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Abstract

BERT (Bidirectional Encoder Representations from Transformers) (Delvin et al.
(2019)) is a pre-trained language representation model that can be fine-tuned
to achieve state-of-the-art results on downstream tasks. We explore possible
extensions on our minBERT model on three downstream tasks of sentiment analysis,
paraphrase detection, and semantic textual similarity. We will explore further pre-
finetuning, effects of freezing top layers, different learning rates, varying dropout
probabilities, and task-specific architectures to test whether they can help improve
our minBERT model on the three downstream tasks. We will find that freezing
layers can lead to decreased training times while maintaining similar performance,
that having a model that appropriately models that task at hand can have dramatic
increases in performance, and that altering hyperparameters offers negligible to
little improvement in performance.
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expirement results, and uploading model for submission.

2 Introduction

Delvin et al.|(2019) introduced BERT as a pre-trained language representation model that can achieve
state-of-the-art results by fine-tuning with single output layer on top of BERT. They demonstrated
that BERT was able to to achieve a GLUE score of 80.5%, a MultiNLI accuracy of 86.7%, a SQuAD
v1.1 question answering Test F1 of 93.2, and a SQuAD v2.0 Test F1 of 83.1. BERT pushed the
boundary for language models thanks to its bi-directional pre-training with a masked language model
pre-training objective.

We leverage the power of BERT by exploring a multi-task approach to simultaneously perform three
downstream tasks of sentiment analysis, paraphrase detection, and semantic textual similarity from
the same model. Multi-task models allow for a more efficient use of data as data for one task, can
simultaneously train the base model for the other tasks. This generalized approach can leverage
knowledge from all the tasks as to improve overall performance. As well, it allows for a single model
to perform different tasks, which reduces complexity as less models are needed.
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Not only will we implement our multi-task model, we will also explore different improvements that
can be made as to maximize its overall score. We will explore further fine-training as to better teach
the model for our downstream tasks. Furthermore, we will explore the effects of freezing the top
layers of the BERT model during fine-tuning to reduce training time. Then we will test out different
hyperparameters, like learning rate and dropout rate, as well as model architectures with added layers
and task-specific additions.

Additionally, we decided to focus on working with a single 12 layered BERT model. We’re aware
that using a larger model can lead to better results, but we wanted to explore the potential of working
with a single model as it is less computationally expensive and requires less overhead.

Ultimately, we would find that appropriately modeling the specific tasks had a dramatic increase in
our overall score. Unfortunately, we would show that although altering hyperparameters could lead
to an increased performance in our dev set, the model failed to show improvements in our test set.
This is a symptom of overfitting, as BERT has million of parameters and we were working with less
data for a number of our downstream tasks.

3 Related Work

Sun et al.|(2019)) also looks into how the BERT model can be leveraged with fine-tuning to perform
downstream tasks. They used the official BERT model, which consists of an embedding layer,
followed by 12 transformer layers, and a pooling layer. We will use the same architecture for our
base BERT model. The authors would find that further fine-tuning on in-domain and within-task data
can significantly boost performance on downstream tasks. Moreover, the authors explore the effects
of freezing layers and found that freezing the top layer is the most useful for text classification. We
will also explore how freezing multiple top layers can have varying effects and be useful to decrease
training times. Lastly, the authors found that a low learning rate, such as 2e-5, is needed to overcome
catastrophic forgetting.

Zhang et al.| (2017) takes a look at deep learning models as a whole to interrogate how they are
sufficient to memorize training data. They find that explicit and implicit regularizers do help, but
aren’t the primary reason why a model may be over-fitting. We will use these findings as we will
see that our fine-tuned models run into over-fitting early on because of our limited data. With this
knowledge, we will take a look at our model architecture, instead of relying solely on regularization
methods for improve performance.

4 Approach

Our approach is broken up into two components, which will be tested on three downstream tasks of
sentiment classification, paraphrase detection, and semantic textual similarity. The first component is
the implementation of minBERT and fine-tuning for sentiment analysis, a single task. The second
component is implementing a multi-task classifier for two additional tasks and exploring different
potential improvements.

First, we implemented minBERT with the help of boilerplate code provided to us by Stanford
University. We implemented the multi-head self attention, the BERT transformer layer, the classifier
for sentiment analysis, and an Adam optimizer. We would then both test the results from training just
the added classifier and training whole minBERT model and the classifier on the SST dataset. We
were able to conclude that our minBERT model was working appropriately after running these tests.

Then, we implemented a multi-task classifier to support the two additional tasks on top of sentimental
analysis and train from multiple datasets. We achieved this with the help of some boilerplate from
Stanford University. After implementing this, we are able to further fine-tune our model on the Quora
and SemEval STS Benchmark datasets as these are curated for the paraphrase detection and semantic
textual similarity.

When conducting experiments, our base multi-task model architecture consisted of a BERT model
with 12 layers and a hidden size of 768. Additionally, we added a common dropout layer and a
common linear layer, so our model will be able to learn patterns between the three tasks. We will
explore this decision later on. Then for each task, we had an additional task-specific head with
the correct number of output nodes. While training, our hyper-parameters were, unless otherwise



specified, a learning rate of 2e — 5, an exponential decay of 0.9, a dropout probability of 0.3, a batch
size of 32. We also decided to keep the BERT model frozen, apart from the top 2 BERT layers and
the final pooling layer for faster computation. We will also explore this decision later on. We ran
each experiment with 10 epochs, but only saved the model weights that resulted in the best overall
dev score. We conducted our training on an Nvidia Tesla V100 GPU, with each epoch taking around
7 minutes with this configuration. A figure of our model architecture is presented below.
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Figure 1: Our expiremental multi-task model architecture. The yellow layers represent the BERT
layers that were unfrozen during our training.

Each task had its own separate head that handled the input and output appropriately. The sentiment
head consisted of a single extra linear layer to match the number of labels. The paraphrase head
consisted of running the two inputs separately on the same BERT model, then concatenating the
result and passing it through a final linear layer for classification.

The similarity head went through two iterations. At first, we had done the same approach for
predicting paraphrase. This would prove to be detrimental to overall performance. Initially, we
believed that it was an over-fitting issue, but as seen by |Sun et al.| (2019), this wasn’t the whole
problem. Therefore, we decided to take a step back and re-approach our tasks at hand. We felt
that for semantic textual similarity, it was unreasonable to run the inputs through our BERT model
separately since BERT captures contextualized meanings between words, meaning it can struggle to
classify on a linear scale. Therefore, if we wanted to classify two sentences varying similarity to each
other, we should concatenate them before entering them into the BERT model. This approach proved
highly successful and increased our performance by roughly 10 percent. We would end up using this
second iteration for the rest of the experiment. We would carry this finding as an important avenue
for performance increase.

5 Experiments

5.1 Data

We will be using 3 different datasets while we train our model on the three downstream tasks. The 3
datasets are as follows:

1. The Stanford Sentiment Treebank (SST) (Socher et al.|(2013))) includes sentences where
each phrase has a label of negative, somewhat negative, neutral, somewhat positive, or
positive. They are broken up as 8,544 examples for training, 1,101 sentence for dev, and
2,210 for test. This dataset will be used for the sentiment classification task.

2. The Quora dataset (lyer et al.|(2017)) includes question pairs with binary label of whether
one is the paraphrases of one another. Our data contains 141,506 examples pairs for training,
20,215 pairs for dev, and 40,431 pairs for testing. This dataset will be used for the paraphrase
detection task.

3. The SemEval STS Benchmark dataset (Agirre et al.|(2013)) includes 8,628 sentence pairs
of varying similarity on a scale 0-5. It’s broken up to 6,041 examples pairs for training,
864 pairs for dev, and 1,726 pairs for test. This dataset will be used for semantic textual
similarity correlation.



5.2 [Evaluation method

In order to evaluate the method, we ran predictions for each task on the respective dev and test sets.
We use accuracy for the SST and the Quora datasets (sentiment classification and paraphrase detection
tasks) and we use Pearson correlation for the STS dataset (semantic similarity task). Once we get the
three different scores, we can get an overall score by normalizing the Pearson correlation for STS to
range from O to 1 (Pearson correlation outputs range -1 to 1 by default), and then averaging the three
normalized numbers with equal weight to get the overall score.

For training, we use a different loss for each task. For the SST dataset (predict sentiment task), we
used cross entropy loss. For the Quora dataset (predict paraphrase task), we use binary cross entropy
with logits loss. For the STS dataset (predict semantic task), we were considering using cosine
similarity loss, but decided to use mean squared error as it was used in Reimers and Gurevych| (2019).

5.3 Experimental details

We explored a variety of options for how to improve our model and ran experiments to test for
performance. We hoped to be able to make improvements to our model efficiently by reducing
training time while running experiments to estimate our model’s final performance and optimizing
the hyper parameters. The detailed descriptions for each experiment is provided in this section.

5.3.1 Experiment 1: Varying number of BERT layers to unfreeze

Rather than unfreezing all of BERT during training, it’s possible to only train a certain number of
BERT layers, while freezing the rest of the model. Each layer of BERT captures different features
of the input text and so we hoped that only training a certain number of encoding layers would
drastically reduce training times while still providing close to the same accuracy or possibly even
better accuracy. Sun et al.|(2019) conducted a similar experiment but did not mention the improved
training time, which we feel is a significant reason for this experiment. This would, in the future,
allow us to considerably speed up training times for our other experiments. We ran this experiment in
three different configurations, with our baseline for the experiment being a model that was completely
unfrozen. We chose to experiment with unfreezing up to one, two, and three top layers. In each case,
the the pooling layer was always unfrozen.

Our results for this experiment are shown in[Table 1]

5.3.2 Experiment 2: Varying learning rate

Another experiment we conducted was varying the learning rate. Catastrophic forgetting, introduced
by McCloskey and Cohen|(1989)), is a common problem where a neural network could essentially
"forget" earlier training data while learning new knowledge. [Sun et al.|(2019) suggested a learning
rate of 2e-5 because a significantly higher learning rate would have caused catastrophic forgetting
and showed results of high learning rates not converging. However, the paper did not discuss the
results of learning rates similar to 2e-5, so we wanted to test how other learning rates, such as le-5
and 3e-5, would impact the model while keeping the rest of the hyperparameters and architecture the
same. Figure[2]in the results section shows how the learning rates decayed over time and how the
model’s overall score was impacted.

5.3.3 Experiment 3: Varying dropout rate

Srivastava et al.|(2014) introduced dropout as a simple technique to prevent the problem of overfitting
in large neural networks, which can happen as a result of low training data on a model with a large
number of parameters. We suspected that overfitting was happening on our model because for some
experiments, the dev accuracy peaked around epoch 4 or 5 and would decline after that, while the
training loss would continue to improve. Larger dropout probability should allow our model to
generalize better while training as a regularization strategy, so we wanted to test the impact that
dropout had on our accuracy. We ran the following tests, making sure to only modify the dropout
probability while keeping the rest of the architecture and hyperparameters the same. Our baseline
was set at 0.3 since that was the default number provided to us and we had been training our other
experiments with 0.3 dropout probability.



Dropout probability of 0.0
Dropout probability of 0.3 (baseline)
Dropout probability of 0.4
Dropout probability of 0.5
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Our results for this experiment are shown in[Table 2

5.3.4 Experiment 4: Varying number of extra layers to add

For this experiment, we wanted to test how adding simple linear layers would impact the model. We
tested a number of configurations for our model. We experimented with adding more common linear
layers, as well as more task-specific layers.

The configurations we use for this experiment:

. Baseline: One common layer + one task-specific output layer per task (112.3M parameters)
. No common layer + one task-specific output layer per task (111.7M)

. No common layer + three task-specific layers per task (113.5M)

. No common layer + five task-specific layers per task (117M)

. Two common layers + two task layer per task (114.7M)

. Five common layers + five task layers per task (121.7M)

~N N BN =

. Nine common layers + nine task layers per task (131.2M)

The results are covered in[Table 31

5.3.5 Final Model

Using the results from the above experiments, we will create a final model that aims to utilize the
best hyperparameters from our experiments. The model’s configuration will be as follows:

* Learning rate: le-5 with an exponential decay of 0.9 per epoch

* Batch size: 32

* Dropout probability: 50%

* No common layers + 3 task-specific layers per task

5.4 Results

5.4.1 Experiment 1

The following table shows the results for experiment 1. Unsurprisingly, the fully fine-tuned model
outperforms the partially frozen models, but the accuracies are still high all around. However, training
times dropped significantly for the models with frozen layers. Using this data, we were able to run
our other experiments much quicker while maintaining a similar level of performance. Ultimately, we
chose to run our other experiments with only the 2 top BERT layers unfrozen, which had maintained
97% of the performance while reducing training time by 52%!

Best Overall Score | Training Time
Baseline 0.7365 2.306 hr
1 Top Layer | 0.712 1.018 hr
2 Top Layers | 0.7147 1.117 hr
3 Top Layers | 0.7221 1.218 hr

Table 1: The results from experiment 1. This experiment contained a baseline, unfreezing the top
encoder layer, unfreezing the top two encoding layers, and unfreezing the top three encoding layers.



5.4.2 Experiment 2

The graph below shows the data for experiment 2, with varying learning rates. We had expected
the learning rate data to be in line with the findings from Sun et al.| (2019), which recommended a
learning rate of 2e-5. However, through this experiment, we found that 1e-5 was actually the best
learning rate in our case. It is possible though, that because we tested this with some BERT layers
still frozen, this finding might not correspond to the best learning rate for the full fine-tuned model.
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Figure 2: Graphs of data from varying learning rate examples. The graph of overall scores is shown
on the left, and the graph of the learning rates are shown on the right.

5.4.3 Experiment 3

A major problem we ran into with our model was overfitting, particularly on the sentiment classifica-
tion task. The accuracy would peak around epoch 3 or 4, and would subsequently begin to drop in
future epochs as the training loss decreased. Because dropout is a method to increase regularization,
we had hoped to see that increasing dropout probability would lead to a better model.

Dropout Probability | Best Overall Score | Sentiment Accuracy | Paraphrase Accuracy | Semantic Correlation
0% 0.713 0.471 0.765 0.807

30% (baseline) 0.7134 0.4723 0.7683 0.8072

40% 0.7157 0.4869 0.7658 0.7992

50% 0.7159 0.4873 0.7624 0.801

60% 0.7151 0.4859 0.7606 0.8035

Table 2: Results of Experiment 3. This experiment tested the impacts of varying dropout probabilities
on our multi-task model. We tested probabilities of 0%, 30%, 40%, 50%, and 60%.

After this experiment, we saw that ultimately, a higher dropout did increase the model’s overall score,
but only by a small margin. As expected, the biggest gain was realized in the sentiment classification
task.

5.4.4 Experiment 4

Experiment 4 was our largest experiment, and it also had the biggest impact. Rather than trying differ-
ent hyperparametes, we chose to modify our model’s architecture by trying out various combinations
of the number of common layers and task-specific layers. We found out that the optimal configuration
was having no additional common layers and having 3 task-specific layers (including the output
layer). Increasing the task-specific layers to five yielded worse results than three layers, which was
an interesting finding. Something that we didn’t expect from these results was that introducing
common layers on top of BERT was actually regressive to the functionality of our model. The worst
configuration was 8 common layers with 8 task-specific layers per task.



Configuration | Best Overall Score | Sentiment Accuracy | Paraphrase Accuracy | Semantic Correlation
1 0.7156 0.4768 0.7773 0.798

2 0.7256 0.5041 0.7707 0.804

3 0.7286 0.4995 0.7818 0.8088

4 0.7175 0.4768 0.7738 0.804

5 0.7188 0.4841 0.7728 0.7991

6 0.7148 0.4825 0.7651 0.7901

7 0.6936 0.4641 0.7305 0.7722

Table 3: Results of Experiment 4. This experiment tested the varying configurations for our multi-task

model as mentioned in 5.3.4.

5.4.5 Final Test Results

The results we got on the test set are as follows:

Model

Test Overall Score

Dev Overall Score

Test Sentiment Accuracy

Test Paraphrase Accuracy

Test Semantic Correlation

Baseline: Pretrain

0.591

0.5834

0.380

0.672

0.439

Further Finetuning

0.743

0.736

0.523

0.784

0.844

Final Model

0.741

0.743

0.510

0.795

0.837

We had an huge improvement to our baseline model by further fine-tuning on the three datasets that
we received. However, what was surprising was the test results between our other two models. We
had expected the final model to do better than the fine-tuned model, and that expectation held for
the dev set, since our final model did quite a bit better than the solely fine-tuned model. As well, it
was supported by our previous experiments that our additions would lead to increased performance.
However, on the test set, our solely fine-tuned model did much better than expected while the final
model did slightly worse than expected. Therefore, the solely fine-tuned model actually beat out the
final model, which was surprising.

Our approach for this project was to try to figure out an efficient way to fine-tune BERT for multi-task
learning. Through the use of choosing n top layers to unfreeze while training and running various
experiments to figure out the most optimal settings for fine-tuning BERT, we had hoped to be able to
achieve good results.

6 Analysis

Though some of the findings in our results were surprising, we were able to explain why some of
the experiment resulted in these numbers. A large problem for us was over-fitting because of the
limited data for some of the datasets, particularly in the case of the sentiment classification task.
The minimal improvements were in line with the findings from|Zhang et al.|(2017) that showed that
explicit regularization can help, but isn’t the main source of improvement for generalization. Instead,
we had shown that appropriately modeling the downstream tasks had lead to the largest increase in
performance as discussed in the Approach section. Additionally, both models had no common layer,
which most likely improved both of their performances. This can be explained as the downstream
tasks weren’t exactly similar, such as sentiment and semantic similarity. Therefore sharing a common
layer would lead to different objectives.

We did show, however, that we could greatly increase training speed while maintaining similar
performance levels by simply freezing most of the BERT model and only training a certain number
of top layers as supported by Sun et al.| (2019). We were able to run more experiments efficiently
and were able to save computation and make training more accessible. One thing to keep in mind
however, is that the experiments that we ran with frozen BERT layers might not directly correspond
to the results that we would have gotten through fully fine-tuning our model. Our learning rate results
did not agree with the results that|Sun et al.|(2019) showed, and a reason for that might have been
due to training with a partially frozen BERT. Regardless, our method was a good way to estimate
performance during experimentation.



7 Conclusion

In conclusion, our findings showed that to achieve utmost performance on downstream tasks, re-
searchers need to appropriately model the task beforehand and decrease the amount of information
shared between the tasks. Moreover, we can see how further fine-tuning of the model leads to
increased performance.

Additionally, we demonstrated how freezing the bottom layers of BERT can lead to greatly de-
creased training times and therefore save computation and make language modeling more accessible.
Likewise, it demonstrates the possibility to run more experiments on the same amount of computation.

Some of our limitations derived from working around the BERT model with our limited data. Our
data was quickly over-fitted as the size of the model could memorize the training data. Although we
showed that it is important to model the tasks at hand appropriately, working with more data and
separate models can lead to improved results. This could serve as an avenue for further research.
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