
Enhancing minBert Embeddings for Multiple Downstream Tasks

Stanford CS224N Default Project

Donald Stephens
Department of Computer Science

Stanford University
Stanford, CA 94305

dsteph@stanford.edu

Abstract

Bidirectional Encoder Representations from
Transformers (BERT) is a transformer-based
model that generates contextual word embed-
dings. Starting with a minimal implementation
of BERT, called minbert, I implemented
Multi-head Self-Attention and the Transformer
Layer, including a portion of the Adam
stochastic optimization method. My goal was
to make enhancements to obtain robust and
generalizable embeddings that perform well in
multiple downstream tasks: sentiment analysis,
paraphrase detection and semantic textual
similarity. The completed base implementation
achieved a 38.5% accuracy, 37.5% accuracy
and -0.074 correlation respectively (overall
average of 0.229) on holdout datasets of
the aforementioned tasks. After further
pre-training on task specific data by training
on a masked language model objective,
fine-tuning using cosine embedding loss,
applying a learning rate decay schedule,
and hyperparameter tuning, my final model
achieved a 52.6% accuracy, 59.3% accuracy
and 0.418 correlation respectively (overall
average of 0.512) on the same datasets, a 124%
increase over the base implementation.

Keywords: bert pre-training, bert fine-tuning,
masked language modeling, cosine embedding
loss, learning rate schedule, sentiment analysis,
paraphrase detection, semantic textual similar-
ity

1 Introduction

My base model was a minimal implementation of
Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et al., 2018), called min-
bert. The model contains 12 Encoder Transformer
Layers each consisting of multi-head attention, fol-
lowed by an additive and normalization layer with
a residual connection, a feed-forward layer, and a fi-
nal additive and normalization layer with a residual
connection. The transformer architecture follows

Figure 1 and is based on work in "Attention Is All
You Need" (Vaswani et al., 2017).

I completed implementations of the Multi-head
Self-Attention and the Transformer Layer, includ-
ing a portion of the Adam stochastic optimization
method. I based my implementation of step func-
tion for Adam optimization on the efficient version
of Algorithm 1 as outlined in "Adam: A Method for
Stochastic Optimization" (Kingma and Ba, 2014).

1.1 Multi-head Self-Attention

Attention functions take query vectors and a set of
key-value pair vectors and map them to some out-
put denoting the compatibility of the query with the
given keys. Multi-head attention can be thought of
as a group of attention functions running in parallel,
and they allow the model to jointly attend to infor-
mation from different representations, at different
positions. Single attention heads typically do not
allow this joint behavior. We summarize the mathe-
matical formulas for Self-Attention and Multi-head
Attention as described in (Vaswani et al., 2017):

Attention (Q,K, V ) = softmax
(
QKT

√
dk

)
(1)

headi = Attention
(
QWQ

i ,KWK
i , V W V

i ,
)

(2)

MHA (Q,K, V ) = Concat (head1, . . . , headh)WO

(3)

1.2 Adam Optimizer

Adam is a method for stochastic optimization that
"computes individual adaptive learning rates for
different parameters from estimates of first and sec-
ond moments of the gradients"(Kingma and Ba,
2014). I used a variation of Adam, called AdamW,
where the weight decay is performed only after
controlling the parameter-wise step size - the regu-
larization term is outside of the moving averages
and proportional to the weight itself.



Figure 1: Transformer Architecture

Figure 2: Bert Input Representation and resulting Em-
beddings

2 Downstream Tasks and Goal

The goal of the research was to explore and un-
derstand was to obtain robust and generalizable
embeddings that perform well in multiple down-
stream tasks. The tasks were:

1. Sentiment Analysis: The task of classifying
text to understanding which affective state
(e.g., positive, negative, neutral) is expressed.

2. Paraphrase Detection: The task of finding
paraphrases of texts in a large corpus of pas-
sages. At it’s essence, this task seeks to de-
termine whether particular words or phrases
convey the same semantic meaning. The ulti-
mate outcome would be binary (i.e., yes one
is a paraphrase of other, or no they are not).

3. Semantic Textual Similarity: The task seeks
to capture the notion that some texts are more
similar than others by measuring the degree
of semantic equivalence. To account for the
degree of semantic equivalence there is a scale
from 0 (denoting not related) to 5 (denoting
they have the same meaning).

3 Prior Work

"BERT is designed to pre-train deep bidirectional
representations from unlabeled text by jointly con-
ditioning on both left and right context in all layers"
(Devlin et al., 2018). The pre-trained BERT can
be used for a variety of downstream tasks. Such
tasks can be accomplished by adding a task (or
multi-task) head on top of BERT, to create a task
(or multi-task) output layer.

To better ensure success in the downstream tasks,
one would either enhance the task layer or make
the embeddings from BERT more robust. Such
enhancements can be incorporated at either the pre-
training stage (i.e., making the embeddings more
robust) or the fine-tuning stage. Later in this docu-
ment I discuss which enhancements I experimented
with. In this section, I provide a cursory back-
ground on the motivations for experimenting with
specific pre-training or fine-tuning approaches.

Researchers Sun, Qiu, Xu and Huang (Sun et al.,
2020) provided an overview of various approaches
to fine-tune BERT for text classification down-
stream tasks. The contributions of their work in-
clude:

1. The authors proposed a general solution to
fine-tune a pre-trained bert:

• Futher pre-train BERT on within-task
training data or in-domain data (see Fig-
ure 3)

• Fine-tune BERT with multi-task learning
objectives and data

• Fine-tune BERT for a specific task

2. The authors investigated pre-processing of
text methods, layer selection, layer-wise learn-
ing considerations and low-shot learning prob-
lems

Figure 3: General Ways for fine-turning BERT

Their work introduced some very good ideas on
practical considerations for improving the model
on the given tasks. Unfortunately, given the short
(<4 weeks) amount of time and compute resources,



I decided it was more prudent to be tactical and fo-
cus my efforts largely around pre-training on multi-
task data, and some straight forward approaches to
fine-tuning (impacting relatively more of the task
layer for at least 2 of my downstream tasks).

Reading the work of Reimers and Gurevych
in their development of Sentence-BERT (SBERT)
(Reimers and Gurevych, 2019) they achieved suc-
cess computing similarity scores between embed-
dings for each of two source sentence inputs.
Though the authors incorporated a siamese net-
work architecture, their work did show strong suc-
cess with using a similarity measure like cosine
similarity. As such, I chose to use a similar con-
cept for the paraphrase and semantic text similarity
downstream tasks of my project. Additionally, their
work also motivated me to fine-tune using a cosine
embedding loss function.

Figure 4: Computing Similarity Scores in SBERT dur-
ing Inference

4 Data and Summary Statistics

4.1 Development and Evaluation Data
4.1.1 Data for Sentiment Analysis
I used an excerpt of the Stanford Sentiment Tree-
bank (STS) dataset. The original dataset consists
of 11,855 single sentences extracted from movie
reviews. The dataset was parsed with the Stan-
ford parser and includes a total of 215,154 unique
phrases from those parse trees, each annotated by
3 human judges. Each phrase has a label for the
following:

1. Negative

2. Somewhat Negative

3. Neutral

4. Somewhat Positive

5. Positive

The labels previously described represent vary-
ing levels of positive, negative, and neutral affective
states. Below I provide a distribution of the train
and validation split, along with a distribution of the
composition of labels.

4.1.2 Data for Paraphrase Detection

Below I provide a distribution of the train and vali-
dation split, along with a distribution of the compo-
sition of labels.

Figure 5

4.1.3 Data for Semantic Textual Similarity

Below I provide a distribution of the train and vali-
dation split, along with a distribution of the compo-
sition of labels.

Figure 6



Figure 7

5 Model

5.1 Sentiment Analysis Classification
5.1.1 Inference
Using the final BERT embedding, which is the
hidden state of the [CLS] token, I added an clas-
sification head composed of a linear layer and a
dropout layer. The linear layer is based on 768 neu-
rons, plus a bias neuron, and 5 output units. The
dropout layer is used as regularization method to re-
duce overfitting. Using a dropout layer could result
in a lower training performance metric value, but
should allow better generalization to any holdout
development sets.

h = 768

c = 5

y⃗ = x⃗AT + b⃗

p = 0.1

dropout =
1

1− p

5.1.2 Pre-Training
To enhance the quality of the word embeddings, I
implemented a masked language objective which
I used to further pre-train BERT. I started with an
existing pretrained bert model (called "bert-base-
uncased"), and further pre-trained using the senti-
ment training data. This process masked 15% of the
training data (excluding PADDED AND MASKED
tokens), attempted to predict the masked data, then
updated the weights and embeddings based on the
cross entrophy loss function.

5.2 Paraphrase Detection
5.2.1 Inference
For each pair of sentences given from a dataset,
the model creates one contextualized embedding
for each sentence. For the interference layer, I cal-
culate a cosine similarity score between the two

sentence embeddings and apply a sigmoid transfor-
mation function on the cosine similarity.

5.2.2 Pre-Training

To enhance the quality of the word embeddings, I
implemented a masked language objective which
I used to further pre-train BERT. I started with an
existing pretrained bert model (called "bert-base-
uncased"), and further pre-trained using the para-
phrase training data. This process masked 15%
of the training data (excluding PADDED AND
MASKED tokens), attempted to predict the masked
data, then updated the weights and embeddings
based on the cross entrophy loss function.

5.2.3 Fine-Tuning

5.3 Semantic Textual Similarity

5.3.1 Inference Head

For each pair of sentences given from a dataset,
the model creates one contextualized embedding
for each sentence. For the interference layer, I
calculate a cosine similarity score between the two
sentence embeddings and return that score as the
logit from the model.

5.3.2 Pre-Training

To enhance the quality of the word embeddings, I
implemented a masked language objective which
I used to further pre-train BERT. I started with an
existing pretrained bert model (called "bert-base-
uncased"), and further pre-trained using the seman-
tic similarity training data. This process masked
15% of the training data (excluding PADDED AND
MASKED tokens), attempted to predict the masked
data, then updated the weights and embeddings
based on the cross entrophy loss function.

5.3.3 Fine-Tuning

To improve the quality of the prediction, I added the
Cosine Embedding Loss as part of the fine-tuning
state, the formula is:



6 Experiments

6.1 Performance Enhancement Strategy

To better ensure success in the downstream tasks,
one would either enhance the task layer or make
the embeddings from BERT more robust. Such
enhancements can be incorporated at either the
pre-training stage (i.e., making the embeddings
more robust) or the fine-tuning stage. As a tactical
strategy (given the short timeframe to work on the
project) I focused primary on further pre-training
of BERT.

6.2 Further Pre-Training - Masked Language
Model

To enhance the quality of the word embeddings, I
implemented a masked language objective which
I used to further pre-train BERT. I started with an
existing pretrained bert model (called "bert-base-
uncased"), and further pre-trained using the the
downstream multi-task training data.

This process masked 15% of the training data
(excluding PADDED AND MASKED tokens), at-
tempted to predict the masked data, then updated
the weights and embeddings based on the cross
entrophy loss function. This provided a signifi-
cant boost to the quality of the embeddings. The
masked language objective provided the most im-
pact boost to all of the performance enhancement
experiments.

6.3 Fine-Tuning - Cosine Embedding Loss

The cosine embedding loss measures the loss given
input tensors x1 and x2 and a Tensor label y with
values 1 or -1. This is used for measuring whether
two inputs are similar or dissimilar, using the co-
sine similarity, and is typically used for learning
nonlinear embeddings or semi-supervised learning.

6.4 Learning Rate Schedule

Instead of using a static learning rate, and though
the AdamW optimizer does have some adjustment
to the learning rate, I added an exponential learning
rate decay scheduler to the optimizer.

learning rate0 = 0.001

gamma = 0.96

learning rateepoch = learning rate0 ∗ gammaepoch

Figure 8 provides a visual illustration of the ex-
ponential decay schedule.

Figure 8: Top

6.5 Hyperparameter Tuning
I employed a standard grid search for hyperparam-
eter tuning. But I did not change or review con-
siderations for changes to the number of layers in
the model architecture nor the number of hidden
nodes.

learning rate = 0.001 for pre-training

learning rate = 0.0002 for fine-training

learning rate = 0.0003

for pre-training using masked

language

gamma = 0.96

for the exponential learning

rate decay schedule

batch size = 64

7 Results & Analysis

The completed base implementation achieved a
38.5% accuracy, 37.5% accuracy and -0.074 cor-
relation respectively (overall average of 0.229) on
holdout datasets of the aforementioned tasks.

After further pre-training on task specific data
by training on a masked language model objective,
fine-tuning using cosine embedding loss, applying
a learning rate decay schedule, and hyperparameter
tuning, my final model achieved:

• 52.6% accuracy for the sentiment task

• 59.3% accuracy for the paraphrase detection
task

• 0.418 correlation for the semantic text similar-
ity task

The final model achieved an overall average
score of 0.512, a 124% increase in performance
over that of the overall average score the base im-
plementation.

Below is a table designed to illustrate changes to
performance throughout experimentation:



The details behind the 3rd row above is ex-
plained via the following mapping rules. I at-
tempted to map the cosine score to varying levels
of similarity classes:

logit =



0, if similarity < 0.16667

1, if similarity < 0.33334

2, if similarity < 0.50001

3, if similarity < 0.66668

4, if similarity < 0.83335

5, otherwise

I attempted to map the cosine score to varying
levels of yes / no in terms of paraphrases as well:

logit =

{
0, if similarity < 0.5

1, otherwise

The completed base implementation achieved
the results in Figure 9 in the BERT + Adam Dev
Board.

Figure 9: BERT + Adam Dev Board

Authorship Statement

I’d like to extend a big thanks to Dr. Christopher
Manning, inaugural Thomas M. Siebel Professor
in Machine Learning, Department of Linguistics
and Computer Science, Stanford University; and
the Teaching Assistant staff of CS224N Natural
Language Processing with Deep Learning. Their
suggestions and guidance were helpful and appre-
ciated. Any opinions, findings, and conclusions

expressed in this document are that of the authors
and do not necessarily reflect the views of Stanford
University.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2020. How to fine-tune bert for text classification?

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1905.05583
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762

	Introduction
	Multi-head Self-Attention
	Adam Optimizer

	Downstream Tasks and Goal
	Prior Work
	Data and Summary Statistics
	Development and Evaluation Data
	Data for Sentiment Analysis
	Data for Paraphrase Detection
	Data for Semantic Textual Similarity


	Model
	Sentiment Analysis Classification
	Inference
	Pre-Training

	Paraphrase Detection
	Inference
	Pre-Training
	Fine-Tuning

	Semantic Textual Similarity
	Inference Head
	Pre-Training
	Fine-Tuning


	Experiments
	Performance Enhancement Strategy
	Further Pre-Training - Masked Language Model
	Fine-Tuning - Cosine Embedding Loss
	Learning Rate Schedule
	Hyperparameter Tuning

	Results & Analysis

