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Abstract

We aimed to predict glaucoma surgery outcomes of patients who underwent a
surgery at Stanford using pre-operative data. This is a critical problem in the
field of ophthalmology as glaucoma is one of the leading cause of blindness
worldwide. We developed various BERT-based multi-modal fusion models (sum,
learnable sum, multiply, concatenate, SVD, multi-layer concatenation) leveraging
both EHR structured data and progress notes. We used these architectures to
develop a model that combines BERT’s output into a recurrent neural networks
(RNN) and implemented time embeddings (time2Vec) to exploit the temporal
nature of the relationship between surgery outcome prediction and physician notes.
We benchmarked the different methods and highlighted that pre-training greatly
increases performance while the best-performing model is the late concatenation
fusion model. Our contribution showed how we could extract some predictive
power from these notes but also how current SOTA methods struggle with tasks
humans also have a hard time with, such as this one.

1 Key Information to include

• External mentor: Sophia Ying Wang (Assistant Professor, Ophthalmology @ Stanford
Medicine)

• External Collaborators: N/A
• Sharing project: N/A

2 Introduction

Motivation: Glaucoma is a leading cause of irreversible blindness worldwide. The estimated
prevalence of glaucoma is rising, from an estimated 76 million in 2020 to 111.8 million in 2040 Tham
et al. (2014). With surgery being the only viable long-term cure for patients, predicting if an operation
is going to be a success or not is particularly important, yet unaddressed by the research community
because of the difficulty of the task and the scarcity of data available for this particular application.
Predictive models in ophthalmology have typically relied on testing data, such as retinal nerve
fiber layer optical coherence tomography or visual fields (VFs). However, it has been a challenge
to incorporate a patient’s clinical history, which typically resides within the patient health record,
into these predictive models. The adoption of electronic health records (EHRs) has presented an
opportunity to develop machine learning and deep-learning models based on these data to predict
glaucoma progression and have shown some predictive power Baxter et al. (2019) Banna et al. (2022).
However, granular clinical data such as patient presenting symptoms, medical and surgical history,
and examination findings are difficult to extract and integrate into predictive models, as these data
typically reside within free-text clinical notes in unstructured formats. Recent advances in natural
language processing (NLP) have enabled dozens of studies in various medical fields Chen et al.
(2020), Mohammadi et al. (2020), ... to get promising results using BERT-based models. However,
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to our knowledge these techniques have never been investigated for surgery outcome prediction in
ophthalmology which reinforced our interest in the topic.

Contribution: We applied BERT-based models and cutting-edge NLP techniques to glaucoma
surgery outcome prediction. We went beyond the traditional approaches in ophthalmology (which
usually only focus on transformers fine-tuning) by pre-training the network on a set of ophthalmology-
related progress and notes and introducing new modeling approaches. We developed various multi-
modal fusion models (sum, learnable sum, multiply, concatenate, multi-layer concatenation) lever-
aging both HER structured data and operative notes. We then used these architectures to develop a
model that combine BERT’s output into a recurrent neural networks (RNN) and implemented time
embeddings (time2Vec) to exploit the temporal nature of the relationship between surgery outcome
prediction and physician notes. Our key contribution was to show that these pre-operative progress
notes hold some predictive power, a statement that had never been investigated to date. We also
confirmed that SOTA methods can not yield outstanding results on tasks where humans are struggling,
especially in case like that where inputs are multi-modal.

3 Related Work

NLP Transformers for Ophthalmology and Surgery Outcome Prediction Existing studies on
glaucoma surgery prediction only focused on traditional machine learning model (regression, random
forest, ...) Baxter et al. (2019) Banna et al. (2022), and have shown decent yet limited predicting
power. As off 2022, there is 19 published studies using NLP techniques in ophthalmology Chen
and Baxter (2022), including transfer learning with transformers Hu and Wang (2022), supervised
approaches leveraging regular expressions Barrows Jr et al. (2000), ... To our knowledge, none of
them introduced change in the transformer architecture or took into account time embeddings.

LSTM Models

There are many studies that used LSTMs to classify clinical text data such as Luo (2017). However,
from current research we know most SOTA for NLP processing use transformers with the caveat that
transformers struggle with large time series. Such as a large corpus of notes that include multiple
patient visits over time. A bigger challenge we had was that time series generally tend to struggle
with learning these multivariate temporal representations for classification without a large amount of
labelled data - this problem inspired us to pre-train an already pre-trained model for our task.

There were several PAPERS that use BERT embeddings and an LSTM in tandem to encode the time
representations of other time series data Chaudhury and Sau (2023) Wankhade and Rao (2022). For
example, a study found that using a model that generated time embeddings from temporal data and
then word embeddings from the notes that were then concatenated and fed into softmax set the new
benchmark for predicting in hospital mortality Deznabi et al. (2021). We were particularly inspired by
this approach even in the fusion approach where we concatenated different ouptuts from modalities
that were then used for classification, we were curious if different types were particularly better. This
study also inspired us to think more in-depth about the temporal nature of our data, which led us to
trying to separately learn the time embeddings - a simpler but different version of what was done
here in time2vec Deznabi et al. (2021).

4 Approach

Task: The goal of the task is to predict the outcome (success or failure) of patients who underwent
a glaucoma surgery in Stanford clinics during the 2013-22 period. To do that, we tapped into pre-
operative progress notes written by ophthalmologists during patient visits at Stanford hospitals (which
describe the patient eye evolution over time) and structured inputs (cf data for more details). Surgical
success was defined as a combination of decrease of the eye intraocular pressure (IOP), absence
of increase in medication and absence of other surgery/ revision surgery in the years following the
operation.

Methods: In the following section, we cover the different architectures that we utilized for this
project. The initial plan was the see how BERT and BERT with basic fusion model would perform,
and then study sparse attention-heads and gradient methods for interpretability on the notes. However,
the surgery prediction task proved to be more difficult that what we initially thought, which is likely
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why there is not much literature on this task. We ended up experimenting with a whole array of
approaches - including but not limited to fusion classification, BERT combined with LSTM models,
and time-embeddings.

BERT classifier: We use the BERT architecture based upon transformers using self-attention Devlin
et al. (2019). The Bert-uncased, Bio-bert models were used as initial baselines and starting points for
which we then pretrained on using masking to improve upon benchmarks Lee et al. (2019). We only
did Masked Language Modelling for our pretraining as recent research seems to suggest NSP is may
not offer statistically significant performance boosts for additional compute Joshi et al. (2019).

For an intuitive technical understanding of BERT let’s denote the input sequence as X =
[x1, x2, ..., xn], where xi is the i-th token in the sequence after it was tokenized by the tokenizer with
special tokens such as [CLS] to denote beginnings ends etc. In our case, since we had several notes
per patients we would concatenate all the notes per decreasing date time (most recent notes first) and
trim the string to the 512 maximum required tokens required by BERT. The output of the encoder
can be denoted as H = [h1, h2, ..., hn], where hi is the hidden embedding of the i-th token in the
sequence.

The hidden embedding hi is produced by passing the input sequence X through the multiple layers
of the encoder. Each layer has its own set of parameters that are learned during pre-training. The
output of each layer is given by:

H(l) = EncoderLayer(H(l−1))

where H(0) = X and H(L) is the output of the final layer (L is the total number of layers). The
function EncoderLayer represents a single layer of the encoder, which consists of self-attention and
feedforward neural networks.

The self-attention mechanism computes a weighted sum of the input embeddings, where the weights
are determined by a soft alignment between each input embedding and all other input embeddings.
Mathematically, the self-attention computation for a single layer can be expressed as:

SelfAttention(H(l−1)) = softmax
(
QKT

√
dk

)
V

where Q, K, and V are linear projections of H(l−1), and dk is the dimension of the key vectors. The
softmax function normalizes the attention weights across all input embeddings.

The output of the self-attention mechanism is then passed through a feedforward neural network,
which applies a non-linear transformation to each embedding independently. Mathematically, the
feedforward computation for a single layer can be expressed as:

FeedForward(H(l−1)) = ReLU(H(l−1)W1 + b1)W2 + b2

where W1, W2, b1, and b2 are learned parameters of the feedforward network, and ReLU is the
rectified linear unit activation function.

Finally, the output of the feed-forward network is passed through a layer normalization operation,
which normalizes each embedding independently.

By stacking multiple layers of self-attention and feed-forward neural networks with layer normaliza-
tion, BERT is able to produce a sequence of hidden embeddings of which the one of interest that we
use for our purposes is the CLS token, which captures the semantic understanding/acts as a summary
sentence for the text that the embedding is produced for.

The CLS token is key for how classification on our data was performed, which we explain on in-
depth in the fusion and RNN architecture sections. From our initial experiments explained in our
experiment section, it was quickly apparent that BERT and BioBERT were too large/too general
for our task. Thus, we used a free corpus of ophthalmology notes to pretrain the BERT from the
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BioBERT weight initialization - so that the model could understand shorthand and other semantics
specific to ophthalmology notes better.

For example, given an input sequence X = [x1, x2, ..., xn], 20 percent of the input tokens were
masked, denoted by the set M , such that M ⊆ 1, 2, ..., n. We replace the masked tokens with the
"[MASK]" token, denoted by [MASK], to obtain the masked input sequence X̃ = [x̃1, x̃2, ..., x̃n],
where:

x̃i =

{
[MASK] if i ∈ M xi

otherwise

The objective of the MLM is to train the model to predict the original input sequence X given
the masked input sequence X̃ and the context of the sequence. To do this, the model is trained to
minimize the negative log-likelihood loss of predicting the original tokens given the masked tokens
and the context. Mathematically, the MLM loss can be expressed as:

LMLM = −
∑

i ∈ M logP (xi|X̃,Θ)

where Θ represents the parameters of the model and P (xi|X̃,Θ) represents the probability of
predicting the original token xi given the masked input sequence X̃ and the model parameters Θ.

Fusion architectures: Once we had our baseline and MLM training setup, we built more advanced
concatenation models. We came up with two approaches. In the first one, we retrieved BERT last
hidden state using either the first CLS token of the sentence or average pooling of all the tokens. We
fed that last hidden state to a feed-forward layer to resize the vector and aggregated it with the last
hidden state from the structured neural network using several methods. We tried to concatenate the
two vectors, multiply them, sum them, sum them with a variable coefficient (i.e. that could give
more importance to the output of BERT/of the plain neural network) and to perform SVD on the
matrix composed of the two vectors put aside. Since these models were giving were not yielding
the accuracy we expected, we tried another to perform "embedded concatenation" where we would
concatenate the last hidden state of the plain neural network directly into each transformer block,
after the feed-forward layer.

Figure 1: Fusion model architecture
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RNN: The goal of the RNN architecture was to capture the potentially temporal nature of the notes’
progression for eye disease outcomes, and to avoid the concatenation of all the patient notes into a
single one. To do that, pretrained BERT and regular BERT were frozen, and CLS embeddings were
generated for each and every note. Then we collated every single embedding for each patient, and
created sequences of CLS tokens that correspond to each note over time for each patient. Then these
CLS token sequences were classified using a bi-directional LSTM classifier. The pretrained Bio-BERT
variant used was frozen so that the gradients does not overfit from learning as that is what occurred
when the fusion model above was trained. The primary goal was to see if the LSTM’s reccurent
capabilities captured the progression in the notes over time better than our pretrained transformer
alone, thus we did not pursue extensive optimization of this model due to time constraints.

Figure 2: BERT into RNN architecture

We take the embeddings that BERT creates and fed them
into a bi-directional LSTM. Which then for each token in
each sequence of CLS tokens, and sends it through each
timestep of the LSTM, from which we extract the last
hidden state associated with the last timestep.

Time Embeddings: To improve upon the LSTMs under-
standing of time, which we later had planned to insert into
transformers to replace the learned positional embeddings
- we trained a learnable parameter of time via Time2Vec.

For a given scalar notion of time τ , Time2Vec of τ ,
denoted as t2v(τ), is a vector of size k + 1 defined as follows adapted from Kazemi et al. (2019):

t2v(τ) =
{
ωiτ + αi, if i = 0

F (ωiτ + αi), if 1 ≤ i ≤ k

Here t2v(τ )[i] is the ith element of t2v(τ ), F is a periodic activation function, and ωi and αi are
learnable parameters.

We added this learnable parameter via a custom layer into the LSTM network. We experimented by
multiplying it through the hidden states, and also concacenating it to the input fed into the hidden
state. We decided to learn a matrix as an extension simply by changing the number of 1 dimensional
features it learned from a series of multi-dimensional features to see if it would increase AUROC -
it did not. The choice of sinusoidal activation function F that was used was simply sin(wj), so it
could learn the frequency representations of the data.

5 Experiments

5.1 Data

We used a dataset from Stanford medicine data warehouse that contained both structured inputs (e.g.
patient age, prior surgeries, ...) as well as free-text operatives notes. We held 20% for test and split
the rest between 80% for training and 20% for validation.

The structured data was pulled from various tables and contained 2k rows. It contained 5 types
of pre-operative information : prior surgeries, past diagnoses, drug usage, ophthalmology-related
clinical measurement and patient general information. One-hot-encoded columns were created (for
ophthalmology drugs, general drugs and diagnoses) and variance elimination was performed to only
keep the top-100 columns in each category. Clinal measurement (eye intraocular pressure – IOP, best
corrected visual acuity – BCVA, . . . ) and patient information (weight, height, use of tobacco, . . . )
were defined as the last non-null value measured before the operation. As previously mentioned,
surgical success was defined as a combination of decrease of the eye intraocular pressure below
19mmHg, decrease (or stagnation) of the number of drug prescribed and absence of other surgery/
revision surgery in the 5 years following the operation.

The unstructured data contained 80k notes, an average of 40 per surgery row. Stop words and
punctuation were removed before converting the notes to lowercase.
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Figure 3: Clinal note example (anonymized and masked)

5.2 Evaluation method

As the task consisted in classifying surgery records, we used the typical classification metrics. We
reported accuracy, F1 score, precision and recall but ran optimization based on accuracy.

We benchmarked different loss functions (cross entropy, binary cross entropy, mean square error and
KL divergence) and cross entropy yielded the best results. We weighted the loss function to account
for the class imbalance ( 60% False vs. 40% True).

5.3 Experimental details

We ran our experiments on 3 different pre-trained models: Bert Base Uncased (a general language
model), BioBert (a language model fine-tuned on medical data) and TinyBert (a general language
model 7 times smaller than traditional BERT). We ran grid-search on hyper-parameters (learning rate,
weight decay and optimizer) and launched experiments with the best-performing value. Learning
rate was set to 3× 10−5, weight decay to 10−2 and the optimizer to Adam with 2 steps of gradient
accumulation. We trained all the models on 5 epochs but used early-stopping

To include the structured inputs, we then performed grid-search to select the best feed forward neural
network architecture among the 20 tested, and picked a 4-layer one (256-128-64-32) and used ReLU.

Since our result contained a great amount of variability, we performed 5 fold cross-validation and
give all of our results averaged over these runs.

5.4 Results

We ran the experiments with the parameters aforementioned for all of our models, and obtained the
following results:

Table 1: Benchmark of the Accuracy, AUROC and F1 score of the model benchmarked

Model Accuracy AUROC F1
BERT (baseline) 0.620 0.534 0.211
BERT Pretrained 0.644 0.594 0.348
Best Fusion Model 0.647 0.629 0.312
BERT and LSTM w/o time embedding 0.618 0.518 0.232
BERT and LSTM w/ time embedding 0.616 0.510 0.263

Where the best fusion model is the late concatenation method with first CLS token retrieval. The
results of the other fusion models are below.

Overall, we were disappointed with our results. The accuracy we achieve is in line yet slightly below
the top-performing paper in the literature which managed to get an accuracy of 0.68 on a similar but
more restrained and somewhat simpler task (only looking at trabeculectomy surgeries). However, this
paper only used basic machine learning models (regression, random forest, KNN, ...) whereas we
deployed a range of more advanced deep learning models. We believe we were not able to outperform
this paper because of the difference in the nature of the task, the fact that we used distinct data sets
and possibly because the notes did not contain as much information as we expected.
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Table 2: Deep dive on fusion model results

Model Accuracy AUROC F1
Retrieval Approach: Average Pooling 0.624 0.598 0.278
Retrieval Approach: First CLS Token 0.633 0.614 0.312
Embedded Concatenation 0.618 0.523 0.212
Late Concatenate 0.647 0.629 0.312
Late Sum 0.628 0.624 0.303
Late Learnable Sum 0.631 0.611 0.309
Late Multiply 0.636 0.596 0.368
Late SVD 0.636 0.610 0.302

In terms of performance difference between our models, we were surprised to see that only one fusion
approach manages to increase accuracy vs. the plain BERT pre-trained model, with approach such as
embedded concatenation scoring even worse than our baseline. Similarly, feeding the last hidden
state of BERT in a LSTM seemed like a great idea but performed worse vs. our baseline and ended
up almost being a random guesser since with a ROC score of 0.51. In our case, "less was more" since
the plain pre-trained model already greatly increased the accuracy of the plain BERT model, and the
other approaches were only able to enhance it a little bit.

Finally, it is worth mentioning that our results were very noisy - and especially the F1 score since the
majority class was False and the classifier rarely predicted positive results. We averaged all of our
results over 5 cross validation runs to get a more stable picture of the model performances, but the
underlying issue of model variability remains present.

6 Analysis

Despite all our experimentation, our models did not meet the accuracy and AUROC score we were
expecting. We thus believe that their is not enough predictive information in the notes to make great
predictions with regard to the size of the dataset and the complexity of the task. We could potentially
improved the model accuracy if we could feed him with more data (since fusion and pre-trained have
some predictive power), yet it is unlikely to have much bigger dataset for such a specific task.

Taking a deeper look at the data, we noticed a pattern along the notes - a lot of them had a great
amount of content copied and pasted from the patient previous note (to keep the history of the patient
encounters in the note) with only the few last lines being new. This is not a problem unique to our
dataset, and we realized it was a common clinical practice Steinkamp et al. (2022). Our dataset could
easily be 50% smaller, as recent studies show that 50 % of all clinical notes are simply duplicates
of information. Thus, our hypothesis about time embeddings might not have panned out for this
particular task, as there might not have been strong markers of prediction in all the notes over time -
and even if there were - they were not recorded in enough notes as a great amount are duplicated.

7 Conclusion

Based on our experiments, the best performing model is the late fusion concatenation one which
leverages the structured data. This model not only had a slightly better accuracy vs text-only
approaches, but also a smallest variance in terms of accuracy and AUROC. We believe that the
additional structured information is slightly increasing and somehow stabilizing the predictive power
of the BERT-type model which contains a lot more noise.

Our work outlined the basic approaches and some of the problem that arise when using NLP for
this particular task and data - as this is the first study in the literature to handle this task with deep
learning to our knowledge. Even if we did not reached the level of accuracy expected, we showed
that NLP models can extract some predictive power from the free-text notes. Finally, although no
paper explicitly explored that, our supervisor Dr. Wang insisted on the fact that human performance
is typically "very very poor" on this type of task. Extracting some information from these notes is
thus already an encouraging result.
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A promising next step could be to train larger multi-modal systems with notes, text, and potentially
image data on all sorts of medical problems. We could then potentially use them via prompting
to come to inferences, and perform some few shot learning via prompting. We believe this is an
interesting path since our work clearly demonstrated that more general models like transformers
which learn positional embeddings outperform models that methods that are more specific such as
Time2Vec to learn time embeddings, and even LSTMs.

Finally, as pretraining is clearly the process that provided the model with a lot of knowledge, it could
also be interesting to focus on the data to retrieve larger or more specific database to further train our
existing models.
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