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Abstract

BERT models are extremely powerful and generalizable tools for a variety of down-
stream NLP tasks. However BERT models often suffer from anisotropic sentence
embeddings, reducing the ability of the model to differentiate sentences on qualities
like sentiment and semantic similarity. We applied contrastive learning techniques
to minBERT to reduce anisotropy. This along with several other model techniques
including gradient surgery, task interleaving, and hyperparameter search allowed
us to significantly improve minBERT on three downstream tasks: paraphrase detec-
tion, sentiment analysis, and semantic textual similarity. When comparing against
a baseline bert model, our accuracy on the first two tasks improved from .38 to .71
and .31 to .49, respectively. Our Pearson correlation for STS improved from -.10
to .35 on the final task.

We would like to thank our mentor, David Huang.

1 Introduction

Large Language models have set a new standard for nearly all NLP tasks. However, these large
pretrained models on their own do not always generate optimal embeddings for every task. Prior
work has shown that sentence embeddings from pre-trained language modelings can be limited by the
learned anisotropic word embedding space. Because of this, these models sometimes have difficulty
generalizing to downstream tasks. Since the emergence of large language models, there has been
lots of work surrounding how to further pretrain and finetune these embeddings to produce better
results. SimCSE, proposed by in SimCSE: Simple Contrastive Learning of Sentence Embeddings[1],
implements contrastive learning to Bert base in order to achieve higher scores on Semantic Textual
Similarity scores. Inspired by this approach, we first wanted to see how much of an effect would
implementing contrastive learning on minBERT have. Although it is a simpler model than BERT,
would this novel approach still be able to deliver superior embeddings?

To build on this paper, we wanted to see how well contrastive learning techniques could do on
generalizing to downstream tasks. Gao et aldid not attempt this. Specifically, we wanted to use
contrastive learning to generate embeddings that apply to textual similarity, sentiment prediction, and
paraphrase prediction.

First, we determined that finetuning using the simCSE loss function on the NLI dataset[2] improves
performance.

Stanford CS224N Natural Language Processing with Deep Learning



Next, we performed a hyperparameter search on τ (the simCSE loss function temperature parameter),
along with other parameters including learning rate and dropout probability. We found best results
when setting τ significantly higher than Gao et aldid in their paper.

We pretrained BERT embeddings and layers using just the simCSE supervised task. We then twice
finetuned just the final linear layers for each of our three downstream tasks, once on the original
BERT layers and once on our simCSE-finetuned layers. We found improved results when BERT
embeddings and layers had been pretrained with simCSE (see Figure 2).

Finally, we applied gradient surgery, projecting the gradients from each of our four training tasks
onto one another. We ran experiments, determining that gradient surgery only helps for a relatively
high learning rate.

2 Related Work

Wang and Isola (2020) [3] proposed two measurements for the quality of embedding: alignment and
uniformity. In a well aligned set of embeddings, semantically-related pairs occupy nearby points in
vector space. This allows a model to draw relationships. In a uniform set of embeddings, if each
embedding is normalized then the set as a whole is evenly (or uniformly) spread across the unit
sphere. This maximizes the amount of information that can be encoded in embeddings.

Recent work by Ethayarajh (2019)[4] identifies an anisotropy problem in language representations.
Instead of being evenly distributed on the unit sphere, embeddings occupy a narrow cone in the
vector space. Because of this, similarity measurements like cosine similarity are not very effective.
As a result, some much simpler models like GloVe actually score higher than models like BERT
on semantic textual similarity (STS) tasks. This limited occupancy of space in the vector space is
called anisotropy. Ethayarajh (2019) showed this can occur in pre-trained contextual representations.
Wang and Isola (2020) [3] show how anisotropy is connected to uniformity. Intuitively, optimizing
the contrastive learning objective can improve uniformity (or ease the anisotropy problem), as the
objective pushes negative instances apart.

Gao et al[1] demonstrated how a contrastive learning objective leads to more uniform and better-
aligned embeddings. As shown in figure 1, constrastive learning takes an anchor sentence, a positive
example, and a negative example, and attempts to move positive pairs closer together and negative
ones farther. The authors conclude this leads to greater alignment and uniformity. Contrastive learning
can alter the latent embedding space, which leads to improved performance on STS tasks.

Figure 1: Supervised SimCLE

3 Approach

For our baseline model we implemented vanilla minBERT as described in the BERT paper [5]. At a
high level, BERT is a bidirectional model, meaning it is trained to look both forwards and backwards
in a text sequence to capture context. It uses a masked language modeling (MLM) task and a next
sentence prediction (NSP) task to train the model. In the MLM task, BERT is trained to predict
missing words in a sentence by masking some of the words and requiring the model to fill in the
blanks. In the NSP task, BERT is trained to predict whether two sentences follow each other in the
original text or not.
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After implementing our baseline, we followed a similar approach to [1], and used our pretrained
embeddings to train over an NLI dataset, using the following contrastive loss equation that they
defined:

ℓi = −log

(
esim(hi,hi

+/τ)∑N
j=1

(
esim(hi,hj

+/τ) + esim(hi,hj
−/τ)

)) (1)

τ is a temperature hyperparameter, which we changed experimentally (see Experiments section). sim
is short for cosine similarity. Note that while Gao et alhas published their own code, we implemented
our own version as to make it work in conjunction with our model.

Each row in the NLI dataset contains a given sentence premise xi, an entailment x+
i , and a contradic-

tion hypothesis x−
i . We use our pretrained embeddings to generate hi, h+

i , h−
i respectively. We used

cosine similarity function.

Like the original paper, we then evaluated our contrastive model over an STS dataset.

We sought to expand this paper by implementing multitask training in order to see if our model
could generalize well across multiple tasks. We first used round-robin multitask learning to train
across the 4 datasets and tasks described in our data section. Our model alternates at each gradient
step between updating the parameters for each task during training. At each iteration, the network
processes a mini-batch of data from one of the tasks and updates the network parameters based on
the loss function for that task. It then moves on to the next task in the cycle and repeats the process.
This continues until all tasks have been processed for one epoch.

After this, we hypothesized that our gradients across the different tasks may be competing with each
other, so we implemented PCGrad gradient surgery to see if this could improve our multitask learning.
To implement this we used a pre-implemented Pytorch library PCGrad. [6].

PCGrad gradient surgery works by projecting the gradients onto a lower-dimensional space. Specif-
ically, it computes the gradient direction with respect to the parameters and the gradient direction
orthogonal to the parameters as specified in equation 2. It then scales the gradient direction with
respect to the parameters to a maximum norm and keeps the gradient direction orthogonal to the
parameters unchanged. This approach effectively reduces the magnitude of the gradient while pre-
serving the direction of the gradient. If our gradients are in conflict directions, this will lead to more
stable training and faster convergence.

gi = gi −
gi · gj
||gj ||2

· gj (2)

4 Experiments

4.1 Data

Stanford Sentiment Treebank (SST) As described in the project handout "the Stanford Sentiment
Treebank consists of 11,855 single sentences extracted from movie reviews. The dataset was parsed
with the Stanford parser2 and includes a total of 215,154 unique phrases from those parse trees,
each annotated by 3 human judges. Each phrase has a label of negative, somewhat negative, neutral,
somewhat positive, or positive." [7]. This dataset is used for training and evaluating sentiment
classification.

Quora As described in the project handout "The Quora dataset [...] consists of 400,000 question
pairs with labels indicating whether particular instances are paraphrases of one another." We used the
following splits.
• train (141,506 examples)
• dev (20,215 examples)
• test (40,431 examples) [7]
This dataset is used for paraphrase prediction.
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SemEval STS Benchmark As described in the project handout "The SemEval STS Benchmark
dataset [...] consists of 8,628 different sentence pairs of varying similarity on a scale from 0 (unrelated)
to 5 (equivalent meaning)." For the STS dataset, we used the following splits:
• train (6,041 examples)
• dev (864 examples)
• test (1,726 examples) [7].
This dataset is used to predict semantic textual similarity.

NLI From Gao et al, we use their dataset. Specifically, they combined SNLI dataset(Bowman et al.,
2015)[8] and MNLI (Williams et al., 2018)[9]

Each row contains a given sentence premise, an entailment, and a contradiction hypothesis. A row
from the data could look like ("uh you know it ’s if some if a teacher does anything that uh they ’re
liable to have a law suit against them for uh cruel and unjust punishment or whatever", "if a teacher
does something untoward, legal action might be taken against them for cruel/unjust punishment .",
" no legal action can be taken against a teacher for cruel/unjust punishment.") There are 310,000
triplets in our dataset, and we trained on 70% of them. We did no evaluation on this dataset.

4.2 Evaluation method

On the Quora paraphrase dataset dataset we evaluate ourselves based on accuracy percentage. This is
a binary prediction task.

For sentiment classification on the SST dataset we again use accuracy percentage, however this time
we have five classes.

For STS, we calculate the Pearson correlation of the true similarity values against the predicted
similarity values across the test dataset. Specifically:

ρX,Y =
cov(X,Y )

σXσY
=

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y )2
(3)

Throughout our paper we primarily report a model’s ’Total Score’ or ’Average Score,’ which is the
average on the three metrics discussed above.

4.3 Experimental details

During our training process, we conducted hyperparameter searches for Learning Rate, Dropout
probability, and number of Epochs. We also used played around with training on all tasks, just the
NLI contrastive learning task, and all tasks except the NLI task. Full results of these searches are in
the appendix.

Contrastive learning is designed to improve the latent space of embeddings, setting a language model
up for improved performance on all tasks. Thus we pretrained all of our layers on the NLI task, and
then did a quick finetune of just the linear classifier heads of our model. It turns out that training on
the NLI task improves performance for all three of our downstream tasks, not just the STS task it most
resembles. In fact, we see greatest improvement in the paraphrase detection task. This suggests that
training using the contrastive learning loss function does improve the uniformity of our embedding
space. See Figure 2.

We performed a hyperparameter search on τ , the temperature parameter from Gao et al’s paper. They
suggested using τ = 0.05. However after using this setting for several small tests (n_epochs = 3), we
found that much higher values of τ performed better. Below is a graph showing a hyperparameter
search for a much larger number of epochs - as the training time increases, smaller values of tau
begin to improve relatively. Therefore it is likely that Gao et al found a different optimal value of tau
because they trained bigger models for much longer. See figure 3.

After adding gradient surgery, we performed an experiment to determine whether using it would
improve performance. For low learning rates, we found that using gradient surgery did not impact or
diminished performance. For a lr that is 3 times our usual, however, we found that using the pcgrad
library did improve performance. This makes intuitive sense: gradient surgery necessarily shrinks
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Figure 2: Pretrained Performance: MinBERT vs MinBERT plus simCSE

Figure 3: Tau Hyperparameter Search
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gradients by projecting them, so to counteract this learning rate should be increased. See figure 4,
where we performed a search while training for 8 epochs).

Figure 4: Does Gradient Surgery Improve Performance?

The final row of table 1 in the appendix indicates the hyperparameter values on our best results on the
dev set.

4.4 Results

We expected to see improvements after implementing constrastive learning namely because of
increased alignment and uniformity. This did in fact turn out to be the case. See figure 2.

We expected gradient surgery to improve performance consistently, but it did not. We would have
loved to try more experiments with this method and even higher learning rates, but were limited by
time and GPU compute.

5 Analysis

We looked at actual inputs to our various three tasks, and analyzed why they failed. Below we go
through some examples:

Paraphrase Detection (Quora Dataset):

Our model struggled with rarely seen works and tokens, which is understandable considering that is
small relative to modern LLMs. For example, our model predicted incorrectly that that these two
sentences were paraphrases of one another: "How can I learn megruli?" and "How does one learn to
learn?" This is likely the only time that the model sees the word "megruli" in training (this example
is pulled from the training set).

Sometimes it is also genuinely ambiguous whether or not two sentences are paraphrases. These two
are marked as paraphrases: "I have lost my Aadhaar enrollment slip and registered mobile number as
well. How do I download my Aadhaar card?" and "I don’t have an enrollment number or an Aadhaar
card number. What should I do?" As far as Quora is concerned, these two people likely need the
same advice. But one person lost their card number and enrollment slip, whereas the other person
never had one in the first place, so one could argue that they aren’t true paraphrases. Our model just
tries to predict whether people convey the same meaning, and not whether their goals are the same.

Semantic Textual Similarity (STS Dataset):
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On the STS dataset, our model failed when it could not determine which words in a sentence were
unimportant. For example, for the sentence pair "Microsoft acquired Virtual PC when it bought
the assets of Connectix earlier this year" and "Microsoft acquired Virtual PC from its developer,
Connectix, earlier this year" our model gave an STS score of 2.8/5, whereas the dataset had 4.4/5.
"Bought the assets" and "from its developer" convey little or no additional meaning in this sentence -
they are fluff. But our model can’t tell because it has a relatively small model of the world, and so the
STS score is lower than it should be. A similar example is the following: "Hundreds of Bangladesh
clothes factory workers ill" and "Hundreds fall sick in Bangladesh factory," which give an STS score
of 2.1/5 when the actual score is 4.4/5. Likely the model does not realize that the word "clothes" is
not important to this sentence. Based on other examples we believe that it recognizes the similarity
of "fall sick" and "ill."

Sentiment Analysis (SST Datset):

The sentiment task was evaluated on just accuracy percentage and not degree of closeness. There
can often be conflicts in the 1-5 scale rating system, which further highlights the importance of how
our data is created and labeled. For instance, the sentence "Post 911 the philosophical message of
Personal Freedom First might not be as palatable as intended" was ranked 1 out of 5 by our model.
Our team independently also ranked some sample sentences and gave this a 1, however our dataset
gives the sentences a 2. Despite the close-ness, our model’s performance score was impacted for this
arguable discrepancy.

These sorts of sentiment discrepancies can happen on the positive end of the spectrum as well. For
instance, the example "The gorgeously elaborate continuation of “ The Lord of the Rings ” trilogy
is so huge that a column of words can not adequately describe co-writerdirector Peter Jackson’s
expanded vision of J.R.R. Tolkien ’s Middle-earth" was ranked a 3 by our model, which seems
plausible. However the data has the sentence ranked a 4. Qualitatively, it is challenging to find the
nuance to justify one ranking versus another, which makes it hard to interpret results.

6 Conclusion

We find that training our model using a contrastive learning task and attempting to generalize to
multi-task learning is effective in improving MinBERT. However our model still does not perform as
highly as others do, especially at sentiment and STS tasks.

One potential alteration to future work could be implementing a masked language modeling objective.
Although this is a token-level prediction task and not a sentence-level prediction like the tasks we are
trying to optimize, we think it could help our model generalize to multiple tasks by better learning
language semantics and patterns.

We also could add a different normalization method to our model, suchs as Bregman proximal point
approximation.

Another extension that we wish we could have implemented is using the unsupervised simCSE loss
function described by Gao et alin their paper.[1] We are quite curious if this contrastive learning
approach would have had similar results to the supervised approach that we used.
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Table 1: HyperParameter Search Results, First Round
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1e-05 finetune 0.3 1 F T 0.1 37.77% 14.44% -2.11% 16.70%
1e-05 finetune 0.3 1 F T 0.1 37.77% 14.44% -2.11% 16.70%
1e-05 finetune 0.3 1 F T 0.1 37.77% 14.44% -2.11% 16.70%
1e-05 finetune 0.3 1 F T 0.1 37.77% 14.44% -2.11% 16.70%
1e-05 finetune 0.3 1 T T 0.1 37.80% 14.26% -0.93% 17.04%
3e-06 finetune 0.3 10 F T 0.1 55.08% 43.69% 30.18% 42.98%
1e-05 finetune 0.3 10 T T 0.1 42.92% 18.53% 6.60% 22.69%
9e-06 finetune 0.3 10 F T 0.05 66.23% 46.78% 32.71% 48.57%
0.001 pretrain 0.3 1 F T 0.05 38.63% 34.97% 4.42% 26.00%
0.001 pretrain 0.3 1 F T 0.05 37.59% 27.07% 14.23% 26.29%
0.001 pretrain 0.3 1 F T 0.05 46.08% 34.15% 10.31% 30.18%
0.0005 pretrain 0.3 3 F T 0.05 38.99% 25.70% 10.73% 25.14%
0.0005 pretrain 0.3 3 F T 0.05 38.99% 25.70% 10.73% 25.14%
0.0005 pretrain 0.3 3 F T 0.05 61.59% 30.25% 13.17% 35.00%
1e-05 finetune 0.1 3 F T 0.1 56.54% 43.60% 29.34% 43.16%
1e-05 finetune 0.1 3 F T 0.5 55.39% 37.60% 30.54% 41.18%
1e-05 finetune 0.25 3 F T 0.1 56.54% 43.60% 29.34% 43.16%
1e-05 finetune 0.25 3 F T 0.5 55.39% 37.60% 30.54% 41.18%
1e-05 finetune 0.35 3 F T 0.1 56.54% 43.60% 29.34% 43.16%
1e-05 finetune 0.35 3 F T 0.5 55.39% 37.60% 30.54% 41.18%
1e-05 finetune 0.1 6 F T 0.1 66.14% 45.69% 33.19% 48.34%
1e-05 finetune 0.1 6 F T 0.5 63.85% 46.87% 34.35% 48.36%
1e-05 finetune 0.25 6 F T 0.1 66.14% 45.69% 33.19% 48.34%
2e-05 finetune 0.3 6 F T 0.1 71.54% 40.42% 30.29% 47.42%
2e-05 finetune 0.3 6 F T 0.5 69.97% 39.96% 31.57% 47.17%
5e-06 finetune 0.3 10 F T 0.1 66.35% 46.32% 32.21% 48.29%
5e-06 finetune 0.3 10 F T 0.5 65.82% 46.50% 31.39% 47.91%
1e-05 finetune 0.3 10 F T 0.1 70.99% 46.59% 31.79% 49.79%
1e-05 finetune 0.3 10 F T 0.5 69.44% 49.05% 32.74% 50.41%
2e-05 finetune 0.3 10 F T 0.1 71.96% 40.60% 32.42% 48.33%
2e-05 finetune 0.3 10 F T 0.5 70.99% 41.87% 31.04% 47.97%
1e-05 finetune 0.3 10 F T 1.0 69.94% 48.32% 32.31% 50.19%
1e-05 finetune 0.3 10 F T 5.0 68.75% 49.59% 34.25% 50.86%
1e-05 finetune 0.3 20 F T 0.1 73.99% 50.14% 28.46% 50.86%
1e-05 finetune 0.3 20 F T 0.5 74.35% 47.14% 30.77% 50.75%
1e-05 finetune 0.3 20 F T 1.0 72.54% 49.59% 28.62% 50.25%
1e-05 finetune 0.3 20 F T 5.0 68.75% 49.59% 34.25% 50.86%
1e-05 fine-tune 0.3 10 F T 5.0 70.82% 48.86% 34.66% 51.45%
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Table 2: HyperParameter Search Results, Second Round
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1e-05 fine-tune 0.3 3 F T 5.0 ADAMW 62.51% 28.16 % 7.89% 32.85 % T
1e-05 fine-tune 0.3 0 F T 5.0 ADAMW 66.91% 36.33 % 25.71 % 42.98 % F
1e-05 fine-tune 0.3 8 F T 5.0 ADAMW 65.43 % 28.88 % 12.11 % 35.47 % T
1e-05 fine-tune 0.3 1 F T 5.0 ADAMW 62.48 % 25.89 % -0.002 % 29.40 % T
3e-05 fine-tune 0.2 8 F T 5.0 ADAMW 64.23 % 28.16 % 18.70 % 37.03 % F
3e-05 fine-tune 0.2 8 F T 5.0 ADAMW 71.68 % 27.16 % 25.59 % 41.48 % T
3e-05 fine-tune 0.2 1 F T 1 ADAMW 62.47 % 25.34 % 7.31 % 31.71 % F
3e-05 fine-tune 0.2 1 F T 1 ADAMW 71.76 % 39.14 % 31.17 % 47.54 % T
3e-05 fine-tune 0.2 8 F T .1 ADAMW 62.47 % 25.34 % 18.61 % 35.47 % F
3e-05 fine-tune 0.2 8 F T .1 ADAMW 69.30 % 36.34 % 26.99 % 44.21 % T
1e-05 fine-tune 0.2 8 F T 5 ADAMW 68.74 % 39.69 % 26.96 % 45.13 % F
1e-05 fine-tune 0.2 8 F T 5 ADAMW 63.76 % 28.43 % 19.72 % 37.30 % T
1e-05 fine-tune 0.2 8 F T 1 ADAMW 69.36 % 32.33 % 28.92 % 43.54 % F
1e-05 fine-tune 0.2 8 F T 1 ADAMW 68.97 % 30.43 % 21.52 % 40.30 % T
1e-05 fine-tune 0.2 8 F T 0.1 ADAMW 67.49 % 37.87 % 29.44 % 44.92 % F
1e-05 fine-tune 0.2 8 F T 0.1 ADAMW 64.96 % 27.15 % 19.42 % 37.18 % T
3e-06 fine-tune 0.2 8 F T 5 ADAMW 58.71 % 29.70 % 08.82 % 32.41 % F
3e-06 fine-tune 0.2 8 F T 1 ADAMW 62.39 % 28.52 % 05.49 % 32.23 % T
3e-06 fine-tune 0.2 8 F T 1 ADAMW 62.39 % 28.52 % 05.49 % 32.23 % T
3e-06 fine-tune 0.2 8 F T 0.1 ADAMW 62.82 % 29.88 % 08.71 % 33.81 % F
3e-06 fine-tune 0.2 8 F T 0.1 ADAMW 62.57 % 28.70 % 06.16 % 32.45 % T
3e-05 fine-tune 0.3 8 F T 1 ADAMW 67.08 % 25.98 % 21.29 % 38.12 % F
3e-05 fine-tune 0.3 8 F T 1 ADAMW 71.46 % 38.96 % 28.30 % 46.12 % T
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