
BERT for Sentiment Analysis, Paraphrase Detection and
Semantic Textual Similarity with Cosine Similarity

Stanford CS224N Default Project

Debolina Paul
Department of Statistics

Stanford University
deblinap@stanford.edu

Abstract

BERT, which stands for Bidirectional Encoder Representations from Transformers
(Devlin et al., 2018), is a language model based on the transformer architecture that
produces contextual word representations. For the initial phase of this project, senti-
ment analysis was conducted on two datasets - Stanford Sentiment Treebank (SST)
and CFIMDB. In the extended phase of the project, a multitask implementation
of minBERT was trained to perform sentiment analysis, paraphrase detection, and
semantic textual similarity tasks simultaneously on the SST, Quora and SemEval
datasets. In single tasks as well as multitask, BERT is experimentally shown to
perform effectively on all datasets.

1 Key Information to include

• Mentor: N/A
• External Collaborators (if you have any): N/A
• Sharing project: N/A

2 Introduction

Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2018) is a model
that uses the transformer architecture to create contextual word representations. It is a significant
advancement in contextual word embeddings, large language models, and foundational models
since it incorporates bidirectional word representations. The transformer architecture enables BERT
to understand the relationships between words and capture long-range dependencies, making it a
powerful language model.

The first challenge in the project was to do sentiment analysis using BERT. “Sentiment Analysis"
is the task of understanding the polarity of a given text, i.e. whether the text is positive, negative or
neutral. In this project we are doing sentiment analysis using BERT on two movie review datasets,
namely, the Stanford Sentiment Treebank1 (SST) dataset and the CFIMDB2 dataset. To do sentiment
analysis, a pretrained original BERT model, both with and without finetuning, has been used. The
mean accuracies for the dev split are reported for both of these datasets after training on the train
splits.

For the extension I implemented the multitasking via BERT suggested in the handout3. BERT
performs multitasking by jointly training the model on multiple tasks simultaneously. BERT has
a shared encoder that can be fine-tuned for different downstream tasks, such as sentiment analysis,

1https://nlp.stanford.edu/sentiment/treebank.html
2https://ai.stanford.edu/~amaas/data/sentiment/
3http://web.stanford.edu/class/cs224n/project/default-final-project-bert-handout.

pdf

Stanford CS224N Natural Language Processing with Deep Learning

https://nlp.stanford.edu/sentiment/treebank.html
https://ai.stanford.edu/~amaas/data/sentiment/
http://web.stanford.edu/class/cs224n/project/default-final-project-bert-handout.pdf
http://web.stanford.edu/class/cs224n/project/default-final-project-bert-handout.pdf


paraphrase detection, and semantic textual similarity (STS). During multitask training, BERT is
optimized to minimize a weighted sum of the loss functions of all the tasks. The weights can be fixed
or learned dynamically based on the performance of each task. This way, BERT can learn to share
and transfer knowledge across tasks, which can improve its overall performance and reduce the need
for task-specific architectures. Moreover, BERT can benefit from pretraining on large amounts of
data using an unsupervised objective, such as masked language modeling (MLM) or next sentence
prediction (NSP). This pretraining allows BERT to learn general language representations that can be
adapted to specific tasks with fine-tuning. The multitask fine-tuning of BERT can further enhance its
ability to capture complex linguistic phenomena and improve the robustness of its embeddings.

The main objective of the extension of the project is to investigate methods for constructing strong
embeddings that can demonstrate high performance across a diverse set of tasks, rather than being
limited to just one. The multitasking mainly consists of three tasks implemented by the BERT -

• Sentiment Analysis: Predicting sentiment scores of sentences.
• Paraphrase Detection: Predicting whether a sentence pair are paraphrases of each other.
• Semantic Textual Similarity: Predicting the similarity of two input texts.

The Stanford Sentiment Treebank (SST), Quora4 and SemEval Agirre et al. (2013) Benchmark
datasets have been used for evaluating the multitask results for sentiment analysis, paraphrase
detection and semantic textual similarity (STS) respectively.

3 Related Works

The prevailing models for sequence transduction rely on sophisticated recurrent or convolutional
neural networks that comprise both an encoder and a decoder. The most successful models incorporate
an attention mechanism that links the encoder and decoder. Vaswani et al. (2017) introduced a network
structure called the Transformer. This architecture is founded entirely on attention mechanisms and
does not require the use of recurrent or convolutional layers, which proved to achieve significant
improvement in language modelling tasks.

Based on this attention mechanism, Devlin et al. (2018) proposed the BERT architecture, which
has been used successfully in several language processing tasks such as sentiment analysis, text
classification etc. Several language modelling techniques have been proposed in the literature such as
Howard and Ruder (2018); Ziegler et al. (2019) and so on.

4 Approach

In this project, we approached two tasks using BERT for the given datasets. The first is the Sentiment
Analysis for the given movie review datasets where we do classification on BERT’s output to
positive, negative and neutral sentiments. The second approach is extension for additional datasets
for multitasking on sentiment analysis, paraphrase detection and semantic textual similarity.

4.1 BERT for Sentiment Analysis

BERT can perform sentiment analysis by fine-tuning its pre-trained language model on a sentiment
analysis task. This involves adding a classification layer on top of BERT’s output, which predicts
the sentiment label (e.g., positive, negative, or neutral) of a given input text. The classification layer
consists of a fully connected layer followed by a softmax function, which computes the probability
distribution over the sentiment labels.

Tokenization of input is a critical step that converts text into a format that can be processed by
the model. The first step is to split the raw text into words using a word tokenizer. In BERT, the
word tokenizer used is WordPiece, which splits words into sub-words based on their frequency in a
large corpus of text. BERT requires the addition of special tokens at the beginning and end of each
sequence of tokens. The [CLS] token is added at the beginning of the sequence, and the [SEP] token
is added at the end of each sentence or document. Unknown words are assigned a special [UNK]

4https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

2

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs


token. The next step is to convert each word or sub-word into an integer index using a vocabulary file.
The vocabulary file contains a mapping of each word or sub-word to a unique integer index. Since all
sentences are required to be of the same length, long sentences are truncated and short sentences are
padded with a [PAD] token. Positional embeddings, that are learned for each of the 512 positions in a
given BERT input are utilized to encode the position of different words within the input. The input
embeddings that are utilized later in the model are the sum of the token embeddings, the segmentation
embeddings, and the position embeddings.

Multihead Self Attention The 12 Transformer architecture for the base BERT makes it possible to
parallelize the ML training efficiently. Transformers in BERT consist of two linear-transformations
and a ReLU activation layer, but the most important part it uses is the multi-headed self-attention
mechanism, which is responsible for sentiment analysis. It is a scaled dot-product attention which
is applied across multiple heads. Each head takes as input queries and keys of dimension dk, and
values of dimension dv. The dot product of the query with all keys is computed, and each result is
divided by

√
dk. A softmax function is applied to obtain weights on the values, and the final output

is obtained by multiplying the values with the weights. BERT performs this attention function on
a matrix of queries, keys, and values, and computes the multi-head attention by concatenating the
output of each attention head and multiplying it with a parameter matrix WO.

The multi-head attention is computed as:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

where headi = Attention(QWQ
i ,KWK

i , V WV
i ) and WQ

i ∈ Rdmodel×dk , WK
i ∈ Rdmodel×dk , WV

i ∈
Rdmodel×dv , and WO ∈ Rhdv×dmodel are parameter matrices.

The Multihead attention layer of BERT helps in sentiment analysis by allowing the model to attend
to different parts of the input sequence simultaneously. This enables the model to capture the most
important parts of the input that are relevant for predicting the sentiment of the text.

Masked Language Model (MLM) enables bidirectional learning from a given text by masking a word
in a sentence and forcing BERT to bidirectionally use words on both sides to predict the masked
word. For BERT, a random 15% of the tokenized words are hidden during training and BERT’s job is
to correctly predict the masked words. In 80% of these cases,

4.2 BERT for Multitasking

BERT (Bidirectional Encoder Representations from Transformers) performs multitasking by jointly
training on multiple tasks using a shared set of parameters. This is achieved using a multi-task
learning (MTL) approach Liu et al. (2019), where a single model is trained to perform several tasks
simultaneously.

Mathematically, the MTL approach can be formulated as follows:

Given a set of N tasks, T1, T2, . . . , TN , and a training set for each task, D1, D2, . . . , DN , the
objective is to minimize the following loss function:

Ltotal =
∑N

i=1 λiLi

where λi is a weighting coefficient that determines the importance of each task, and Li is the
task-specific loss function for the ith task.

The task-specific loss function Li is typically defined as the cross-entropy loss between the predicted
labels and the ground truth labels for the task. For example, in sentiment analysis, Li would be the
cross-entropy loss between the predicted sentiment labels and the true sentiment labels.

During training, BERT is optimized to minimize the total loss, Ltotal, by updating the shared set of
parameters that are used for all tasks. This allows BERT to learn task-specific features that are useful
for multiple tasks and improves its ability to perform well on different tasks simultaneously.

In summary, BERT performs multitasking by jointly training on multiple tasks using a shared set
of parameters, which are optimized to minimize a total loss function that combines the losses of all
tasks with different weighting coefficients.

3



5 Experiments

The experiments are conducted as follows.

5.1 Data Description

The first dataset used in this project is the Stanford Sentiment Treebank5 (SST) dataset. The dataset is
comprised of 11, 855 individual sentences that were extracted from movie reviews. To prepare the
dataset for analysis, the Stanford parser was used to parse the text, resulting in a total of 215, 154
unique phrases extracted from the parse trees. Each phrase in the dataset was analyzed by three
human judges and assigned a label among the following: negative, somewhat negative, neutral,
somewhat positive, or positive. The dataset has been split into three subsets for training, development,
and testing namely, train (8, 544 datapoints), dev (1, 101 datapoints) and test (2, 210 datapoints)
respectively. It has been used for sentiment analysis as a single task and under multitasking.

The second dataset used for this project is also a movie review dataset, called the CFIMDB6 dataset.
The CFIMDB dataset contains 2, 434 movie reviews that are highly polarized and have been labeled
as either negative or positive. It is worth noting that some of these reviews consists of multiple
sentences. The dataset has been divided into three subsets for training, development, and testing
namely, train (1, 701 datapoints), dev (245 datapoints) and test (488 datapoints) respectively.

The Quora7 dataset contains 400, 000 pairs of questions, labeled to indicate whether they are para-
phrases of each other. A split of the dataset is provided, which includes 141, 506 training examples,
20, 215 development examples, and 40, 431 testing examples. The dataset has been used for evaluat-
ing paraphrase detection in the multitask extension.

The SemEval STS Benchmark dataset Agirre et al. (2013) contains 8, 628 pairs of sentences with
varying degrees of similarity, ranging from 0 (unrelated) to 5 (equivalent meaning). The dataset is
commonly used for evaluating algorithms for semantic textual similarity. The dataset is split into
6, 041 training examples, 864 development examples, and 1, 726 testing examples. This dataset has
been used for paraphrase detection under multitasking via BERT.

5.2 Evaluation method

We have evaluated the performance of BERT sentiment analysis based on accuracy. The BERT is first
trained on the training datasets and then we try to estimate the labels of the dev and test datasets. To
evaluate the efficacy of the classification, we use the metric accuracy, which is defined as the fraction
of the correctly classified datapoints.

5.3 Experimental details

We have run the baseline for the report, i.e. sentiment analysis for SST and CFIMDB datasets using the
starter code provided for the project. For pretrain, we used epochs to be 20, hidden_dropout_prob
to be 0.3 and the rest of the parameters as default. For finetune, we used 20 epochs keeping the rest
of the parameters as default. For multitask, all the default parameters have been used with number of
epochs being 10.

For the extension to additional downstream task, we extended it for multitask classifier. For training,
I used SST, Quora and STS datasets together. Since the SST dataset is a multiclass dataset with
5 classes, we use the cross entropy loss for training. For the Quora dataset, the labels are binary
indicating whether or not two sentences are paraphrases of each other and hence I used the binary
cross entropy loss. For the SemEval dataset, the labels indicate varying similarity between sentence
pairs on a scale from 0 (unrelated) to 5 (equivalent meaning) and hence for this, I used the Mean
Squared Error (MSE) loss. Finally, all the three different loss are added together and minimized
for training. For optimization, I have used Adam Optimizer based on Decoupled Weight Decay
Regularization Loshchilov and Hutter (2017) and Adam: A Method for Stochastic Optimization
Kingma and Ba (2014).

5https://nlp.stanford.edu/sentiment/treebank.html
6https://ai.stanford.edu/~amaas/data/sentiment/
7https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

4

https://nlp.stanford.edu/sentiment/treebank.html
https://ai.stanford.edu/~amaas/data/sentiment/
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs


5.4 Results

The results obtained for the Sentiment analysis on SST and CFIMDB datasets for both pretrain and
finetune have been summarized in Table 1. The results show that BERT is accurate in classification
when finetuning have been used. This is because finetuning uses the labeled data for training as
opposed to the pretraining.

Dataset Method Train Accuracy Dev Accuracy

SST Pretrain 0.337 0.316
SST Finetune 0.984 0.517

CFIMDB Pretrain 0.600 0.653
CFIMDB Finetune 1.000 0.967

Table 1: Accuracy obtained for training and deviation datasets for Sentiment Analysis

The results obtained for multitask is summarized in Table 2 for different tasks. Comparing the result
for sentiment analysis with pretraining, we can see that BERT is almost as efficient in multitasking as
in handling a single task. To increase the efficacy of BERT, we can maybe further pretrain the model
or use finetuning.

Task Dataset Train Accuracy Dev Accuracy

Sentiment analysis SST 0.310 0.307
Paraphrase Detection Quora 0.631 0.625

Textual Similarity STS 0.235 0.233
Table 2: Training and Dev Set Accuracy for Multitask via BERT evaluated on different datasets

6 Analysis

The obtained results for Sentiment Analysis show that the accuracy obtained for the SST dataset for
both pretrain and finetune is much lower than that obtained for CFIMDB dataset. This may be due to
the fact that analysis is much easier when there are just 3 classes compared to 5 because trying to
understand whether a review is strongly positive or moderately positive is a lot harder than trying to
understand if the review is positive vs neutral. Also, for both datasets finetune works much better
than pretrain because we are finetuning pre-trained representations on a specific downstream task,
such as sentiment analysis, or text classification. This allows the model to learn task-specific features
and improve on the performance.

Further improvements can be made to increase the efficacy of BERT in multitasking. One such
method is to pretrain the model even more, which involves training the model on a large amount of
data before fine-tuning it on a specific task. Another method is to use finetuning, where the model
is trained on a specific task and then fine-tuned on related tasks to improve its overall performance.
Both methods have been shown to improve the performance of deep learning models like BERT, and
could potentially enhance its multitasking capabilities even further.

7 Conclusion

In conclusion, from the experiments, we can see that BERT is very efficient in a lot of Natural
Language Processing tasks. The results obtained for Sentiment Analysis indicate that finetuning
performs better than pretraining on datasets. This is because finetuning involves training the model’s
pre-trained representations on a specific task such as text classification or sentiment analysis, allowing
the model to learn task-specific features and improve its overall performance.

To further improve the multitasking capabilities of BERT, there are several methods that could be used
in future. One such method is to increase the amount of pretraining, which involves training the model
on a large dataset before fine-tuning it on a specific task. Another approach is to use finetuning, where
the model is trained on a particular task and then fine-tuned on related tasks to improve its overall

5



performance. Both techniques have been demonstrated to enhance the performance of deep learning
models such as BERT and could potentially improve its multitasking capabilities even further.

References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. * sem 2013

shared task: Semantic textual similarity. In Second joint conference on lexical and computational
semantics (* SEM), volume 1: proceedings of the Main conference and the shared task: semantic
textual similarity, pages 32–43.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-tuning for text classifica-
tion. arXiv preprint arXiv:1801.06146.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. 2019. Multi-task deep neural
networks for natural language understanding. arXiv preprint arXiv:1901.11504.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information
processing systems, 30.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. 2019. Fine-tuning language models from human preferences.
arXiv preprint arXiv:1909.08593.

6


	Key Information to include
	Introduction
	Related Works
	Approach
	BERT for Sentiment Analysis
	BERT for Multitasking

	Experiments
	Data Description
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

