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Abstract

Logical fallacies are arguments that use invalid or otherwise faulty reasoning that
appear to be well-reasoned until critically examined. Automatically detecting logi-
cal fallacies has important applications in tracking misinformation and validating
claims. In this paper, we design a process to reliably detect logical fallacies by
translating natural language to First-order Logic (FOL) formulas by chaining Large
Language Models (LLMs). We then use Satisfiability Modulo Theories (SMT)
solvers to reason about the formula’s validity. We also develop a novel means of
utilizing LLMs to interpret the output of the SMT solver, offering insights into
the counter-examples that illustrate why a given sentence is considered a logical
fallacy. Our approach is robust, generalizable and does not require training data
or fine-tuning. We evaluate our model on a mixed dataset of fallacies and valid
sentences. The classifier achieves an F1-score of above 71% on both the base and
challenge datasets, demonstrating improved performance and generalization ability
compared to current state-of-the-art models.

1 Key Information to include

• Mentor: Tony Wang
• External Collaborators: Lovish Chopra, Christopher Hahn, Caroline Trippel
• Sharing project: Shared with CS 257. Refer to proposal for split details
• Team Contributions: Abhinav - Ideation, Model Design, Experiments, Writing

Ishikaa: Experiments, Writing, Poster

2 Introduction

A logical fallacy is an argument that may sound convincing, but involves faulty reasoning, leading
to an unsupported conclusion. These fallacies can be committed intentionally to manipulate or
spread misinformation, and have been used to spread propaganda in news articles (Musi et al., 2022).
Consequently, detecting logical fallacies in natural language text holds a very important potential
application in tracking misinformation and validating claims. Recognizing fallacious arguments can
make discourse more rational and instructive. In general, logical fallacies could be classified into
various types (Jin et al., 2022), which are associated with the structure of the sentence. Examples of
some of these fallacies are mentioned in Table 1

In the last few decades, formal reasoning tools like SAT and SMT solvers have advanced considerably
Consequently, SMT solvers like Z3 (de Moura and Bjørner, 2008), CVC (Barbosa et al., 2022) have
become a key tool in different kinds of program analysis and verification, including studying the
satisfiability and validity of logical formulae. These formal reasoning tools allow us to precisely
represent arguments symbolically and analyze them to detect logical fallacies through systematic
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Fallacy Name Example Logical Form
Faulty General-
ization

Sometimes flu vaccines don’t work; therefore
vaccines are useless.

(property1(a) ∧ a ∈ b) ⇒ (∀c ∈
b (property1(c)))

False Causality Every time I wash my car, it rains. Me
washing my car has a definite effect on the
weather.

occuredAfter(a, b) ⇒ caused(a, b)

Ad Populum Everyone should like coffee: 95% of teachers
do!

manyPeopleBelieve(a) ⇒ isTrue(a)

Table 1: Types of logical fallacies along with examples and their logical forms.
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Figure 1: Proposed Logical Fallacy Detection Methodology: Module A converts natural language
input to a first-order logic formula merged with ground truth, Module B compiles the negation of a
given logical formula to an SMT file with well-defined sorts for variables and predicates, and Module
C is used to run CVC on the SMT file and if the negation is satisfiable, interpret the counter-model in
natural language.

checking for invalid forms of reasoning. This level of rigorous analysis is difficult for humans, so
computational tools are useful supplements to scale analysis across large volumes of arguments
through methodical application of the rules of deduction and logical calculus.

In order to utilize theory solvers for detecting logical fallacies, it becomes essential to first convert
the given statement to logical form. Most of the existing techniques, as discussed in the next section,
do not translate natural language sentences to logical form very well. We have developed an effective
technique utilizing chain-of-thought prompting in LLMs and Natural Language Processing to translate
a given set of statements to first-order logic. Additionally, theory solvers require context, or ground
truth, to accurately distinguish logical fallacies from valid statements. This context provides a
semantic interpretation of different variables and predicates, without which they have no meaning.
Our methodology introduces an effective way to encode that context in a logical formula and utilize
it to enrich the theory solver with the necessary context to aid in decision making.

Theory solvers are a good way to identify the validity of a given logical statement. If a set of logical
reasoning arguments are invalid, these solvers can be used to obtain a counter-model to the statements.
This counter-model serves the explanation behind the faulty reasoning for the statement by providing
an interpretation of different variables and predicates where the claims do not lead to the given
inference. Counter-models obtained from theory solvers, however, may be hard to interpret because
they are in formal notation, which is incomprehensible to a layperson. We have developed an efficient
way to utilize Large Language Models to provide natural language interpretation of the counter-model,
which is understandable. This helps in further scaling our approach to track misinformation in the
real world and making it more accessible to everyone.

In this paper, we make the following contributions:

1. We develop an explainable and few-shot method for translating Natural Language to First
Order Logic by chaining LLMs.
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2. We devise a first-order-logic to SMT compiler, which, given any string format first-order
logic formula, converts it to an SMT file that can be used by a cvc4 solver (Barbosa et al.,
2022).

3. We design an effective technique to interpret the results of cvc4 to explain the faulty
reasoning behind the sentence in natural language, making it more interpretable.

4. We evaluate our methodology on numerous datasets and prove that it is highly generalizable
by testing its effectiveness over a dataset consisting of real-world fallacies related to climate
change: LogicClimate (Jin et al., 2022).

3 Related Work

In this section, we discuss existing research on detection of logical fallacies, converting natural
language to first order logic, LLMs and theory solvers.

Logical Fallacy Detection: There have been multiple works on classification of logical fallacies,
include classification of argument sufficiency (Stab and Gurevych, 2017), ad hominem fallacies
from Reddit posts (Habernal et al., 2018) and dialogues (Sheng et al., 2021), rule parsers (Nakpih
and Santini, 2020), structure-aware Transformers (Jin et al., 2022) and instance-based reasoning
(Sourati et al., 2023). As per our knowledge, our work is the first that detects all kinds of logical
fallacies(not limited to a few specific types), and is also the first to do so in a step-by-step, few-shot
and explainable manner.

Natural Language to Formal Logic Conversion: Early works on natural language to formal logic
conversion relied heavily on grammar-based approaches that could handle well-structured language,
but struggled with more complex linguistic constructions (Purdy, 1991; Angeli and Manning, 2014;
MacCartney and Manning, 2014). These works are hard to generalize because of their inability to
work with random sentences without a fixed structure. More recently, deep learning has been used to
translate natural language to linear temporal logic (Cosler et al., 2023; Fuggitti and Chakraborti, 2023;
Liu et al., 2022) and first order logic (Singh et al., 2020; Yang et al., 2023).However, these methods
do not provide a way to incorporate ground truth claims, which are necessary for distinguishing
logical fallacies from valid sentences. Additionally, most of the approaches have not reached to a
level where complex sentences could be accurately transformed to logical form as well as it can be
done manually.

Theory Solvers: SMT solvers like Z3 (de Moura and Bjørner, 2008) and CVC (Barbosa et al.,
2022) are commonly used to check the satisfiability and validity of logical formulas. They have
enabled applications like system verification, program analysis, and model checking. Given a set of
logical formulas, an SMT solver determines their satisfiability by applying theories and inference
rules. Validity can be checked by taking the negation of the formula and testing if the negation is
unsatisfiable.

4 Approach

4.1 Natural Language to First Order Logic

We translate natural language to first order logic formulas by chaining Language Models. For each
step, we use an LLM with few shot prompts, unless specified otherwise. The outputs of each step are
processed and then used as inputs for the next steps. We would use two simple examples to explain
the algorithm: Example 1 below is a logical fallacy and Example 2 is a valid statement.

Example 1: I met a tall man who loved to eat cheese, now I believe all tall people like cheese.
Example 2: A boy is jumping on skateboard in the middle of a red bridge. Thus, the boy does a
skateboarding trick.

The first step is to transform a natural language sentence to claim and implication form. Generally,
a sentence can be split into some claims and some implication based upon those claims. It is also
possible for a sentence to have no claim, which means that the entire sentence is being asserted with
respect to the ground truth.
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Example 1: Claim: A tall man loved to eat cheese. Implication: All tall people like cheese.
Example 2: Claim: A boy is jumping on skateboard in the middle of a red bridge. Implication: the
boy does a skateboarding trick.

Next, we split the claim and implication into various sub-components . The first set of sub-components
are referring expressions. Referring expressions are used to identify specific entities and could be any
noun phrase, or surrogate for a noun phrase, whose function in discourse is to identify some objects.
Additionally, we find the relationship between different entities using Zero-Shot classification via
Natural Language Inference (NLI) (Yin et al., 2019). These relationships (subset / equality / not
related) are generally helpful in adding appropriate quantifiers in the logical form of the sentence.
For example, if the entities are ‘man’ and ‘people’, then it can be inferred that ‘man’ is a subset
of ‘people’, and that the man would be bound by an existential quantifier in the generated logical form.

Example 1: Referring Expressions: man: x, cheese: c, people: y, x ∈ y
Example 2: Referring Expressions: boy: x, skateboard: s, bridge, skateboardingTrick: y

The other set of sub-components are properties, which are used describe a trait of a referring
expression or a relationship between multiple referring expressions. These properties are essentially
predicates in first-order logic. We also find the relationships between numerous properties. For
example, in Example 1, Like and Love are equivalent. Similarly, in the valid example, ’jumping
over skateboard’ implies ’doing a skateboard trick’. These relationships represent a form of
ground truth / context that is not directly present in the statement, but is necessary to prove the
statement’s validity. To identify these ground truth relationships, we run NLI between each pair
of properties, i.e, by setting one property as the hypothesis and the other as the premise as the
input to the NLI model. If we find that any one property entails the other, we add the relationship
property1 ⇒ property2 to our ground-truth. Before running the NLI model between a pair
of properties, we replace the variables in each property with the referring expressions that they
represent. This adds additional context that helps the NLI model identify relations. For example, in
Example 2, the NLI model is unable to find the relation between JumpsOn(x,s) and Does(x,y), but is
able to identify the relationship between JumpsOn(boy,skateboard) and Does(boy,skateboardingtrick).

Example 1: Properties: Tall, Love, Like
Relationships: Tall(x), Love(x, c)
Ground truth:

• ∀x(Like(x, c) ⇒ Love(x, c))

• ∀x(Love(x, c) ⇒ Like(x, c))

• x ∈ y

Example 2: Properties: JumpsOn, inMiddleOf, Red, Does
Relationships: JumpsOn(b, s), inMiddleOf(b, bridge), Red(bridge), Does(b, y)
Ground truth:

• ∀x(JumpsOn(x, s) ⇒ Does(x, y))

Finally, we combine all of the sub-components and their relationship between numerous properties
and entities to obtain the first-order logical form of the sentence. For a logical fallacy, the negation
of the formula is expected to be satisfiable. For a valid statement, the negation of the formula
should be unsatisfiable. This leads us to the next step, which is to feed the formula to an SMT solver. 1

1The prompts we used for each step are available alongside the code submission
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Example 1: First-Order Logic:
((∀x(Like(x, c) ⇒ Love(x, c)))∧ (∀x(Love(x, c) ⇒ Like(x, c)))∧ (∃x(Tall(x) ∧
Love(x, c)))) ⇒ (∀y(Tall(y) ⇒ Like(y, c)))
Example 2: First-Order Logic:
((∀xJumpsOn(x, s) ⇒ Does(x, y)) ∧ Red(bridge)∧ inMiddleOf(b, bridge) ∧
JumpsOn(b, s)) ⇒ Does(b, y)

4.2 First Order Logic to SMT Solving

Our next step involves automatically creating an SMT file for the negation of the first-order logical
formula. Given a logical formula, while one can easily write an SMT file for the same manually,
generating one automatically for an arbitrary formula is something that has not been done before, and
is one of our major contributions.

We have developed an efficient compiler for parsing a given logical formula and converting it into
a SMT file that can be given as input to CVC, as described in Algorithm 1. Some of the major
challenges involved in designing the compiler were designing a recursive infix-to-prefix algorithm and
devising a novel algorithm (Algorithm 2) to identify and unify sorts (domains of variables/properties).

Algorithm 1 Logical Formula to SMT Compilation
1. Split the formula across any operator, parentheses, or commas into tokens.

2. Process tokens to instances of operators, variables and predicates. For predicates, identify all arguments
and recursively process tokens for the arguments separately.

3. Convert the main logical formula from infix to prefix form. For predicates, recursively convert the
arguments to prefix form.

4. Identify sorts of all variables and predicates using unify_sort described in Algorithm 2.

5. Parenthesize the prefix form formula to bring it into SMT format appropriately.

6. Create the SMT file by declaring appropriate sorts, variables and predicates using (declare− sort)
and (declare− fun). Assert negation of the logical formula. Add (check− sat) and (get−model)
to the SMT file.

4.3 Interpretation of SMT Solver Results

We send the SMT file that we generate to the cvc4 solver (Barrett et al., 2011) to get the result (sat
/ unsat), and if it is satisfiable, then it returns a model, i.e, a concrete assignment of values to the
variables in the formulas that makes the formulas true. Since we assert the negation of the actual
logical formula, this model acts as a counter-example to the original formula, proving that the given
formula is a logical fallacy

Generally, it is difficult to understand the model generated by the SMT solver, especially for a
layperson. In order to explain the counter-example better to prove that the reasoning is faulty, it is
essential to explain the counter-example in natural language. To do so, we prompt an LLM with the
claim, implication, referring expressions, properties, first-order logical formula and the counter-model
generated by cvc4. The transformer model is then utilized to interpret the counter-model using natural
language as depicted in the figure.

A simplified example for the same is given in Figure 2. As evident, the SMT result is hard to
understand because it uses technical terminology that can generally be only understood by those who
understand cvc4 and SMT well. Therefore, we developed a pipeline to convert the cvc4 results back
to natural language to explain why the reasoning is faulty.
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I  met  a t al l  man who l oved t o eat  cheese,  now I  bel i eve al l  
t al l  peopl e l i ke cheese.

I  met  a t al l  man who l oved t o 
eat  cheese,  now I

bel i eve al l  t al l  peopl e l i ke 
cheese.

( asser t  ( not  ( => ( exi st s ( ( x BoundSet ) )  ( and ( T x)  ( L x cheese) ) )  
                   ( f or al l  ( ( y BoundSet ) )  ( => ( T y)  ( L y cheese) ) ) ) ) )

sat
(
; car di nal i t y of  BoundSet  i s 2
; r ep:  ( as @BoundSet _0 BoundSet )
; r ep:  ( as @BoundSet _1 BoundSet )
; car di nal i t y of  UnboundSet  i s 1
; r ep:  ( as @UnboundSet _0 UnboundSet )
( def i ne- f un cheese ( )  UnboundSet  ( as @UnboundSet _0 UnboundSet ) )
( def i ne- f un T ( ( _ar g_1 BoundSet ) )  Bool  t r ue)
( def i ne- f un L ( ( _ar g_1 BoundSet )  ( _ar g_2 UnboundSet ) )  Bool  ( and ( = 
( as @BoundSet _0 BoundSet )  _ar g_1)  ( = ( as @UnboundSet _0 UnboundSet )  
_ar g_2) ) )
)

BoundSet  = Set  of  Tal l  Peopl e.  
Let  @BoundSet _0 = John ( t al l  per son 1)  and @BoundSet _1 = Jane 
( t al l  per son 2)
UnboundSet  = Set  of  Foods.  Let  @UnboundSet _0 = Cheese
Pr edi cat es:  T( per son)  = per son i s t al l .   L( per son,  f ood)  = per son 
l i kes f ood
SMT I nst ance:
- John i s t al l  ( T( John)  i s Tr ue) .  John l i kes cheese ( L( John,  

Cheese)  i s Tr ue) .
- Jane i s t al l  ( T( Jane)  i s Tr ue) .  No const r ai nt  Jane l i kes cheese.
Ther ef or e,  t her e exi st s a t al l  per son ( John)  who l i kes cheese,  but  
i t  does not  f ol l ow t hat  al l  t al l  peopl e l i ke cheese,  s i nce Jane 
ser ves as a count er - exampl e.

Figure 2: Interpretation of results from a counter-example

5 Experiments

5.1 Data

We use the following three datasets to evaluate the effectiveness of our approach:

1. LOGIC (Jin et al., 2022): consists of 2,449 common logical fallacies.

2. LOGICClimate (Jin et al., 2022): consists of 1,079 logical fallacies from climate change
news from the Climate Feedback website.

3. Stanford Natural Language Inference (SNLI) Corpus (Bowman et al., 2015): contains over
170,000 valid sentences generated by combining ‘sentence 1’ and ‘sentence 2’ from the
entailment data points to form a sentence where claim entails the implication.

Since the LOGIC and LOGICClimate datasets contain only logical fallacies, we randomly sample
equal number of valid statements from the SNLI corpus to balance the datasets.

5.2 Evaluation method

We consider the F1, precision, recall, and accuracy metrics. We compare our method with NLI Zero
Shot Classifiers (BART MNLI) and the Llama 7b LLM with an end-to-end few-shot prompt. We also
perform a qualitative analysis as shown in the Analysis section.

5.3 Experimental details

We use Meta’s open-source Llama 2 (7B-parameters) Touvron et al. (2023) for LLM prompting
and BART (140M parameters) Lewis et al. (2020) finetuned on MNLI Williams et al. (2018) for
identifying the relationships between properties and referring expressions. We run the experiments
on a V100 GPU, and one run costs around 2 GPU hours.

5.4 Results

The experiment results are highlighted in Table 2.

Based upon the methodology, we found that LLMs are a great way to identify properties and referring
expressions in the sentence, and natural language inference can be used to identify the relationships
between properties and entities quite well.
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Metric ExplainNLI
(Few Shot)

BART-
MNLI
(Zero Shot)

Llama-7b
(Few Shot)

Accuracy 0.63 0.58 0.41
Precision 0.58 1 0.45
Recall 0.92 0.15 0.82
F1-Score 0.71 0.26 0.58

Table 2: Comparison of Metrics for ExplainNLI with end-to-end approaches for the LOGIC+SNLI
dataset

We found the accuracy of the method to be 63%, which outperforms end-to-end few-shot and zero-
shot classification techniques using the same models. We also observed a high recall, which means
that the model can flag fallacies effectively.

Our challenge set, LOGICClimate+SNLI, is a set of real-world logical fallacies from climate change
news. The results obtained are shown in Table 3. The results are highly similar to the results of
the LOGIC dataset. This indicates that our system is highly robust and effectively generalizes to
real-world text, even when it contains large amounts of domain-specific context, making it effective
in identifying and preventing misinformation.

Metric ExplainNLI
(Few Shot)

BART-
MNLI
(Zero Shot)

Llama-7b
(Few Shot)

Accuracy 0.66 0.57 0.31
Precision 0.6 1 0.38
Recall 0.94 0.14 0.62
F1-Score 0.73 0.25 0.47

Table 3: Comparison of Metrics for ExplainNLI with end-to-end approaches for the LOGICCli-
mate+SNLI dataset

6 Analysis

As evident from the results, proving a statement to be valid is harder than identifying it as a logical
fallacy, contributing to the lower precision of the model. This is because it is inherently difficult
to prove the negation of a statement as unsatisfiable compared to satisfiable. This challenge arises
because the model may not have articulated some semantics or ground truth in the first-order logical
formula that may be necessary to prove validity. If this context is not well established in the SMT
code explicitly, we cannot prove validity, because it would be easy to build a counter-example. The
SMT needs full context, and any gaps in contextual information can cause a valid statement to be
mistakenly identified as a logical fallacy.

One such case is present in example 4 of the Table 4. In this case, the NLI model does not identify a
required ground-truth relation. If this context were identified and added to the claim of the logical
formula, then it would have predicted the statement to be valid. Furthermore, our current approach
is limited to discerning the NLI relationship between two properties at a time, rather than handling
multiple relationships concurrently. For example, consider example 6 in Table 4. In the given
example, the semantic claim involves the conjunction of two properties entailing the third, while the
NLI model only checks if one property entails the other. Finding such complex extra context requires
more advanced NLP techniques or human intervention, and including this can further improve the
precision of the model.

Nonetheless, it is important to clarify that these examples do not imply a general inefficiency of NLI
in identifying property relations. An interesting illustration of where they work well can be found
in Example 5 from Table 4. In this instance, our model identifies additional context by establishing
relationships such as IsBaseballPlayer implying IsPlayingBaseball, and IsNearOutfieldFence implying
IsOutdoors. These contextual connections help in effectively proving the validity of the statement.

The examples in Table 4 prove that few shot prompting with LLMs is a great way to convert a
sentence to first-order logic in a step-by-step manner, improving the efficiency of conversion. It
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S.No. Type Sentence Logical Form Prediction
1 LF X has been around for years now.

Y is new. Therefore, Y is better
than X.

(IsNew(a) ∧ ∼ IsNew(b)) ⇒ (IsBet-
terThan(a,b))

LF: Correct prediction

2 LF Jimmy isn’t at school today. He
must be on a family trip.

(∼IsAtSchool(a))
⇒(IsOnFamilyTrip(a))

LF: Correct prediction

3 LF Everyone is doing the Low-Carb
Diet.

(∃ b (∃ a (IsDoing(b,a)))) ⇒ (∃ c (∃ a
(IsDoing(c,a))))

Valid: Incorrect prediction:
Wrong translation when there
was no claim given

4 V Two dogs are fighting in a field.
Consequently, the two dogs are
outside.

(∃ b (∃ a (IsFighting(a, b) ∧ IsInField(b)
∧ IsInField(b)))) ⇒ (∃ a (IsOutside(a)))

LF: Incorrect prediction: Miss-
ing semantic ground truth
claim: ∀ a (IsInField(a) ⇒
IsOutside(a))

5 V A baseball player gets ready to
catch a fly ball near the outfield
fence. Therefore, a person is
playing baseball outdoors.

(∃ a (IsGettingReady(a) ∧ (IsABase-
ballPlayer(a) ∧ IsCatchingFlyBall(a)
∧ IsNearOutfieldFence(a))) ∧ (∀ e
( IsABaseballPlayer(e) ⇒ IsPlaying-
Baseball(e))) ∧ (∀ f ( IsPlayingBase-
ball(f) ⇒ IsABaseballPlayer(f))) ∧ (∀
g ( IsNearOutfieldFence(g) ⇒ IsOut-
doors(g)))) ⇒ (∃ c (∃ a (IsPlayingBase-
ball(a) ∧ IsOutdoors(c))))

Valid: Correct Prediction

6 V A woman sits alone on a park
bench in the sun. Hence, a
women is in a park.

(IsSittingOn(a, b) ∧ isParkBench(b) ∧
IsInSun(a)) ⇒ (IsInPark(a))

LF: Incorrect prediction: Miss-
ing semantic ground truth
claim: ∀a∀b (IsSittingOn(a,
b) ∧ isParkBench(b) ⇒ IsIn-
Park(a))

Table 4: Some sample results from our model run: Type LF indicates Logical Fallacy and V indicates
Valid statement

can be seen that most of these examples identify referring expressions and properties quite well,
and are able to produce syntactically correct expressions. Various examples like example 1 and 2
correctly derect logical fallacies. Consequently, we also obtained a very high recall, beating the
baseline techniques by a significant amount.

Among the few logical fallacies where our model incorrectly predicted a logical fallacy to be a
valid statement, most of these predictions failed due to the imprecision of the LLM, leading to false
translations and incorrect results. Example 3 is a prominent case where the input does not have any
claim, rather just jumps to an implication. However, the model is not able to identify that the example
has no claim. As a result, we get an incorrect translation from our technique. We believe that utilizing
more advanced LLMs in future experiments will help prevent these issues and improve our statistics
further.

7 Conclusion

In conclusion, we presented an automatic and effective solution for detecting fallacies and tackling
misinformation. We developed a strategy to distinguish logical fallacies from valid statements,
which involves a chaining approach to convert a sentence to first-order logic using Large Language
Models, followed by using SMT solvers to identify whether the first-order logical statement is valid
or not, and if not, interpret the counter-model generated by the SMT solver in natural language. Our
proposed technique showed promising results in identifying logical fallacies and valid statements.
The primary bottleneck is the natural language to first-order logic conversion, which is ongoing
research. One potential improvement is the incorporation of more advanced LLMs. Additionally, the
methodology can be improved in future work to classify logical fallacies into different categories
alongside detection. The step-by-step nature of our approach also enables the incorporation of human
feedback into the pipeline.
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A Appendix

A.1 Unify Sort Algorithm

Algorithm 2 unify_sort for one predicate, say A(x, y)
1. Declare current sort of A: (NULL, NULL, Bool)

2. For each instance of predicate A:

(a) Find the sort of arguments based upon the instance (instance sort):
i. If argument is a formula, then sort(arg) = Bool.

ii. If argument is a variable, then sort(arg) = sort(variable) [may be null]
(b) Unify current sort with instance sort:

i. If sorts of an argument in the current sort and instance sort are not NULL and different, then
raise Error (incompatible sorts).

ii. If current argument sort is NULL and corresponding instance sort is not NULL, then update
current argument sort = instance sort.

iii. If instance argument sort is NULL and corresponding current sort is not NULL, then update
the sort of the corresponding variable to current sort.
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