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Abstract

Multi-agent reinforcement learning (MARL) methods struggle with the non-
stationarity of multi-agent systems and fail to adaptively learn online when tested
with novel agents, particularly in competitive environments with concealed infor-
mation. Here, we leverage large language models (LLMs) to create an autonomous
agent that handles these challenges. Equipped with a Theory of Mind (ToM) mod-
ule, this agent is able to synthesize hypotheses about its opponent’s strategy and
goals. It then iteratively evaluates and refines these hypotheses, drawing on its
memory of prior events, and leveraging intrinsic rewards derived from the LLM’s
own predictions. Conditioned on its opponents actions, the LLM acts in a way
to achieve its objective of maximizing its return over a number of episodes. This
zero-shot agent is investigated in the repeated matrix Prisoner’s Dilemma substrate
(part of the Melting Pot 2.0 (Agapiou et al., 2023) set of environments) with an
opponent across different scenarios playing stochastic and fixed strategies, and
ways to improve embodied reasoning in this model are explored to enhance perfor-
mance relative to reinforcement learning baselines. Lastly, key evaluation metrics
are used to capture the accuracy of predictions made and understand the optimality
of actions generated by the language model. In contrast to RL methods that are
trained with a large number of samples, the agent equipped with a ToM module
and enhanced embodied reasoning capabilities succeeds in a zero-shot fashion,
learning to identify and exploit strategies purely from in-context learning.

1 Key Information to include

• Mentor: Nelson Liu
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2 Introduction

A primary goal of AI research is to develop autonomous agents that are malleable to external signals
and that act adaptively in rich embodied social worlds. In particular, competitive embodied settings
are complex in that these scenarios often require inferring an opponent’s strategy from partially-
observable information to perform well. Multi-agent reinforcement learning (MARL) methods suffer
from various drawbacks in these settings, including but not limited to high sample complexity, poor
generalization to agent behaviors not seen in training, limited reasoning capabilities, and variability
in efficient search over the action space.

LLMs are uniquely suited for these tasks given the utility of language for scaffolding ToM in human
cognitive development(Astington and Baird, 2005; de Villiers, 2021). Moreover, highly flexible
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LLM-based agents have recently been instantiated in embodied social worlds (Park et al., 2023;
Brohan et al., 2023). We advance this research with the the LLM agent equipped with a ToM module.
Our agent learns and executes adaptive policies in competitive and embodied multi-agent scenarios
with limited information in its egocentric view.

Developing a Theory of Mind module architecture allows the underlying LLM to consider, generate,
and evaluate different hypotheses about an opponent’s strategy and select the appropriate counter
strategy conditioned on the predicted opponent next move. This response is subsequently passed
to a subgoal module to piece together action plans, which are then carried out in the environment.
Taking inspiration from cognitive modeling, the ToM module simultaneously evaluates multiple
hypotheses until a hypothesis provides a sufficient explanation of the agent’s observed data and reward
(O’Doherty et al., 2021; Gershman et al., 2015). Values for each hypothesis are learned from feedback
on self-supervised intrinsic rewards bootstrapped from the LLM’s own predictions. Additionally, by
displaying the highest-valued hypotheses in the prompt, the LLM is able to self-improve its reasoning
based on previously generated hypotheses. Thus, our agent is able to find useful explanations of its
opponent’s behavior in-context, affording it the ability to exploit the inferred strategy and achieve
high rewards across evaluation scenarios.

We evaluated our model on a challenging substrate in the Melting Pot 2.0 (Agapiou et al., 2023)
MARL benchmark: Prisoners Dilemma in the matrix: Repeated. Each evaluation scenario consists
of playing an opponent with a fixed or adaptive strategy, necessitating an agent to reason about its
opponent’s hidden intentions and select appropriate countermeasures when interacting with them,
two hallmarks of the ToM module (Ho et al., 2022). The contributions of this paper are as follows:

• We propose an embodied LLM-based agent for mixed-incentive multi-agent environments
with concealed information. This agent includes a novel Theory of Mind module with a
hypothesis generation, evaluation, and refinement pipeline that can be generalized to other
contexts.

• Our model achieves high performance zero-shot and outperforms RL methods trained on
a large number of samples on the Prisoners Dilemma in the matrix: Repeated scenario in
Melting Pot (Agapiou et al., 2023).

• A quantitative analysis of the optimality of actions taken by our model and qualitative analy-
ses of model outputs show how the agent is able to accumulate evidence for a hypothesis,
refine it, and exploit it when a hypothesis is validated.

3 Related Work

3.1 LLM-based Embodied Agents

A rapidly growing area of research involves building embodied agents rooted in large language models
(Wang et al., 2023a). Due to their extensive background knowledge obtained during training, LLMs
are increasingly being deployed as centralized controllers. Previous research has incorporated LLM-
enabled embodied agents based acting in multi-agent environments. (Park et al., 2023) introduce a
interactive simulation of a complex social environment in Smallville, where each agent autonomously
selects goals and builds relationships with others over a period of time. In this work, we address
the challenge of inferring, deciphering, and executing upon an agent’s intentions in a competitive
setting, as opposed to a cooperative one, when their strategy has to be reasoned about from sparse
information accrued over time in memory, calling for different retrieval and reasoning architectures
to be built over these LLMs.

3.2 Reasoning and Hypothesis Search using LLMs

LLMs’ reasoning abilities have only been boosted by recent advancements in instruction tuning
frameworks like Chain-of-Thought methods that prompt the language model to scaffold its thought
process with intermediate reasoning steps or other data structures (Wei et al., 2022; Zhang et al., 2023).
(Wang et al., 2023b) investigate the LLM’s ability to perform inductive reasoning through generating
and evaluating hypotheses on the Abstraction and Reasoning Corpus (ARC). Complementing this
work, iterative hypothesis refinement developed in (Qiu et al., 2023) grounds LLM generated
hypotheses for inductive reasoning with task specific symbolic interpreters, and reprompts the LLM
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to refine high scoring hypotheses. Here we similarly generate, evaluate, and refine hypotheses based
on feedback without any external Python interpreter or scoring mechanisms, with a distinct method
developed in parallel that computes values for each hypothesis based on predicting information about
another agent’s goals. Other works have assessed LLMs’ ability to reason in matrix games that require
ToM reasoning. One study showed mixed results for LLMs playing repeated matrix games (Akata
et al., 2023). They showed that these LLM agents when evaluated without any external modules, start
cooperating and defect immediately once their opponent defects, showing sub-optimality in their
strategy, missing out on valuable opportunities to obtain reward.

3.3 Cognitive models in partially-observable environments

Our method has analogs in the computational modeling of animal and human decision-making, and
our work adds to emerging promising evidence that LLMs can operate as cognitive models (Binz
and Schulz, 2023). Methods from Bayesian nonparametric stats, such as the Chinese restaurant
process, suggest that when animals and humans are learning they generate an unbounded number
of possible latent causes of the observed data, until a satisfactory explanation is found (Gershman
et al., 2015). Our LLM-based agent similarly iteratively generates and refines hypotheses about
the opponent’s strategy, until a explanation aligns with the observed data’s likelihood. Researchers
have extended this Partially Observable Markov Decision Process (POMDP) modeling framework to
multi-agent settings by constructing models that explicitly model other agents’ beliefs and goals when
interacting with them, handling uncertainty over this hidden information with a Bayesian framework
(Baker et al., 2017; Rusch et al., 2020). Our framework also explicitly prompts a LLM to infer
its opponent’s goals/strategy and weighs the uncertainty over these inferences with a hypothesis
evaluation mechanism.

Figure 1: LLM Agent Architecture

4 Approach

4.1 Partially Observable Markov Games

The method developed in this work is directly applicable to any competitive multi-agent environment
where the state of the environment is partially observable and the opponent’s policies are concealed.
Formally, such an environment is defined as a Markov game for N players in a partially observable
environment. Let the finite set S represent the possible states of the game. Each player i receives
observations given an observation function χi : S → O, representing their limited, egocentric
point of view. Moreover, each player i can take actions from their action space Ai, and when all
players choose actions (a1, . . . , aN ) ∈ A1 × · · · ×AN := A, the state of the environment transitions
according to a probability distribution T : S ×A → D(S). The reward function for each player i is
represented as ri : S ×A → R, mapping the current state and joint actions to a real-valued reward.

More specifically, we evaluate our ToM enabled model on the Prisoners Dilemma in the matrix:
Repeated substrate which is part of the Melting Pot multi-agent decision-making benchmark. This is a
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non-zero-sum mixed-incentive environment with two players moving around a map where collecting
green and red resources corresponds to a ‘cooperate’ or ‘defect’ resource respectively. The relative
magnitude of green and red resources collected signal the agent’s strategy of on the spectrum of
pure cooperation to pure defection. In addition to movement, the agents have an action to fire an
“interaction” beam which initiates a duel with the other player when that player is within the agent’s
egocentric view. An interaction results in both agents getting a nonzero reward according to the
inventories of resources picked up by each player. The inventory collected by the player represents
their mixed strategy and is only observable by that player:

ρ = (ρgreen, ρred).

The reward is determined by matrix multiplication operations that represent the dynamics of the
classic game-theoretic Prisoner’s Dilemma game:

rrow = vT
rowArowvcol, rcol = vT

colAcolvrow

where
vi =

ρi∑K
j=1 ρj

and

Arow = A⊤
col =

[
3 0
5 1

]
.

The partially-observable input in Melting Pot consists of a 5x5 window around the agent such that it
can see three grids in front of itself and one behind it, and two on each side.

4.2 Agent Architecture

As Figure 1 shows, the model consists of several cognitive modules that altogether form an embodied
LLM agent. The egocentric observations are represented by a textual map/state representation,
which is added to a memory system after every step. The memory system also logs rewards and the
inventories from previous interactions in the game. Two cognitive modules depend on an LLM, a
Theory of Mind module and a subgoal module, which output goals and action plans respectively. An
action planner takes an action plan and creates a sequence of actions that achieves that action plan
with a pathfinding algorithm.

We use GPT-4 as the primary LLM to test our agent due to evidence that it serves as the state-of-the-art
LLM on reasoning tasks (Liu et al., 2023a) with the following hyperparameters:

Hyperparameter Value
Model “gpt-4-1106-preview”
Max tokens 4000
Temperature 0.1
Top p 1.0
n 1

Table 1: Hyperparameters of GPT API Calls

The textual representation ensures that the LLM is fed all information in the form of language tokens
and that we evaluate the core capabilities of an LLM to perform in this environment. We found
that, in practice, the best representation consists of printing each entity type with a list of all the
coordinates where that entity type is present. For example “Player Position: ’player 0- S’: [(21, 4)],
Observable Green Box Locations: [(13, 10), (14, 11)], Observable Red Box Locations: [] encodes
the player position and orientation (south) along with the observable box locations.

4.3 Theory of Mind Module

The ToM module operates on a higher level of abstraction than the embodied aspects of the decision-
making process. After an interaction happens with the opponent, the ToM module takes in the
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Figure 2: Theory of Mind Module

interaction history and generates hypotheses about the opponent’s strategy such that it can anticipate
its next moves and counter them. The ToM module processes information in several steps to properly
evaluate old hypotheses, generate new hypotheses, and select a goal to send to the subgoal module
(Figure 2).

Step 1 The LLM is called to guess the opponent’s last inventory based on the inventory the LLM
agent last played and the reward it received. Since the inventories of other players are not observed,
this information has to be inferred, adding even more difficulty in discerning their strategy. GPT is
given a description of the environment and the reward function in the system message, therefore it is
able to approximate the opponent’s last inventory empirically based on the data provided.

Step 2 Previously generated hypotheses are evaluated. The hypotheses are scored by the following
mechanism:

Vhypothesis = E[r]
where r is the intrinsic reward based on the accuracy of the predictions the hypothesis generates. We
compute self-supervised intrinsic rewards bootstrapped from the LLM’s own predictions. Let xpredicted
be predicted features by the LLM related to another agent’s goal, and xobserved be the observed or
inferred features about their goal. Here, xobserved is the opponent’s inventory from the last round that
is inferred in step 1, and xpredicted is the predicted inventory from a previous iteration of ToM module
processing (see step 4). The intrinsic reward function ri can then be defined as:

ri =

{
c if (xpredicted) = (xobserved)

−c if (xpredicted) ̸= (xobserved)

where c = 1.0 is a hyperparameter. Vhypothesis is then dynamically updated with a Rescorla Wagner
update rule (Rescorla, 1972), expressed as:

δ = ri − Vhypothesis

Vhypothesis = Vhypothesis + α · δ

modulated by learning rate α = 0.3 via a prediction error δ. The learning rate dictates how much
to weigh recent interactions, which is useful when playing against evaluation scenarios where the
opponent changes their strategy within an episode. When the value of a hypothesis meets a threshold
Vthr = 0.7, the ToM module marks that a hypothesis has been validated, and uses this hypothesis in
subsequent steps to select the proper goal for the next interaction.

Step 3 consists of generating new hypotheses and refining old ones. GPT is queried to guess its
opponent’s strategy given the interaction history of past inventories and rewards. GPT is told that if
your previous hypotheses are useful, you can iterate and refine them to get a better explanation of the
data observed so far. The newly generated hypothesis is added to the list of hypothesis.
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Step 4 involves predicting the opponent’s next goal given a hypothesis. The LLM is given this
hypothesis and the interaction history in its user message and prompted to predict the next inventory
that the opponent will play. Predictions about the opponent’s next inventory are also generated for the
top k hypotheses (k = 5 since it works best in practice) in terms of value, where k is a hyperparameter
that trades off the number of old hypotheses to consider and cost/thinking time.

Step 5 GPT is queried to return a target inventory to counter the opponent’s goal that was guessed in
step 4, which is then fed to the subgoal module in order to achieve this target inventory with embodied
actions. Steps 4 and 5 are collected in the same GPT API call, whereas steps 1 and 3 are generated
through two separate API calls.

The subgoal module receives the goal specified by the ToM module along with the current state
description and contents of memory and outputs action plans to achieve that goal. Therefore, the
subgoal module is tasked with the responsibility of connecting the abstract ToM module to the
embodiment of the agent and coming up with effective action plans for enacting the high-level goal.
Crucially, given the partially-observable nature of the state space, this objective involves properly
exploring the environment to build a rich map of where resources are, and properly retrieving the
right information from memory. The action planner then turns the sequence of subgoals specified
by GPT in the subgoal module into a sequence of atomic actions compatible with the Melting Pot
environment.

5 Experiments

5.1 Evaluation method

We directly test our LLM-based agent on the evaluation scenarios in the Prisoner’s Dilemma substrate.
The key evaluation component is to test agents against different bots with various policies. In contrast
to RL pipelines that train independently and then are tested on the evaluation bots, we leverage the
background knowledge imbued in language models and assess whether they can generalize to the
evaluation scenarios in a zero shot manner. Crucially, our agent has no knowledge about which
strategies they may be playing in the prompts given, and these strategies have to be ascertained online
within an episode via feedback.

This substrate presents 10 distinct evaluation scenarios, the first three of which involve the opponent
purely cooperating, defecting, and cooperating or defecting. The next seven represent more complex
settings, including a high-trigger grim operator (initially cooperates but defects once agent defects),
two-strike grim reciprocator (same as high-trigger but keeps defecting after two defects by agent),
and others. Against the simple policies, this means the agent should play the same type of inventory
every round rather than playing randomly or anticipating a change in its opponent’s policy. Achieving
success against adaptive strategies, however, tests the LLM’s ability to anticipate and act in nuanced
ways, motivating the use of an LLM as an in-context learner.

5.2 Results with RL Baselines

To benchmark performance we use the RL baselines trained in Melting Pot 2.0 paper (Agapiou et al.,
2023). These include VMPO (Song et al., 2019), OPRE (Vezhnevets et al., 2020), and A3C (Mnih
et al., 2016). Each RL model was trained on a very large amount of samples (1e9 steps). OPRE
and A3C models were also trained again directly on each scenario. These models, demarcated as
exploiters, serve as a rough upper bound on performance since the agent knows the strategy it is
playing against. Notably, these models do not need to learn online what strategy they are playing,
thus they should not be directly compared to the LLM agent or RL baselines. Our LLM agent also
has to first explore the environment each episode to learn where the resources are located.

Occasionally, some algorithms outperform the exploiter due to prosocial behaviors learned in those
algorithms being favored in the scenario. From Figure 3, we can see that the LLM agent is at least
equivalent to the baseline RL algorithms in all scenarios, showing its comprehensive adaptability to
learn strategies online without any previous training or context. The ToM enabled LLM consistently
achieve high rewards, especially on fixed strategies represented in the scenarios 0 and 1 and achieves
comparable performance to prosocial RL algorithms in Scenarios 4 and 6 on average, delineating
its ability to exploit deterministic policies while performing flexibly against stochastic ones. During
these episodes, we also observe that the LLM accurately predicts the opponent’s next inventory with
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Figure 3: Reward Obtained Over an Episode in Different Scenarios

72% accuracy on average across the ten scenarios, further highlighting the ability of the ToM module
to anticipates its opponent’s actions.

5.3 Results with Reasoning Capabilities of the Subgoal Module

We also investigated how well the subgoal module, enabled by the LLM agent, is able to reason
through optimal paths. More specifically, we investigated that, of the action plans generated by this
module, could it have generated more optimal action plans to achieve the same change in inventory
that would have taken less steps given its interaction history and egocentric view? The number of
steps taken by an action plan is counted by the A∗ pathfinding algorithm, so the challenge here
is to find and generate the nearest resources to reach as part of the subgoal module. To compare
this to optimal actions, we wrote an algorithm that chooses an optimal action plan to achieve the
same change in resource from the same initial position and interaction history as the LLM agent
by calculating the net closest resource locations that would achieve the same delta in inventory and
counting the number of actions it takes to get there. We do this over 200 steps in scenario 1 and
examine this behavior in Figures 4 and 5.

Figure 4: Optimal Steps vs Actual Steps for
each Action Plan

Figure 5: Average Optimal Steps vs Average
Actual Steps for Action Plans

We found that the LLM agent reasons in a suboptimal fashion, consistently taking more actions than
is necessary to achieve the same objective. In fact, the average number of actions taken by our agent
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is twice as much (26.5) as an optimal embodied agent would take (13.2), delineating that while the
agent is able to generate good hypotheses, the actions it takes corresponding to those hypotheses
could be more efficient. Crucially, this results in a lower reward for our agent as it presents the
opportunity for the agent to be involved in an interaction with its opponent and get zapped by it
before it has collected the optimal counter measure.

6 Analysis

Our ToM + Subgoal Module enabled LLM agent is able to reason through different possible opponent
intentions, score them based on which is most likely, and select appropriate counter measures to
increase its own reward relative to its oppponent in a mixed-incentive environment, requiring careful
planning and execution between cooperation and defection strategies over a long-term horizon.

GPT-4’s first move in this environment is almost always to cooperate rather than to defect which, in a
single iteration of prisoner’s dilemma, is the move with higher expected value. This is perhaps due to
some combination of reinforcement learning from human feedback (RLHF) involved in training this
model and that the agent wants to first gain trust of its opponent before playing the strategy it wants
to. It also isn’t proactive - at the point at which it strongly favors one strategy, it should go near its
opponent and try to fire an interaction beam to get more reward, but instead it passively tries to place
itself in the center waiting for its opponent to act, which means it also loses out on reward it would
have otherwise collected in the meantime.

The subgoal module doesn’t go to the nearest resource available, even when that resource is part of
its egocentric view and stored in its memory. Our agent also fixates to travel in its current orientation,
which is the direction in which its face points, and unintentionally and perhaps lazily tends to favor
that direction to find a resource over any other direction. To improve this, we think that the act of
‘turning’ could be an explicit action that the agent uses to look for resources and that this could be
incorporated into the agent to enhance its reasoning capabilities and achieve close to optimal steps
for the generated action plans.

Further evaluation is needed to get a better picture of the capabilities of these LLM architectures
in mixed-incentive scenarios. There are nuances in strategy that language isn’t able to capture
(especially in strategies that can seem stochastic over a long term), and often our agent isn’t able
to make complete sense of an opponent’s moves in an environment. There is also some amount of
information lost in context as LLMs have a tendency to forget information in the middle when given
large contexts (Liu et al., 2023b). Since episodes were expensive to run, only one episode was run
for each scenario and averaging over multiple episodes will help get a better sense of actual LLM
performance in these scenarios. However, the agent equipped with the ToM module does provide
performance at least at the level of baselines, calling for more work to develop architectures over
these LLMs that can enhance their performance as a future line of work.

7 Conclusion

Here we evaluate our ToM + Subgoal enabled model on the challenging Prisoner’s Dilemma bench-
mark, and show at least equivalent performance to RL baselines. Crucially, this alternative approach
avoids the need to train with a large amount of data by leveraging the background knowledge of LLMs
to deploy and evaluate an agent in a zero-shot fashion. We characterize the in-context learning ability
of our method, scaffolded by two main components: prompting the agent to infer its opponent’s
goals/strategy (mind prompting), and evaluating and refining hypotheses.

A limitation of our method is knowledge of the game rules and mechanics are listed in the prompts.
An avenue for future research is learning these concepts autonomously from environmental feedback.
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