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Abstract

Improving LLMs post training is gaining prominence due to training costs. In
this study, we explore applying Layer Selective Rank Reduction (’LASER’) -
which reduces ranks of select weight matrices in a model - to drive performance
improvement of a Multi-Task BERT model on sentiment analysis, paraphrase
extraction and semantic textual similarity. Using versions of task-specific and
multitask BERT models as baselines, we investigated performance impacts of
LASER across tasks. We find that LASER can improve performance on certain
tasks (like sentiment analysis), combining results of different LASER interventions
is hard due to interlayer interactions. Our best results come from individual laser
interventions in intermediate layers of the model.
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2 Introduction

Current state-of-the-art large language models are large and over-parameterized (Hinton et al., 2015),
and expensive to train (Besiroglu et al., 2024). There has been concerted research into reducing model
size while preserving performance, and into driving performance after pretraining. This includes
research on model compression techniques like pruning (Zhu et al., 2023), low-rank adaptation (Hu
et al., 2021; Yu et al., 2017), distillation (Hinton et al., 2015), low-rank training (Yang et al., 2020),
and quantization, among others. Recent research indicates that model performance can be preserved
with up to 90 percent size reduction (Frankle and Carbin, 2018), while another more recent paper
(Sharma et al., 2024) has shown performance across large models like GPT-J and LlaMa 2 improving
when certain model weights are reduced or pruned. The practice of reducing weights for given model
however is largely unknown and is the focus of this initiative.

In this research, we explore the performance impact of Layer Specific Rank Reduction (LASER)
across a multitask-finetuned BERT model trained across three narrow tasks; sentence sentiment
classification, paraphrase detection and semantic textual similarity. We first fine-tuned task-specific
baseline models on top of pretrained embeddings from BERT-base-uncased (Devlin et al., 2018). We
then apply multitask learning (MTL) procedures to derive a higher performance model and enable
testing of LASER on models enhanced with common MTL techniques. We use two versions of gradi-
ent surgery and annealed sampling (Stickland and Murray, 2019). Following this we experimented
with different batch sizes and different levels of L2 regularization to moderate success. Finally, we
further enhanced model architecture around the three task specific heads by including additional linear
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layers, non-linear layers, and implementing cosine similarity for the STS task. We then apply LASER
on individual MLP layer weights across the final multi-task model MB-COMB through two methods;
drop-out and singular value decomposition to measure performance impact. Our findings reveal
significant impact from individual LASER interventions. Given the low computational complexity
and the tendency for the impact to center around certain key layers the we find the method promising
for low cost enhancement.

Lastly we trial a layer-level greedy search method to find an optimal combination of LASER
interventions. We find that gird-search of each layer and greedily adding interventions between
layers did not extend performance beyond individual-layer level interventions. Our findings suggest
that for BERT models, the most impactful interventions occur at intermediate layers, and that layer-
interactions may result in greedy search starting at the end layer discovering local optima. This paper
continues with a short review of related work in Section 3; and model architecture approach in section
4. We then perform a deep analysis of our experiments, including methods, details and results in
section 5. Lastly we go through a qualitative analysis and provide a conclusion where we suggest
future work around searching for optimal LASER interventions in Sections 6 and 7.

3 Related Work

In developing post-training methods for enhancing model performance, the goal is often preserve
existing language representations while driving cost-savings. Previous efforts on model compression
(pruning, quantization, weight sharing etc.) and model distillation have been largely applied with
the goal of resource-savings (Bondarenko et al., 2021; Kwon et al., 2022; Touvron et al., 2021) and
have generally indicated performance maintenance rather than performance improvement. There
has been limited exploration of altering weights for the goal of enhancing performance despite new
research around layer-specific knowledge representation (Conneau et al., 2020), layer specific entity
knowledge (Meng et al., 2023), and the utility of intermediate layer representations to get the correct
output (?).

A recent paper by Sharma et al. (2024) indicates that selective pruning or rank-reduction of layers in
a model can actually drive up performance on Question-Answering tasks by removing conflicting
representations from key layers. They propose a powerful technique called Layer Selective Rank
Reduction which applies either Singular Value Decomposition or pruning to select layers across the
model. They findings indicate significant uplift on QA tasks using GPT-J, LLaMA 2 models on
HotPotQA. Through careful analysis of intermediate-layer embeddings from GPT-J, they show that
for certain QA tasks that the model gets wrong, the higher-order weights store information of the
same semantic-type as the right answer (e.g. "French" instead of "Dutch") and that the inclusion of
both high-order and low-order weights averages the resulting embedding to generate common words
like "the". Eliminating the higher-ordered weights enabled the right information to surface. Work
on LASER has been limited to larger NLP models, and LASER’s compatibility with other common
model-enhancement techniques remain unanswered. Additionally, the development of an optimal
combination of LASER interventions seem predicated on performing an expensive grid-search to find
the most impactful individual intervention first. This motivated us to investigate the re-applicability
of LASER to non-generative tasks on modified models, and explore the ability to "blindly" search for
an optimal solution.

After training single-task baseline models, first step was to construct the loss for a multi-task model
that included several common techniques for model performance enhancement. Chen et al. (2021)
speaks to multiple different ways of constructing the loss, but given time constraints and with the
understanding that we can address conflicting gradients elsewhere, we decided to use a simple linear
combination of losses with equal weighting.

The second step involved finetuning the multitask model on the three datasets we had available.
While there are an expansive array of MTL techniques (Chen et al., 2021) for sampling and training
across different tasks, we started by applying a simplified round-robin training regimen which pulled
together same-sized batches from each tasks. We further explored changing batch sizes (Stickland
and Murray, 2019), and changing the number of epochs to execute training for shorter number of
epochs to prevent over-fitting (Devlin et al., 2019). Next, we extended work by Bi et al. (2022) and Yu
et al. (2020) to address conflicting gradients by projecting conflicting gradients on the normal plane.
Additionally based on Stickland and Murray (2019) we employed annealed sampling which has been
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shown to improve outcomes by oversampling smaller datasets towards latter epochs; enabling more
generalized language representation that works better across tasks. Based on instabilities in the loss
curve - evidencing exploding or vanishing gradients - we then implemented L2 regularization Hua
et al. (2021) as a potential solution. Lastly we adjusted the task-heads by adding non-linear activation
functions , and a combination of siamese linear layers and a cosine-similarity function (Reimers and
Gurevych, 2019) to significantly enhance performance prior to the application of LASER.

With a "production" grade model in place and bench marked, we then adapted LASER as built by
(Sharma et al., 2024) to reduce the rank and prune weight matrices post training as part of our pipeline.
Keeping in mind their findings that the latter MLP layers are the most impactful across models -
and our limited resources - we focused our exploration to systematically measuring the impact of
individual and combined LASER interventions on MLP weights across the latter six layers of our
BERT model.

4 Approach

BERT-based-uncased forms the starting point of this project, from which we systematically built
single task models and a succession of multi-task models. Lastly, we built two LASER-enhanced
models; one enhanced by first a single laser intervention, and the other to test a "blind" search method.
Throughout we tested outcomes on three tasks to proof out value. Note that in addition to the below,
we were considering hyper-parameter optimization trials through Bayesian optimization and had to
cut the trial short due to lack of compute resources and the large body of evidence already available
for such optimizations.

4.1 Base model

The single-task models adopt the architecture outlined in the default project handout () and include
additional task-specific heads as shown in figure one below. Each single-task model includes a
standard BERT-base-uncased model with scaled dot-product and multi-head attention. As a slight
deviation from the BERT model found in Vaswani et al. (2023), we only use a single linear-add
layer and GELU in the add norm. Note that for the purposes of this research we did not alter the
number of layers or introduce new weight matrices. We used additive losses as shown in Stickland
and Murray (2019) where the losses are constructed as Ltotal = LSA + LPE + LSTS . In the
multiTask BERT model, all three classifier heads were trained alongside the model in simultanous
batch training. We initialized the first Multitask BERT baseline with parallel training across all tasks.
We cycled over smaller datasets multiple times in the initial version and kept batch sized the same.
This formed our base MS-COMB baseline on which we could improve with various techniques.

Figure 1: (a) The single-task BERT models included a single dense layer; over the course of
experimentation we eventually landed on (b) the multitask BERT for which each classifier head
included additional layers to create significant uplift on the model performance.

4.2 Gradient Surgery

The baseline MB-COMB model does not take into account conflicting gradients which can affect
parallel task training. Yu et al. (2020) developed a tool called PCGrad to project the gradients
of a task onto a conflicting task, removing the conflicting components of gradients and enabling
progress in gradient descent. Specifically, gradient surgery involves taking gradient for each i’th
task gi, and projecting its gradient onto the normal plane of all other conflicting task gradients gj :
gi = gi − (gj ·gi)

∥gj∥2 · gj . Adapting the best practices set up by Yu et al. (2020), we enabled random
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selection of the i’th task task onto which other tasks would be projected in each training. This was
shown in the original paper to improve training outcomes.

We further explored expanding on the tool provided by Yu et al. (2020), which flattens and concate-
nates all the gradients, by enabling weight by weight gradient surgery; by avoiding concatenation,
we wanted to reduce the space for gradient surgery, avoid simplifying the complexity of calculating
end-to-end gradients via simple concatenation. While the outcomes were of moderate improvement
(see experiment section below), both the modified and the original algorithm significantly slowed
training which was problematic for further experimentation on LASER given our compute limitations.

4.3 Annealed Sampling

Upon building the Gradient surgery toolset and realizing its downsides, we immediately explored the
use of batch-level round-robin training with single batches from single tasks being chosen for each
training iteration, but including the use of annealed sampling of each task. In annealed sampling, tasks
included in a training iteration will be selected through a form of normalized probability sampling
as identified in Stickland and Murray (2019) to reduce the risk of bias from different dataset sizes.
Specifically the probability of a specific task’s batch being chosen in any given iteration is given by:
p = Ni∗α∑

i(Ni)
where α = 1− 0.8 ∗ e−1

E−1 and e is the current epoch, and E is total number of Epochs.
The original authors identified the need to sample tasks more evenly towards the end of training
epochs even if it results in oversampling of smaller tasks. The method follows Stickland and Murray
(2019)’s work for the most part, with some experimentation on the construction of the 0.8 constant in
the construction of α.

4.4 Task-specific head design

The design of the individual classifier heads had evolved over time, we started with simple single
linear layers to form the outputs as outlined in the default product handout. Based on we experimented
with an adding an additional layers; settling on an additional linear layer on top of the original, and a
added dropout layer and ReLu activation function between the linear layers. This helped drive up
performance significantly. Additionally the STS task head was heavily modified given continued poor
performance; with the model eventually landing on a dense siamese layer to train embeddings from
both sentences, as well as a cosine similarity and RELU layer to add value. The choice of a RELU
activiation function is unusual given that it should wipe out negative cosine values, but repeated
experimentation with other configurations such as raw cosine output, and additional linear layers
around the ReLu activation function provided poorer performance, and test-data seems to confirm
the finding. Further analysis of the data itself may be warranted. The current working hypothesis is
an imbalance in the training and devsets could make it more valuable to discern somewhat similar
and very similar sentences. For the purposes of analyzing LASER, we left explorations of this space
to a later date. The paraphrase extraction classifier was performing well from the initial setup and
additional experimentation around the addition of ReLu activation and linear layers did not make
significant improvements to the model.

4.5 Regularization of loss

Post the various changes made above, we noticed instability in the loss curves post the 3rd epoch,
and as such chose to experiment with additional L2 regularization losses by modifying our Adam
optimizer. After some experimentation where we exploeed = [0.001, 0.01, 0.1, 1] we settled on
= 0.001 as our chosen regularization constant. This provided a minor boost to performance on STS
where there was some instability and degradation in performance in the latter epochs.

4.6 Layer Selective Rank Reduction

Post the inclusion of the various modifications above into a final MB-COMB-Final model, we began
applying LASER interventions in a systematic way to explore the impact on model performance.
LASER involves using Singular Value Decomposition (SVD) to alter select weight matrices across
the transformer. As outlined in Sharma et al. (2024), given a matrix W ∈ Rmxn and r ∈ N, a
low-rank approximation is generating a Ŵ that minimizes ∥W − Ŵ∥2 and meets rank(Ŵ ) ≤ r.
The SVD of a matrix W is given by
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W = UΣV ⊤

where

• U = [u1, u2, . . . , um] ∈ Rm×m,
• V = [v1, v2, . . . , vn] ∈ Rn×n, and
• Σ ∈ Rm×n.

The column vectors of U and V are of Rm and Rn respectively, and Σ is a diagonal matrix whose
diagonal entries are given by the singular values of W in descending order. Reducing rank involved
eliminating only those components of Σ that are "higher ordered" or have smaller singular values;
lower ordered components are preserved by LASER. A LASER intervention is characterized by
three variables - parameter type τ which outlines the weight matrices of focus, layer number ℓ which
described which layer the intervention occurs, and rank reduction ρ which describes the percentage
of the maximum rank that should be preserved in the low rank approximation. The paper has useful
visualization:
.

Figure 1: An example of LASER where weight W in layer L is replaced with WLR

In our experiments we utilize PyTorch’s inbuilt SVD method, and apply interventions to MLP layers
in BERT; specifically in layers 6,7,8,9,10 and 11, which Sharma et al. (2024) has identified as more
likely to result in positive performance improvements in models like GPT-J and LLaMa 2 because
they often encode conflicting but similar responses in high-ordered and low-ordered layers - resulting
in a poor ’average’ prediction. Our unique work here includes adapting the entire method for use in
BERT and adapting the method for use in our pipeline.

Additionally, we heavily adapted/modified some code provided by Sharma et al. (2024) to reapply
LASER multiple times to the same model; adapting it to selectively apply intervention in layers 6-12,
with custom rank-preservation components, and focusing on both the interim.dense and output.dense
weights. The goal was to have a narrower focus given computational budget limitations. Lastly we
implement an alteration of the stated greedy-search algorithm presented in Sharma et al. (2024) to
exhaustively search each layer for the most optimal intervention given intervention in the previously
edited layer (starting again at Layer 12 and working backwards) Note we did limited trials to change
batch size but saw some decline in performance in an unusual fashion and did not continue searching
down that path due to resource constraints.

5 Experiments

We constructed several experimental models to help drive performance on three key tasks. Note we
use acronyms in brackets going forward).

• Sentiment Analysis (SST). Tested on the Stanford Sentiment Treebank, this task involves
classifying movie reviews from negative to positive

• Paraphrase Extraction (PARA). Tested on the Quora dataset, this tasks involves classifying
two sentences as either paraphrases or not
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• Sentence Textual Similarity (STS). Tested on the SemEval STS Benchmark dataset, this
task ranks sentences on similarity.

5.1 Data

The datasets are specified within the project handout sheet. As per the handout the following datasets
will be provided:

• SST: The data is sourced from the Stanford Sentiment Treebank. It contains 11,855 sentences
which have been split into train (8,544 examples), dev (1,105 examples), and test (2,210
examples).The examples have been tagged with a sentiment score whose values range across
0 - negative, 1- somewhat negative, 2- neutral, 3- somewhat positive, and 4- positive.

• PARA: The data is sourced from the Quora Dataset. It contains 400,000 question pairs
which have been split into train (141,506 examples), dev (20,215 examples), and test (40,431
examples). The examples have binary labels for paraphrase detection.

• STS: The data is sourced from the SemEval STS benchmark. It contains 8,628 different
sentence pairs of varying similarity and labels, and have been split into train (6041 examples),
dev (864 examples), and test (1726 examples) and is labeled on similarity on a scale from
0(unrelated) to 5 (equivalent meaning) Note the CFIMDB dataset (2,434 movie reviews with
labels) was used for additional sentiment analysis in part 1 of the project but was not used in
this part of the project. All datasets required some minimal pre-processing, tokenization and
padding to ensure compatibility with BERT. We utilized CLS tokens to gain sentence level
semantic representations.

5.2 Evaluation method

We use accuracy as our evaluation metric. It is defined as Accuracy = ofcorrectpredictions
oftotalpredictions . In our

reporting here we show our accuracy results as derived from the dev set on each task. Furthermore we
maintained a single set random seed across experiments such as to enable duplication of experiments.

5.3 Experimental details

All our reported experiments ran on common settings; 10 epochs, batch size of 8, fine-tuning learning
rate of 1e-5, and a hidden layer drop out rate of 0.3. Note we also trained across all samples across
all datasets and used resampling should any one dataset be exhausted early in the training process.
Early experimentation along these lines were time consuming and were stopped early in favour of
studying LASER. Note the LASER experiments were conducted on a V100 GPU while the previous
experiments were done on a T4. Some experiments involved variations in key parameters that before
they were finalized as mentioned above:

Gradient Surgery: At this early stage we varied batch size, epochs an even relative constituency of
batches in parallel training of tasks. Specifically we tried batch sizes = [2,4,8,16,32]; in the end batch
size of 8 was left as is due to lack of impact. Similarly we experimented with 3,4,8 and 10 epochs but
left the default setting of 10. In the end default settings were maintained even after this particular
branch of exploration was abandoned due to computational complexity:

Annealed Sampling: In this specific experiment we varied the definition of alpha; specifically the
0.8 constant defined in α = 1 − 0.8 ∗ e−1

E−1 to experiment with different batch constituencies. the
values we tried include [0.6, 0.7, 0.8, 0.9]. In the end the 0.8 constant performed marginally better.

Loss Rates: In this specific experiment we varied λ = [0.001, 0.01, 0.1, 1] and settled on 0.001 as
mentioned previously.

Task Head design: In these specific experiments we varied the task-level dropout rate and tried
[0.1,0.2,0.3,0.4] in the end 0.3 preformed better and was preserved- see performance below.
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5.4 Results

To evaluate the efforts to build a production model and to evaluate LASER, use accuracy for SST and
Para, and pearson correlation for STS. Table 1: Dev set accuracies of single-task models, multitask
models, and LASER-enhanced models on the three fine-tuned tasks. The best results for each task is
bolded.

Model Accuracy (SST) Accuracy (PARA) P.Corr. (STS)
MB-Sst 0.517 0.509 -0.065
MB-PARA 0.136 0.788 -0.012
MB-STS 0.126 0.608 0.378
MB-COMB 0.506 0.779 0.360
MB-COMB-gs 0.493 0.786 0.380
MB-COMB-as 0.491 0.782 0.367
MB-COMB-csd 0.492 0.837 0.705
MB-COMB-final 0.508 0.842 0.705
MB-COMB-laser-l6-fcout* 0.513 0.842 0.700
MB-COMB-laser-l8-fcout* 0.503 0.846 0.694
MB-COMB-laser-l70-fcin* 0.487 0.843 0.709
MB-COMB-multilaser** 0.493 0.845 0.699

SST=Sentiment Analysis, PARA=Paraphrase Extraction, STS= semantic text similarity,
COMB=multitask, the names for laser are the layer number and layer name where fcout and fcin are
the out-dense and interim-dense weights, *one of 50 LASER-interventions, **single model with
multiple interventions

Based on our findings we submitted the strongest single-laser intervention model to measure test-set
performance and got SST(0.499) PARA (0.846) STS(0.676) with an overall test score of 0.728.

On the whole the quantitative results of MB-COMB and the individual laser interventions are not
entirely surprising given the limited combination of interventions and layers that were included in
this experiment.

However the multi-laser experiment which seeks to stack laser interventions was surprisingly under-
performing expectations. Constructing a simple score adding the evaluation metrics of all three tasks,
we found 48 laser interventions that exceeded MB-COMB in various combinations. We hypothesize
that performance did not add up as a result of two factors; first the overall performance is probably low
because of layer-to-layer interactions removing the impact of individual layer-wise impact. Secondly
the way in which we constructed the north star metric (sum of individual metrics) to choose each
model may leave the algorithm susceptible to going down sub-optimal paths.

6 Analysis

6.1 Qualitative Deepdive

On the whole the system worked somewhat as expected given the state-of-the art across all three
tasks; the SST task in particular is a difficult one to improve with LASER without significant further
experimentation.

Sentiment Classification (SST). A visual inspection of the SST dataset showcases a series of
reviews that involve use of unusal phrasing that make up the middle-scored reviews (scores of 2-3).
For example "Meyjes ’ provocative film might be called an example of the haphazardness of evil"
may be seen as either positive or negative by a human reviewer, but model may latch onto specific
terms like evil and give it a negative review. Despite various attempts to improve the model with
LASER interventions it seems like there’s a natural ceiling to the signals that can be extracted from
this dataset.

Paraphrase Extraction (PARA) and Semantic Textual Similarity. High performance on this set
(and eventually on STS) is not unexpected given the sheer size of the training data, and the similarity
between the tasks. The big difference in performance was the use of the cosine similarity layer and
the use of a ReLu function; we did not have the chance to examine the data further due to time
constraints, but we suspect that one reason why the ReLu function worked was due to bias in the
training dataset; the model may have been better able to differentiate between the somewhat similar
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and very similar but had difficulty with the other end of the spectrum. On further investigation we
would look into the datasets deeper.

LASER The underperformance of LASER was intriguing considering the large impact it had
on experiments like GPT-J and LLaMa 2 in previous experiments. As mentioned layer-to-layer
interaction may play a much larger role than expected.

7 Conclusion

The main finding is from this exploration is LASER while exciting in its initial vision and scope, may
need further studies in it’s applications to smaller models or multi-task environments. Performance
improvements were marginal but future explorations on stacking LASER interventions should focus
on hyper-parameter style search of the intervention space - focusing on Bayesian Optimization
methods given the clear patterns in accuracy and loss across layers.
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