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Abstract

Deep molecular neural representations have demonstrated significant potential in
accelerating scientific research in the natural sciences. However, existing AI models
typically focus on pure graph-based representations, or knowledge extraction from
natural language, leaving a wide gap between these two modalities. In this paper, we
explore what a foundation model for chemistry could look like, by introducing and
evaluating improvements on a recently proposed molecular multimodal (MoMu)
model for contrastive joint text-graph representation learning (Su et al. [2022]).
By implementing neural relevance scoring strategies for retrieving molecule text
descriptions, and augmenting molecular graphs via more chemically relevant
transformations, we surpass MoMu’s performance on most MoleculeNet molecular
property predictions tasks. We explore zero-shot molecular generation based on
the improved graph encoders we trained, propose avenues for future work, and
highlight the ethics and safety implications of generative AI for molecules.

1 Introduction

Deep molecular representation learning models have demonstrated significant potential in accelerating
important tasks in natural sciences, such as predicting molecular properties, or generating and
screening candidates for drug discovery. However, existing AI models typically focus on either
graph-based representations, or knowledge extraction from natural language, leaving a gap between
these two modalities.

In this paper1, we focus on improving the work presented in the paper “A Molecular Multimodal
Foundation Model (MoMu) Associating Molecule Graphs with Natural Language”Su et al. [2022],
which aims to bridge the gap between language-based and graph-based representations of molecules
by introducing a molecular graph-text multimodal model trained through contrastive learning.

Our primary objective is to investigate how much molecular information natural language encodes
by exploring the generation of graphs representing molecules based on textual descriptions of
their desired properties. It is important to note at the outset that, while aligning graph and text
representations is necessary in order to perform multimodal tasks such as molecule generation, it
is an open question whether this also improves the performance of graph representation on other
downstream tasks such as property prediction. We set out to explore this question in this paper.

1We are sharing the project across two classes—Prof. Chris Manning’s Natural Language Processing with
Deep Learning (CS224N) and Prof. Jure Leskovec’s Machine Learning with Graphs (CS224W)—and are
collaborating with Jeff He and Andrew Gaut (CS224W students).
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Our contributions. We propose improvements to the model presented in the original paper aimed
at enhancing the molecular representations it learns, as measured by their performance on downstream
tasks. Specifically, we hypothesize that the text retrieval strategy employed for training the text
encoder through contrastive learning is critical for the model’s performance. We present neural
relevance based methods to improve text sampling over uniform random draw, and implement novel
approaches for chemically-relevant graph augmentation. We hope our improvements on the original
model, along with experimental results and identified avenues for future work, contribute to the
development of more expressive multimodal molecular models for the natural sciences.

2 Related Work

Molecular representation learning. Molecular representation learning plays a vital role in the
study and analysis of chemical compounds. Traditional molecular representations, such as SMILES
strings Weininger [1988] and InChI Heller et al. [2015], are linear notations that encode molecular
structures into strings. However, they have limitations when it comes to modeling complex molecular
properties and reactions. To overcome these shortcomings, several graph-based representations have
been proposed, including molecular graphs Kearnes et al. [2016] and attributed molecular graphs
Duvenaud et al. [2015]. These graph-based representations have been shown to better capture the
structural and functional properties of molecules.

Graph-based methods. Graph-based methods have been widely adopted in cheminformatics to
model molecules and predict their properties. Graph Convolutional Networks (GCNs) Kipf and
Welling [2016], Graph Attention Networks (GATs) Veličković et al. [2017], and Message Passing
Neural Networks (MPNNs) Gilmer et al. [2017] are popular graph neural network architectures
used for molecular property prediction, drug discovery, and materials science. These methods
have demonstrated their potential to outperform traditional machine learning algorithms in various
molecular prediction tasks Wu et al. [2018a].

Language models in chemistry. The advent of deep learning-based language models, such as GPT
Radford et al. [2018], BERT Devlin et al. [2018], and T5 Raffel et al. [2019], has revolutionized
natural language processing. Researchers have started exploring their potential in cheminformatics,
leading to the development of models such as ChemBERTa Korolev et al. [2020] and MolBERT
Napolitano et al. [2021]. These models have shown promising results in tasks like reaction prediction,
retrosynthesis, and molecular property prediction. Furthermore, generative models have been used to
design novel molecules with desired properties Gómez-Bombarelli et al. [2016], Kusner et al. [2017].

Multimodal learning. Multimodal learning aims to integrate information from different modalities
to improve overall model performance. Recent advances in this area include models such as CLIP
Radford et al. [2021] and ALIGN Jia et al. [2021], which bridge the gap between vision and language
tasks. MoMu Su et al. [2022] is a pioneering work in the field of molecular multimodal learning,
aiming to combine graph-based and language-based representations of molecules for improved
performance in various tasks.

3 Approach

3.1 Foundation Model Paradigm: Pretrain & Finetune

We approach the task of generating molecules from natural language through the lens of the foundation
model paradigm, following the pretrain and finetune methodology (Liang et al. [2021]). Specifically,
we proceed in three steps: pretraining a model, evaluating its performance by fine-tuning it on
downstream classification tasks, and ultimately using it as the basis for a downstream generation task.

We train and evaluate joint text-graph representations for deep multi-modal generation as follows:

• We jointly pretrain a bidirectional transformer for text encoding (SciBERT) Beltagy et al.
[2019b] and a Graph Isomorphism Network (GIN) Xu et al. [2018] for graph encoding
through contrastive learning over a joint text-graph dataset;
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• We then finetune the graph encoder on a series of molecular property prediction tasks, and
evaluate the quality of our pretraining based on performance on these downstream tasks;

• Finally, we use embeddings encoded by our text encoder as the input to a separate flow-based
deep graph generative model, to generate molecules from natural language.

3.2 Multimodal Contrastive Pre-Training

3.2.1 Contrastive Learning Strategy

Figure 1: Contrastive pre-training of joint representations of molecular graph-text. Our contribution
focuses on improvements to the retrieval strategy, which we evaluate on downstream tasks .

The core machine learning task in our approach is to learn aligned representations of pairs of
molecule graphs and text describing the properties of that molecule. We use the self-supervised
learning technique of contrastive learning, based on a loss function which promotes smaller euclidian
distances in the joint latent space between graph and text samples of the same data samples (positive
pairs), and larger euclidian distances between different samples (negative pairs). Building on the
original implementation of Su et al. [2022], we use the following contrastive learning paradigm:

• At train time, form a random batch of molecules i ∈ [1, ..., N ] molecules.

• From the original Gi graph, form 2N graphs {G̃1
i , G̃2

i } through random augmentations.
• Randomly sample 2N text samples {T 1

i , T 2
i }, each associated with molecule i.

The InfoNCE loss function (Oord et al. [2018]) promotes proximity between matching cross-modality
(Ti, G̃i) and graph (G̃1

i , G̃2
i ) embedding pairs from the same molecule, and higher distance between

non-matching pairs, by summing the following pair-wise losses (here, for a cross-modality pair):

ℓ(Ti, G̃i) = −log
exp

(
cos(zTi , zGi )/τ

)∑
j ̸=i exp

(
cos(zTi , zGj )/τ

)
3.2.2 Pre-trained text and graph encoders

The goal of contrastive pre-training is to align the representations of matched text fragments and
molecular 2D graphs in the same embeddings space. For efficiency purposes, we start with previously
pre-trained models for both our text encoder and our graph encoder, which we present.

To optimize for extraction of information from fragment of scientific papers, we base our text encoder
on SciBERT (Beltagy et al. [2019a]), a pre-trained language model based on BERT (Devlin et al.
[2019]), trained on a large multi-domain corpus of scientific publications to improve performance on
downstream scientific NLP tasks.

Graph Isomorphism Networks (GINs) are a class of Graph Neural Networks (GNNs) which are
demonstrably the most expressive graph network. For our graph encoder, we use the GraphCL
80 GIN model from You et al. [2020], a 1.9 million parameters model pre-trained through graph
contrastive learning on MoleculeNet Wu et al. [2018b].

3



3.3 Relevance-Based Sampling

3.3.1 Neural Text Relevance Scoring

The original paper retrieves text sequences by sampling two paragraphs per molecule with uniform
sampling. This approach does not consider the relevance of the retrieved paragraphs to the molecule’s
properties or structure, as mentioned by the authors themselves.

To address this issue, we propose a neural text retrieval strategy informed by the relevance of each
text segment for the molecule it describes. For each paragraph, we compute the cosine similarity
between the paragraph and a natural language query. We then sample paragraphs according to the
distribution of the cosine similarity scores, with a higher probability of selecting paragraphs with
higher cosine similarity.

Specifically, we experiment with queries designed to ensure that the selected paragraphs are more
likely to be relevant to the molecule’s properties or structure:

• mean similarity: average embedding vector of name and top 20 synonyms of the molecule

• max similarity: maximum cosine score with any of the name or the top 20 synonyms

• sentence similarity: natural language query consisting of the following sentence:

“Molecular, chemical, electrochemical, physical, quantum mechanical, biochemi-
cal, biological, medical and physiological properties, characteristics, and applica-
tions of {name}, a compound also known as {synonym1}, . . . , or {synonymn}.”

We then apply epsilon sampling to rank paragraph by the cosine score and sample only from scores
above a threshold, using the probability distribution (re-normalized over the strictly positive terms).
We also introduce a temperature hyper-parameter to skew the sampling distribution towards the
highest cosine score terms, and run experiments for several values:

P(paragraphi∈[1..N ]) = Softmax
(

cos(zquery, zi)
Temp

)
if ≥ ϵ

N

3.3.2 Chemically Relevant Graph Augmentations

The original model aim to improve on graph contrastive learning by adding random graph augmenta-
tions at sample time and add a intra-modality constrative loss terms to the loss function. Howeer,
their augmentation strategy uses random node drops or random-walk subgraphs, which do not take
into account the chemical constraints of the molecule graph such as bond valence.

Here, we introduce graph augmentations inspired by actual chemical reactions, in hope to improve
molecule representations after training. Specifically, we implement augmentations corresponding to
the following methylation/de-methylation and amination/de-amination reactions:

R−H+CH4 −−⇀↽−− R−CH3 +H2 R−H+NH3 −−⇀↽−− R−NH2 +H2

3.4 Molecular Property Prediction

Molecular generation is an open-ended tasks, and measuring performance is a challenge in the absence
of access to a wet lab to synthesize and evaluate properties of generated molecules. Instead, as our
measure of the quality of our graph representations, we use a set of downstream classification tasks
aimed at predicting various properties of molecules based only on their molecular graph structure.

From pre-training, we obtain two encoders that embed molecular graph and text descriptions within
the same joint latent space:

fG : G → zG fT : T → zT

We fine-tune our graph encoder for classification problems by adding a classifier layer, which we
adapt and fine-tune to each specific downstream task and dataset:

CLASSIFIER(·) ◦ fG : G → ŷG
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3.5 Zero-Shot Molecular Generation from Natural Language

The ultimate goal of training aligned text-graph neural representations is to enable the flow of
information from one modality to the other. Specifically, the authors of Su et al. [2022] introduce
zero-shot molecular generation from natural language. Here, we leverage our text encoder’s ability to
encode a representation of text that corresponds to a molecular graph in the joint latent space.

In this task, we use MoFlow, a previously-trained flow-based deep molecular generative model that’s
design to generat chemically valid molecular graphs based on their latent representation (Zang and
Wang [2020]). We feed embeddings generated by our text encoder to MoFlow and use it to generate
candidate molecular graphs intended to match the natural language prompt:

MoFlow(·) : zG → Ggen ⇒ MoFlow(·) ◦ fT : T → zT ≃ zG → Ggen

Here, zero-shot refers to composing our text encoder with the flow-based model out of the box,
without any fine-tuning. Training our own flow-based model was beyond the scope of this project. For
future work, we could train a generative model to reverse our graph encoder, and generate molecules
from prompts embedded by our text encoder.

4 Experiments

4.1 Data

4.1.1 Contrastive Pre-Training Data

We train on the molecular graph-text pairs dataset presented in figure 3, constructed in Su et al.
[2022] by retrieving scientific papers in the S2ORC [Lo et al., 2020] database by using the name and
synonyms of compounds from PubChem [Kim et al., 2022] as query, and transforming their SMILES
intro a molecular graph using OGB smile2graph Hu et al. [2020].

The dataset comprises of 15,613 graph-document pairs, with 37 million paragraphs or 47.5 gigabytes
of text (∼3 megabytes per molecule). To make training tractable, the text beyond the first 500
paragraphs per molecule is left out.

Importantly, the molecule graph and text sequences datasets are only weakly correlated: text fragments
are extracted form the original SO2RC database on the basis of the name of the molecule appearing
in that paragraph, with no further controls for relevance.

Lastly, the dataset is highly bi-modal: out of 15,613 text-graph pairs, 8,700 samples have less than 50
paragraphs of text, and 2,967 molecules have ≥500 paragraphs. Our sampling strategies based on
cosine similarity scores aim to counter this inherent imbalance, by training on most of the small text
corpus for the sparsely described molecules, and only relevant text for richly described ones.

4.1.2 Downstream Task Evaluation Data

We evaluate our models by fine-tuning them on the relevant classification task of a series of chemical
and biological datasets from MoleculeNet Wu et al. [2018b], a multi-faceted set of benchmark tasks
and reference datasets. Specifically, we use the following datasets retrieved from DeepChem:

• BACE: classification of inhibitors of a human enzyme involved in Alzheimer, which, if
blocked, may prevent build up of proteins in the brain associated with the disease.

• BBBP: classification for the prediction of blood-brain barrier penetration by small molecules.

• Clintox: classification of drugs approved/rejected by the FDA for toxicity.

• MUV: classification for virtual molecule screening built on PubChem.

• SIDER: classification of adverse side reactions of marketed drugs.

• Tox21: classification of toxicity measured by biological reactions and stress response.

• ToxCast: classification over 600 tasks linked to in vitro toxicology data.
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4.2 Evaluation Metrics

We use downstream task Area Under Receiver-Operator Curve (AUROC) metric as our main perfor-
mance metric to evaluate the quality of the representations learned through each experiment.

Specifically, we fine-tune our pre-trained models on 7 different classification tasks on corresponding
MoleculeNet datasets. We fine-tune each model separately for 20 epochs for each of the data sets (15
epochs for MUV), and for 3 random seeds each (about 40 minutes for each model). We then compute
the test set AUROC obtained on the epoch with the highest validation set during fine-tuning. Finally,
we average this score over several random seeds to report more statistically robust results.

We use this max-validation test set AUROC performance metric averaged across downstreams as a
measure of the quality of each pretrained model, and report it in the summary table in figure 4.

4.3 Experimental Details

The core hypothesis behind our work is that training on more relevant text should increase the quality
of the graph representations we learn. We set out to test this hypothesis with the experiments below.

4.3.1 Baseline

As our baseline, we use the original model presented in Su et al. [2022] which uses the architecture
introduced here, but samples text and graph augmentations with a uniform random distribution. We
run a pre-training of this model on our full joint text-graph dataset, for 30 epochs with learning rate
0.001, which took about 2 hours on a Google Cloud NVIDIA A100 VM GPU.

We also seek to evaluate any gains in performance on downstream tasks from contrastive pre-training,
and present the downstream tasks performance of the GraphCL 80 GIN with no joint graph-text
pre-training, as reported by the authors of Su et al. [2022].

4.3.2 Naive Text Relevance

Relevance-based sentences pruning: to explore whether sampling more relevant text during
pre-training improves the quality of learned representations, we pre-process each paragraph in the
text corpus by leaving only the sentences of each paragraph which explicitly include the name of the
molecule, or any of the top 20 synonyms retrieved from PubChem Kim et al. [2022]. This results
in an ∼80% smaller text corpus, and we report results in the Experiments section showing that this
approach does result in measurable gains in downstream performance.

Length-based paragraph pruning: for validation purposes, we control whether these gains may
be simply due to training on a smaller, thus potentially less noisy dataset. We train and evaluate a
model trained on the first 256 characters of each paragraph.

Performance gains from the first method are consistent across downstream property prediction tasks,
compared to inconsistent results form the second one, which encourages us to seek to improve text
relevance at sampling time.

4.3.3 Neural Text Relevance

Cosine similarity pre-processing: to speed up retrieval at train time, we pre-compute the cosine
similarity scores for each paragraph in the dataset, with each of the query types in our experiments
(mean, max, sentence). We computed embeddings and similarity score over the entire dataset and
set of queries, for a total of about 6 hours on a Google Cloud VM NVIDIA A100 GPU.

Cosine similarity retrieval: based on the hyper-parameter search detailed above, we ran experi-
ments on the 3 cosine similarity query types, with 3 hyper-parameters each. We conducted an intrinsic
evaluation based on hand labeling of a small sub-set of text paragraphs, which we present in appendux
(table 1). To maximize the retrieval F1 score implied by our intrinsic evaluation, we chose ϵ = 0.5
and Temperature = {0.05, 0.1, 0.2}. For each model, we ran 30 epochs over the shortened dataset,
for about 2h each.
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Pre-training BACE BBBP Tox21 ToxCast SIDER ClinTox MUV

Before any pre-training
(reported) 70 ±0 65.8 ±0 74 ±0 63.4 ±0 57.3 ±0 58 ±0 71.8 ±0

Baseline 70.31 ±3.67 68.04 ±1.67 74.6 ±0.68 63.27 ±0.53 59.39 ±0.51 61.09 ±1.1 75.66 ±0.55
Baseline (pruned) 71.14 ±1.93 67.86 ±2.1 74.77 ±0.37 62.71 ±1.3 59.31 ±0.72 61.17 ±1.39 75.18 ±1.06
Baseline (relevant) 72.13 ±0.47 68.73 ±2.21 74.85 ±0.3 62.47 ±0.66 60.05 ±0.7 59.99 ±1.73 74.47 ±0.95
Cosine similarity mean (best) 72.6 ±2.77 68.48 ±1.68 74.54 ±0.7 63.37 ±0.72 60.07 ±0.41 61.36 ±3.36 75.07 ±1.13
Cosine similarity max (best) 72.71 ±0.59 68.27 ±2.35 74.77 ±0.45 63.73 ±0.59 60.14 ±1.05 62.28 ±1.61 75.15 ±1.07
Cosine similarity sent (best) 72.05 ±0.52 68.11 ±2.5 74.94 ±0.79 63.6 ±0.29 59.84 ±0.24 61.47 ±2 74.61 ±0.27
Graph augmentation 71.45 ±2.24 69.23 ±0.93 74.31 ±0.36 62.61 ±0.49 61.33 ±0.69 58.97 ±2.22 75.03 ±1.52

4.3.4 Chemical Graph Augmentation Relevance

Lastly, we trained a comparison model trained on a uniform random text sampling strategy, but with
chemically-relevant molecular graph augmentations, for a full 30 epochs run.

4.4 Results

We report the experiments we ran and their performance on downstream molecular property predic-
tions tasks in table 4.4.

5 Analysis

5.1 Molecular Property Prediction

We improved on the original paper for 6 of the 7 MoleculeNet datasets on the molecular property
prediction downstream task, as seen in the experimental results displayed in Table 4.4.

Specifically, max and sent cosine similarity in general tend to perform better than mean cosine
similarity.

Lastly, we found that graph augmentations which happen during dataset retrieval markedly improved
the results on two datasets: BBBP and SIDER. Our augmentation, which modifies the graph in a
more chemically-relevant manner, outperformed all other neural text retrieval methods when run on
uniforma draw.

We conclude from our experiments that improving relevance of sample retrieval improves the quality
of the representations obtained through contrastive pre-training.

5.2 Molecular Generation

We experiment with molecular generation from natural language prompts using MoFlow and our text
encoder trained through contrastive pre-training, and illustrate results in figure 2.

Figure 2: Examples of molecular generation from a text prompt using MoFlow and our trained text
encoder.

We observe that zero-shot molecular graph generation does generate plausible structures from natural
language, and offers the exciting prospect of interacting with molecular structures through instructions
in natural language.
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An important observation is while molecules generated by MoFlow are designed to follow the laws
of chemistry (valence, partial charges), zero-shot molecular generation can lead to unexpected results.
A demonstration here for the molecule generated from the prompt “this molecule has a hydroxyl
group and a carbonyl group”, which does include a hyroxyl group (-OH), but includes the carboxyl
group inside of a furan ring, and includes a Chlorine atom.

This points to a potential future improvement, as we expect to generate more usual molecules if we
trained our own flow-based generative model aligned with the embeddings generated by our text
encoder.

6 Conclusion

In conclusion, we have demonstrated an improved strategy for multimodal contrastive learning of
molecule representations from text corpora by incorporating neural relevance scoring at sampling
time. Our approach outperforms the baseline model (MoMu) for the downstream task of molecular
property prediction on most MoleculeNet datasets.

6.1 Future work

Evaluation of deep generative tasks in general, and molecular generation tasks in particular, is an
open challenge in machine learning Yousefzadegan Hedin [2022]. An important next step would be
to develop quantitative. We could both to ensure generated graphs are chemically relevant and to
improve molecule fit with desired properties. An

Another potential improvement on . Training on flow-based generative model from the start was
beyond the scope of the current project, but we could use our trained graph encoder as a teacher
model to train our own flow

6.2 AI ethics and safety

As we continue to develop advanced foundation models for chemistry, it is essential to consider
the ethical implications and safety concerns associated with the generation of molecules using AI.
In this section, we discuss the potential risks associated with generative AI models for molecules,
outline strategies for mitigating these risks, and propose guidelines for responsible development and
deployment of these models.

6.2.1 Generation of Dangerous Molecules

The ability of AI models to generate novel molecules based on textual prompts can potentially
lead to the creation of dangerous or harmful compounds. These could include toxic chemicals,
environmental pollutants, or even molecules with potential applications in biological or chemical
warfare. As illustrated in Figure 2, our model can potentially generate such molecules. To address
this concern, we propose the following strategies:

• Restricted access to limit model access to authorized researchers and institutions.
• Output filtering to prevent the generation of dangerous molecules through safety filters.
• Collaboration with regulatory bodies, such as United States Environmental Protection

Agency (US EPA), European Chemicals Agency (ECHA) or Food and Drug Administration
(FDA), to ensure compliance with existing chemical safety regulations.

• Education and awareness to raise ethical considerations among researchers, institutions,
and the public.

By following the above guidelines, we can ensure that the development and use of AI models in
chemistry remain secure and ethical.
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A Appendix

A.1 Dataset Construction

We train on the molecular graph-text pairs dataset presented in figure 3, constructed in Su et al.
[2022] by retrieving scientific papers in the S2ORC [Lo et al., 2020] database by using the name and
synonyms of compounds from PubChem [Kim et al., 2022] as query, and transforming their SMILES
intro a molecular graph using OGB smile2graph Hu et al. [2020].

The dataset comprises of 15,613 graph-document pairs, with 37 million paragraphs or 47.5 gigabytes
of text (∼3 megabytes per molecule). To make training tractable, the text beyond the first 500
paragraphs per molecule is left out.

We present the dataset construction process in figure 3.
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Figure 3: Joint molecular graph-text samples data set based on the PubChem and S2ORC database.

A.2 Intrinsic Evaluation for Hyper-parameter Search

To inform our search for the hyper-parameters with which to compute cosine similarity scores
for sampling purposes, we ran an intrinsic evaluation of several potential retrieval methods and
hyper-parameters.

We hand labeled each paragraph in a small subset of text samples, and used paragraphs which all
labelers classified as relevant to the molecule as the ground truth for our retrieval problem.

We controlled for consistency between different human labelers by using Cohen’s Kappa (Cohen
[1960]). We report a score of 0.4874.

We varied the temperature and epsilon hyper-parameters and computed recall, precision and F1 score
based on the ground truth from hand labeling. Results for the mean similarity query schema are
reported in figure 1.

On the basis of these results, we chose to run our cosine similarity pre-training experiments with
ϵ = 0.5 and Temperature = {0.05, 0.1, 0.2}.

Temperature 0.05 0.1 0.2 0.05 0.1 0.2
Epsilon 0.5 0.5 0.5 1 1 1

Recall 0.5 0.7419 0.9354 0.3 0.4375 0.5
Precision 0.5172 0.5227 0.5178 0.5294 0.56 0.5172
F1 score 0.5085 0.6133 0.6667 0.383 0.4912 0.5084

Table 1: Intrinsic evaluation for the selection of epsilon sampling hyper-parameters.
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Figure 4: Visualization of the results of our experiments.
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