to be
trained, whereas pretrain does not. This increases the model expressivity but also the training time.
To maximize the model performance, we used the finetune option for all of our experiments.

Our initial model configurations consisted of this baseline with a few extensions added one at a
time. This helped us investigate the effectiveness of individual extensions for ablation studies. We
first experimented with ReLU, as well as Cos as the prediction head for both paraphrase detection
and semantic textual similarity tasks. Since we saw Cos was only effective for STS, we applied the
extension to the STS prediction head going forward. We also experimented with Loop to improve
the accuracy on sentiment classification by using the maximum number of samples available for that
task. We also applied GN and PCG separately. PCGrad did not have conflicting gradients when used
with baseline, so we added this extension with the other extensions. Lastly, we applied MLM for
additional training on SST. Our nine ensembled models are listed in 2. All experiments were run on
GPU on an AWS instance.

Hyperparameter Tuning We experimented with four values of the asymmetry parameter for GN:
α=[0.5,1.0,1.5,3.0]. Additionally, we experimented GN with batch size = [16, 32] and lr= [1e-5, 1e-4,
1e-3]. However, the default values of batch size 8 and lr=1e-3 performed the best. Additionally, we
increased the dropout probability from 0.3 to 0.5 since we saw signs of overfitting for the ensembles
model with Cos, ReLU, and PCG extensions. However, this decreased the model performance, so we
used to the default 0.3. Therefore, all of our experiments were run with the baseline hyperparameters.

3https://nlp.stanford.edu/software/lex-parser.shtml

5

https://nlp.stanford.edu/software/lex-parser.shtml


4.4 Results

Dev. Scores SST Acc. CFIDB Acc.
Pretrain 0.399 0.792

FineTune 0.528 0.963
Table 1: Dev. Scores For Initial Sentiment Analysis on SST and CFIDB

Dev. Scores Avg. SST Acc. Para Acc. STS Corr.
Baseline 0.452 0.495 0.5 0.360
Baseline + ReLU 0.516 0.493 0.688 0.367
Baseline + Cos 0.508 0.496 0.526 0.502
Baseline + GN 0.485 0.523 0.614 0.319
Baseline + Cos+ ReLU + Loop 0.581 0.497 0.717 0.528
Baseline + Cos + ReLU + PCG 0.553 0.477 0.678 0.503
Baseline + Cos + ReLU + PCG + Loop 0.557 0.502 0.695 0.475
Baseline + Cos + ReLU + PCG + MLM 0.562 0.504 0.700 0.482
Baseline + Cos + ReLU + PCG + MLM + Loop 0.551 0.502 0.697 0.454
Baseline + Cos + ReLU+ GN + MLM + Loop 0.553 0.515 0.699 0.446

Table 2: Dev Scores. GN with α = 1.

Test Scores Avg. SST Acc. Para Acc. STS Corr.
Baseline + Cos + ReLU + Loop 0.576 0.528 0.718 0.482

Table 3: Best model performance on Test Set: Overall and Task-wise Scores

We summarize the overall and task-wise scores on the Dev set in 2 and on the Test set with the best
overall model in 3. Our best overall model was the baseline model with the Cos, ReLU, and Loop
extensions; it improved the baseline average score by 0.13 on the Dev set. This model also performed
the best in the Paraphrase and STS tasks individually, significantly improving the baseline task-wise
scores by 0.22 and 0.17 respectively. For the SST task alone, the baseline model with GN performed
the best, improving the baseline by 0.03.

We also experimented with different values of α for GradNorm 4. The highest ensemble model
performance with GN is when α = 1 with the second-highest SST accuracy on the Dev set (0.515).
Overall scores are similar between α = 0.5 and α = 1.5, but we can see that the individual task
scores differ. As α increases, paraphrase detection accuracy improves from 0.650 to 0.697, while the
SST accuracy decreases from 0.483 to 0.474. For α = 3.0, overall performance as well as individual
task performance is the lowest.

5 Analysis

We compare the Baseline and Ensemble models to evaluate the effectiveness of the extensions 2.

ReLU, Cos Adding nonlinear layers in the prediction heads for all three tasks significantly improved
the Paraphrase accuracy by 0.19 and slightly improved the STS correlation by 0.08, but not the SST
task. This suggests the effectiveness of added complexity for the prediction of STS; it also suggests
the need to explore ways to improve the SST score other than model architecture, such as engineering
the input embeddings. Comparing the Baseline and Baseline + Cos models, we observe a significant
increase in STS correlation alone. Cosine similarity might be a better indicator of how similar
two embeddings are than a linear mapping to one scalar since it is a scaled dot product of the two
embedding vectors.

GradNorm As seen in Table 4, GN on our multi-task architecture has the highest performance
when α = 1.0. An α = 1.0 suggests that there is high asymmetry between the tasks as low asymmetry
values range between α = 0.0 and α = 0.5. Higher asymmetry suggests that these three tasks are
different in complexity and learning dynamics as a larger α is needed to enforce stronger training rate

6



Dev. Scores Avg. SST Acc. Para Acc. STS Corr.
GN(α = 0.5) 0.541 0.483 0.650 0.489
GN(α = 1.0) 0.553 0.515 0.699 0.448
GN(α = 1.5) 0.539 0.474 0.697 0.445
GN(α = 3.0) 0.497 0.477 0.625 0.389

Table 4: Dev Scores for Ensembled Model with Cos, ReLU, MLM, Loop, and GN extensions with
Four Values of α.

balancing. Higher α also pushes the weights wi(t) further apart which we observed as our best model
weights for α = 1.0 were [SST loss = 0.95, Paraphrase loss = 1.07, STS Loss = 0.989]. This pushing
of weights reduces the influence of tasks that overfit or learn too quickly.

In our configuration with GN alone, the α = 1.0 seems to improve the baseline performance of SST
by 0.028 and Paraphrase 0.11 while decreasing the performance of STS by 0.5 on the Dev set. This
suggests that the algorithm found that the scale of the STS loss was larger than those of the other
tasks - this is reasonable as STS loss is MSE while the others are cross-entropy loss. It also suggests
that STS had a faster training rate than the other two, which is why a higher α forces the STS to
slow down while allowing the other two tasks to learn in the meantime. As a result, it seems that
either SST and Paraphrase performance or STS performance alone is maximized. Additionally, this
suggests that perhaps multi-task finetuning is not appropriate for all three tasks together and that STS
may benefit from single-task finetuning.

Ensemble 1 (Best Model): Cos, ReLU, and Loop Combining Cos and ReLU, and using more
data with Loop improved the baseline by 0.13, resulting in the best overall ensemble model. The
extensions seemed to enhance the performance on the Paraphrase and STS tasks, possibly because the
two tasks are similar in the sense that they both consider pairs of sentences. It was unexpected that
the SST accuracy didn’t improve, since we used the full SST dataset with the Loop extension. We
hypothesized that this may have to do with the optimization for SST conflicting with the optimization
for Para and STS and decided to explore multitask fine-tuning methods i.e. PCGrad and GradNorm.

Ensembles 2 and 3: Cos, ReLU, PCG, Loop Comparing Ensembles 2 (without Loop) and 3
(with Loop), we saw an increase in the SST and Para tasks, while a significant decrease in the STS
correlation by 0.25. This result might suggest that there is a trade-off between the performances on
the SST and STS tasks, i.e. an improvement in the SST accuracy comes at the Cost of decreasing
performance on the STS task, perhaps due to significant differences between these tasks. The
Paraphrase task, on the other hand, is easier to optimize for because there is some overlap with the
two other tasks. For example, the SST and Para share the same loss function, and the STS and Para
share the same input type of paired sentences.

Ensemble 4: Cos, ReLU, PCG, MLM We were able to confirm that MLM was helpful in
improving the SST accuracy score, by 0.27 compared to the model without MLM. However, it came
at the cost of a decreasing STS correlation by 0.2. This result reiterates the difficulty in learning both
the SST and STS tasks.

Ensemble 5: Cos, ReLU, PCG, MLM, and Loop From adding Loop to Ensemble 4, it was
unexpected to observe a nonchanging performance in the SST and Para scores. We also observed a
significant decrease in the STS correlation, indicating possible overfitting of the model due to the
repeated samples in the STS dataset.

Ensemble 6: Cos, ReLU, GN, MLM, and Loop Compared to Ensemble 5 with PCG, we see
an improvement in the SST score but a decrease in the STS score, both by around 0.1. The earlier
hypothesis about STS requiring single-task finetuning seems to be supported as the GN with α = 1
combined with Cos for STS improves performance for STS from the baseline. However, Ensemble 6
still outperforms all other ensemble models at SST accuracy while having a slightly decreased STS
correlation. This shows that GN optimizes learning for SST and Para, suggesting that SST has a
slower learning rate than STS. This lends further support to the idea that all three tasks’ performance
cannot be optimized simultaneously.

7



To summarize, the most effective extensions for our model were cosine similarity for the STS task and
the increased model size for the Paraphrase task. Through GradNorm, we found the tasks to be highly
asymmetric, meaning the tasks have different complexities and learning dynamics, suggesting further
fine-tuning of the individual tasks might be helpful in improving the overall model performance.
PCGrad was helpful when multiple tasks were combined, in which case the gradients relative to the
task-wise losses conflicted frequently. Additional pre-training was somewhat effective in improving
the SST accuracy, which was the most difficult to achieve out of the three tasks. Lastly, we found
optimizing for all three tasks very challenging. Different ensembles yielded either an improvement
in the Paraphrase and STS scores or an improvement in the Paraphrase and SST scores, but not all
three simultaneously. The Paraphrase task was the easiest to optimize for, perhaps because it shared
features with the two other tasks, such as the loss function or input type of paired sentences.

6 Future Work

While we greatly improved baseline performance with the extensions implemented, there is scope for
improvement in designing the model architecture and fine-tuning the model. For pre-training, we can
explore different masking techniques with masked language modeling, such as masking out specific
parts of speech or increasing the distance between masked elements. In terms of data engineering, we
can delete or add random words in sentences and increase the number of sentences by using synonym
replacements. For fine-tuning, to further improve the effectiveness of the similarity metric, we can
also explore using euclidian or manhattan distance to improve the overall performance on the STS
task and overall. We can also tune the hyperparameter α in GradNorm in a finer range between
(0.5, 1.5) and adding a correction for conflicting gradients as in PCGrad. Finally, our experiments
showed that learning the tasks simultaneously with a shared backbone encoding greatly improved
the performance on each task. Training on additional tasks in a similar multitask manner such as
question-answering, named entity recognition, and classifying the category of sentence subject matter
could further help us achieve optimal performance over all tasks.

7 Conclusion

In this project, we proposed a BERT-based multi-task learning architecture for three NLP tasks,
namely sentiment analysis, paraphrase detection, and semantic textual similarity. To improve the
performance of our baseline model, we experimented with various model architectures, pre-training,
and fine-tuning techniques.

Our findings showed that cosine similarity and increased model size through ReLU were particularly
effective for the STS and Paraphrase tasks, respectively. Both GradNorm and PCGrad helped
us understand the relationships between the individual tasks and how they could be fine-tuned to
prevent conflicting gradients and further improve performance. Additional pre-training (MLM) also
showed potential for improving accuracy for the SST task. Although ensembling was challenging
as optimizing for one task often decreased scores in others, we found that ensembling different
approaches led to significant improvements, especially in the Paraphrase and STS tasks due to their
inherent semantic overlap. Therefore, our best overall model incorporated the Cos, ReLU, and Loop
extensions, improving the baseline average score by 0.13 on the Dev set and significantly improving
the task-wise scores for Paraphrase and STS by 0.22 and 0.17, respectively.

While we were able to significantly improve from our baseline model, there is still scope for
improvement in designing the model architecture and fine-tuning the model. One limitation of our
work was the challenge of ensembling approaches, where optimizing for one task often decreased
scores in others. To address this, we can explore using different masking techniques, data engineering
methods, various similarity metrics, and utilizing additional NLP tasks to further improve our model’s
performance across all tasks.

Overall, our experiments demonstrated that a BERT-based multitask learning architecture, combined
with various pre-training, fine-tuning, and ensembling techniques, can significantly improve the
performance of NLP tasks such as sentiment analysis, paraphrase detection, and semantic textual
similarity.

8



References
Qiwei Bi, Jian Li, Lifeng Shang, Xin Jiang, Qun Liu, and Hanfang Yang. 2022. Mtrec: Multi-task

learning over bert for news recommendation. In Findings of the Association for Computational
Linguistics: ACL 2022, pages 2663–2669.

Teaching Team CS224N. Cs 224n: Default final project: Minbert and downstream tasks.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Mona Diab Aitor Gonzalez-Agirre Eneko Agirre, Daniel Cer and Weiwei Guo. 2013. * sem 2013
shared task: Semantic textual similarity. In In Second joint conference on lexical and computational
semantics (* SEM), volume 1: proceedings of the Main conference and the shared task: semantic
textual similarity, pages 32–43.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-task deep neural
networks for natural language understanding. arXiv preprint arXiv:1901.11504.

Iryna Gurevych. Nils Reimers. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks. In EMNLP.

Hossein Sharifi-Noghabi. Nov 2021. hosseinshn/gradnorm.

Abhishek Gupta Sergey Levine-Karol Hausman Chelsea Finn Tianhe Yu, Saurabh Kumar. 2020.
Gradient surgery for multi-task learning. In NeurIPS.

Wei-Cheng Tseng. 2020. Weichengtseng/pytorch-pcgrad.

Chen-Yu Lee Andrew Rabinovich Zhao Chen, Vijay Badrinarayanan. 2018. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In ICML.

A Appendix

Figure 2: GradNorm: Training Algorithm

9

https://web.stanford.edu/class/cs224n/project/default-final-project-bert-handout.pdf
https://github.com/hosseinshn/GradNorm/GradNormv10
https://github.com/WeiChengTseng/Pytorch-PCGrad.git


Figure 3: PCGrad: Gradient Update Formula and Visualization

10


	Introduction
	Related Work
	Approach
	Tasks
	Models

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Future Work
	Conclusion
	Appendix

