Implementation of minBERT and contrastive learning
to improve Sentence Embeddings

Stanford CS224N Default Project

Akshit Goel Linyin Lyu
Department of Electrical Engineering Department of Computer Science
Stanford University Stanford University
akshit@stanford.edu llyu@stanford.edu

Nourya Cohen
Department of Computer Science
Stanford University
nacohen@stanford.edu

Mentor: David No External Collaborators ~ No shared project

Abstract

A language model’s performance on various NLP tasks can be judged by the quality
of sentence embeddings that it generates. We take inspiration from the SImCSE
paper (Gao et all [2021)) and perform additional pretraining using contrastive
learning to improve the sentence representation for multitask performance. We
also integrate gradient surgery in the multitask learning process based on the
paper (Yu et al., 2020) which highlighted the importance of non-conflicting
gradients for improved multitask performance. We further conducted multiple
experiments to improve our multitask training strategy. We observe that training
through randomized distribution of batches amongst the different tasks help a lot
in improving the multitask performance. We achieve a 45% improvement in the
STS performance using multitask learning as compared to our baseline for single
task finetuning. We analyse our results and identify areas for further improve the
performance of multi-task learning.

1 Introduction

Multitask Learning takes a cue from how humans tend to learn, as people frequently transfer
knowledge gained from prior experiences to facilitate the acquisition of new skills. Likewise, it is
beneficial for several related tasks to be learned together so that knowledge learned from one task
can benefit others. For the default project, we extend BERT model to improve its performance on
multitask learning. First, we pretrained BERT with contrastive learning objective. It encourages
the model to produce embeddings such that the similarity between positive pairs is higher than the
similarity between negative pairs. With better sentence representation, we tried different strategies to
process the three tasks (Sentiment Analysis, Paraphrase Detection and Semantic Textual Similarity)
and balance their loss functions. We implemented gradient surgery based on the paper (Yu et al.,
2020) to improve the multitask performance by having non-conflicting projections of gradients with
respect to different tasks. After concluding all the experiments we choose the combination of the best
strategies amongst all our experiments to get the final results.

Stanford CS224N Natural Language Processing with Deep Learning

2 Related Work

The three works that mainly informed our paper was the (Devlin et al.,2018)) paper which established
the BERT model, the (Gao et al|2021)) paper on Contrastive Learning, and the (Yu et al.|[2020)
paper on gradient surgery to improve multitask performance.

The (Devlin et al., 2018)) paper establishes the BERT paper that we are currently using as the leading
base model for word embeddings. More specifically, BERT pre-trains on unlabeled texts on both
the Masked Language Model and Next Sentence Prediction objectives. By stacking biderectional
transformer encoder layers (Biderectional Encoder Transformer Layers or BERT) and conducting the
afformentioned pre-training, BERT needed only one additional output layer for finetuning any range
of tasks and produced state of the art results.

The (Gao et al|2021) paper extended this by using contrastive learning as additional training for
BERT embeddings. Their results showed that contrastive learning regularized the pre-trained embed-
dings’ anisotropic space to be more uniform. The unsupervised approach which we implemented,
takes in an input sentence and predicts itself in a contrastive object, with the only noise being because
of standard dropout. The results for the unsupervised approach were 4.2% higher on the Spearman’s
correlation then the previous best results.

The (Yu et al.,|2020) paper on gradient surgery for multi-task learning further extends this research.
While deep learning research often produced great results on single task learning, multi-task learning,
which is far more efficient data wise, is more challenging from an optimization perspective lowering
the overall efficiency. This paper suggests that one reason for the lower quality results with multi-task
learning is gradient interference caused by the different tasks within the multi-task optimization
landscape. It suggested that projecting gradients for the tasks such that they no longer conflict can
lead to improved efficiency and performance on these tasks in a multitask training setting.

3 Approach

We use the pretrained BERT as the base model. On top of the base model, we add additional feed
forward layers to adapt to specific tasks. The prediction head for the sentiment analysis task is a
dropout layer followed by a linear layer which outputs the appropriate classification label. For the
paraphrase detection and semantic textual analysis tasks, we first generate the embeddings for both
the input sentences. These embeddings are concatenated together and passed through some shared
layers like dropout, linear and GELU layers. The output of these shared layers is passed through a
task-specific output layer which makes the prediction based on the expected output type for that task.
With this architecture (as shown in Figure[I)), we explore the below extensions hoping to improve the
performance on the multitask learning. These extensions were tried in isolation of each other on a
smaller dataset. Specifically, we took about 1/16!" of the paraphrase dataset, so that all the 3 datasets
for SST, Paraphrase detection and STS were of similar size. This allowed us to iterate quickly and try
multiple experiments. The experiments which lead to improved results were combined together into
our final run on complete dataset.

Sentiment
Analysis

Semantic
Textual

Paraphrase ’

Lingar layer || Shared layers

! it i

[CLS] embedding

f

BERT

Figure 1: Architecture of the multitask learning.

3.1 Contrastive learning

We implement the unsupervised contrastive learning approach based on the paper (Gao et al., [2021).
We pass a sentence to the BERT model twice to get two embeddings. The embeddings are different
because BERT apply dropout in the attention and feed forward layers. This way we get a positive pair.
The other sentences within the same mini-batch are considered as negatives pairs. We pretrain the
BERT model on this contrastive learning objective (Equation I)) to increase the similarity of positive
pair compared to negative paris. After the pretraining, we use the saved model to further finetune
on the three tasks - Sentiment analysis, Paraphrase detection and Semantic Textual Similarity in the
multitask context.

exp(sim(z;, zj)/T)

L = —log
Zgzl exp(sim(z;, z)/T)

ey

In the above equation, sim is cosine similarity, z; and z; are the embeddings of the positive pair, 2,
are embeddings of other sentence within the batch, and 7 is a temperature parameter to adjust how
"sharp" the distribution is.

Our idea behind using contrastive learning based on (Gao et al.,2021) was that the performance of a
model on different sentence level tasks depend upon the quality of the sentence embeddings. Using
contrastive learning can help a model understand the similarities and differences between different
sentences and reflect that in the embeddings it generate. We believe this can lead to better quality
sentence embeddings and help on the downstream NLP tasks. Further, since we use unsupervised
contrastive learning, it eliminates the need to get a separate labelled data. We combined all the
sentences from the three tasks and used that as the training dataset for contrastive learning in the hope
that the model performs better on these datasets for the three tasks as part of multitask learning.

3.2 Gradient surgery

In parallel to working on contrastive learning, we worked on the idea of gradient surgery based on
the paper (Yu et al.||2020). We worked on this idea since we noticed that our multitask performance
based on our initial experiments was lower than the performance of individual tasks. Therefore, our
hypothesis was that there might be some gradient conflicts that were preventing the model to perform
well on multitask learning and gradient surgery might help in removing these conflicts to improve the
model’s multitask performance.

The gradient surgery is based on the idea that in a multitask training environment, different tasks
might interfere in the optimization process of each other. This might lead the model to have conflicting
gradients which prevents them from performing well due to destructive interference. To detect if the
two gradients are conflicting, we use inner product between them. A negative dot product reveals that
the gradients are conflicting and we must subtract the projection to obtain non-conflicting gradients.

We denote the gradient with respect to task 1 as grad_task; and gradient with respect to a second
task as grad_tasks. These 2 gradients conflict with each other if the projection direction between
them as indicated by equation [3|is negative. If its negative it implies destructive interference between
them and the grad_task; is modified as indicated by equation 4]

inner_product = {(grad_task,, grads_tasks))

inner_product

3

 direction —
proj_direction (grads_task,y, grads_task,)

grad_task, = grad_task, — min(proj_direction,0) - grads_task, “@

In order to train using gradient surgery, we organized the datasets for all the 3 tasks in what we call
as super-batches. Each super batches contains 1 batch each from the three tasks. We experiment with
two different orders within a super batch. The fixed order consists of the batches within a superbatch
in the order - Sentiment Analysis (SST), Paraphrase Detection and Semantic Textual Similarity (STS).
While for randomized order we distribute the tasks randomly in a superbatch.

3.3 Different training order approaches

In addition to contrastive learning and gradient surgery we conducted the following experiments in
isolation to find out the best training strategy that we must adopt. In this class of experiments we
studied the impact of different training order strategies as described below:

1. Fixed Order: This is the default approach that we assumed for multitask training. Here
we processed the tasks in a fixed order and also completed training all the batches of a task
before moving to the next task. we sequentially process each task following the fixed order -
Sentiment Analysis (SST), Paraphrase detection and Semantic Textual Similarity (STS) for
every epoch (as shown in figure Q] (a)). Also note that each task was performed for its entire
dataset before moving to the next task.

2. Randomized Order: In this approach, we make a list of batches for all the tasks and

randomly shuffle this list. Then we iteratively process the batches from this list as shown in
figure 2] (b)) Therefore, basically in this approach neither the order of tasks is fixed nor the
entire batch of tasks is trained at once.
The idea behind using this approach was that we felt that the model might be overfitting to
the task order during training and thus have lower performance on dev set. Randomizing the
order, prevented this overfitting and improved the performance of our model as indicated in
the results section.

For every epoch

| SST | Paraphrase
SS5T
STS
Paraphrase S
S5T
sSTsSs || | .-
a b

Figure 2: (a) Fixed order to process each task. (b) Interleave batches from different tasks with random
order. (Note: The box size is proportional to the data size for different task)

3.4 Different loss update approaches

Since we noticed from the experiments based on section 3.3 that the random order performs better,
we conducted the experiments for the strategies in this section only on the randomized order. We
experiment with two strategies to update the model under this approach:

1. Individual Loss Update: Under this strategy, we process the batch for each task indepen-
dently. This means that we compute the loss separately using the task-specific predictions
and the ground truth labels. The mode is updated based on each task’s loss independently.

2. Combined Loss Update: We tried this approach because we felt that since the overall goal
is to have higher multitask performance, we must combine the losses from all the tasks and
update the model based on the gradients with respect to this combined loss. Under this
approach we adopted a batching strategy of super-batches similar to gradient surgery.

4 Experiments

4.1 Data

For pretraining with contrastive learning, we take the sentences from all the 3 provided datasets for
Sentiment Analysis (SST), Paraphrase Detection and the Semantic Textual Similarity. We combine
all the sentences into a single text file and use it as the dataset for contrastive learning. For multitask

learning, we use the provided three datasets: Stanford Sentiment Treebank (SST) for Sentiment
Analysis, Quora for Paraphrase Detection and SemEval STS Benchmark dataset for Semantic Textual
Similarity.

4.2 Evaluation method

For sentiment analysis and paraphrase detection task, we use accuracy to evaluate the performance.
For the semantic textual analysis, we use Pearson correlation to compare the predicted similarity
scores with the true similarity values. This is in line with the metrics provided in the default project
handout.

4.3 Baseline

Our baselines are formed by finetuning on each task and dataset separately. The baselines for SST,
Paraphrase and STS are 0.524, 0.810, 0.381 respectively.

4.4 Experimental details

1. Data size: We first sampled 8843 examples from the Quora dataset to shorten the training
time for paraphrase detection task. By doing so, the three datasets have similar data sizes,
and the problem is simplified to learning multitask for relatively similar size datasets. This
also helps us experiment rapidly and reduce costs. After we compare the results of all
experiments, we’ll pick the best experiment and use the whole dataset without sampling to
run the experiment again and make the submission.

2. BERT: We used all the default parameters of BERT. For all of our experiments, we take the
[CLS] representation as the sentence embedding.

3. Multitask learning: For finetuning multitask we used the learning rate of 1e-5 and batch
size of 8. The finetuning here refers to using the —option finetune’ flag to update all the
parameters including BERT and additional layers. We did not use the *—option pretrain’ flag,
since the BERT parameters are frozen under this flag.

4. Contrastive learning: To pretrain BERT using contrastive learning objective, we used a
learning rate of 3e-5 and temperature 7 = 0.05 (Gao et al., [2021)).

5. Epochs: When finetuning multitask, we found that development accuracy plateaus early
even though the training loss continues decreasing. This indicates that the model starts
overfitting after 4 epochs (Figure [3). Thus, we adopted early stopping and concluded that
using a smaller number of epochs (epochs = 5) is sufficient for finetuning BERT for our
experiments.

0.8 4
—m e

x

T niiina it b
e ~-
e

074 .~

0.6 1

0.5 1

0.4 4

0.3

—8— sentiment accuracy
0.2 -%- paraphrase accuracy
--®- semantic correlation
—&- train loss

0.1+

[} 2 4 6 8
Epoch

Figure 3: Training loss and Dev accuracy

4.5 Results

The table below shows the results from our different experiments on multitask learning with the same
sampled dataset mentioned in 4.4.1:

Multitask
Tasks Sentiment Analysis Paraphrase Detection | Semantic ~ Textual
Similarity
Fixed order 0.499 0.675 0.465
Random order 0.518 0.725 0.509
Gradient surgery(fixed) 0.514 0.690 0.429
Gradient surgery(random) 0.510 0.732 0.370
Combined loss 0.503 0.725 0.408
Contrastive Learning 0.490 0.719 0.498

As expected, we realize that the performance improves when the batches are randomized. We believe
this is because in a fixed order the model overfits to the given order of the tasks and is not able to
generalize well across different tasks. In case of gradient surgery, we used super-batches as indicated
in the approach section. We believe since using superbatches automatically distributes the batches of
different tasks, it does not happen that one task completes all its batches before the other tasks even
starts. This prevents the model to overfit on one particular task and probably is the reason why for
gradient surgery the fixed and random results look similar where fixed order performs better on STS,
random order performs better on paraphrase. For SST both the orders perform almost similar.

In general, contrary to our expectations gradient surgery does not help improve the performance
consistently across all tasks. In case of fixed order it helped improve the performance on Sentiment
Analysis and Paraphrase Detection while degrades the performance on Semantic Textual Similarity
(STS). For random order, it helps improve the performance on Paraphrase Detection, but degrades the
performance on Sentiment Analysis. For STS, it remains almost similar and just degrades slightly.
As per our understanding, we believe that STS performance degraded upon gradient surgery probably
because of the following 2 reasons:

» The STS dataset is the smallest amongst all and is probably the most difficult task amongst the
three tasks as its a regression problem as compared to the other tasks which are classification
problems with a lot less possible values of the outputs.

» The gradient surgery most probably reduces the magnitude of the gradients due to the
operations as indicated in equation[d} This might lead to smaller updates for STS. We must
have been able to confirm this behaviour by using larger learning rates for STS, but since the
run takes a long time, due to limited compute resources, we have not been able to conduct
further tests.

We also notice that the Combined loss experiment which was conducted on superbatches did not
perform well as compared to different losses for each task and thus we have not considered it in our
final run.

Also, contrary to our hypothesis we noticed that the performance degrades with contrastive learning.
We’ll discuss more about it in the analysis section.

Based on these results, we conducted our final experiment with randomized order multitask learning
on full dataset across the 3 tasks. Our test results have been compared below against the baseline
results.

I Baseline Multitask ||

SST 0.524 0.522
Paraphrase 0.810 0.816
STS 0.381 0.552

Table 1: Final result

We observe that while the performance remained similar for SST and paraphrase, STS benefited a lot
from multitask learning - an improvement of nearly 45%. We believe this improvement happened
because of the small dataset for STS. Since the task is inherently harder, and also has a smaller dataset
the model is not able to learn the nuances well and is not able to perform better with finetuning for
just STS. However, with multitask learning, the dataset for all the three tasks taken together helped
the model improve its understanding of the task. Also, we believe that since the paraphrase detection
task holds a lot of similarity with STS, the latter was able to benefit through learning on the former
task.

5 Analysis

As mentioned in the results section, the degradation of the results with contrastive learning was
contrary to our expectations. To understand this behaviour we conducted further experiments on
contrastive learning and studied the impact of contrastive learning outside the multitask learning
setting. We evaluated the performance of only STS task with and without contrastive learning. In
the latter situation we pretrained our model on contrastive learning before finetuning it on STS.
With this additional pretraining on the contrastive learning objective, we observed an increase in the
Pearson’s correlation by nearly 22% (comparison show in table[2). This is in line with our expected
behaviour because contrastive learning trains the model to identify similar vs different sentences and
improves the sentence embeddings. Since the contrastive learning objective is quite similar to STS,
this improved understanding of the task probably helps the model perform better on STS.

However, from our experiments, we observe that contrastive learning does not benefit in the case
of multitask learning. While the results for paraphrase detection and STS are almost similar to
that of without contrastive learning (random order results in the table), there is a greater drop on
Sentiment Analysis. We believe that the performance degradation for Sentiment Analysis happen as
the contrastive learning objective is different from the Sentiment Analysis, and thus the improvement
in sentence embeddings does not translate to a better performance on Sentiment Analysis. A similar
explanation is also reflected in the (Gao et al.,[2021)) paper which suggests using additional masked
language modeling. The paper achieves it through adding a MLM loss function to the contrastive
learning objective and trains the model on the joint loss. However due to limited time and compute
resources, we could not verify this through further experiments.

I w/o contrastive learning w/ contrative learning |

| STS 0.382 0.467 |
Table 2: Finetuning STS task with or without contrastive learning pretraining

Next, if we plot the training results of our best performing multitask experiment (Random order),
we observe potential overfitting. The training accuracy of the model almost reaches 1 for all 3 tasks
(Figure). This overfitting is most likely because the training dataset used for finetuning is much
smaller compared to the size of model. This is potentially another reason why we didn’t perform
significantly better with multitask learning as compared to the baseline. We tried to address this
though use of regularization techniques as described in the (Jiang et al.,[2019)) paper. The paper
makes a similar suggestion by describing how due to limited data for finetuning tasks as compared to
the extremely large capacity of pre-trained models, aggressive fine-tuning often leads to overfitting.
It suggests adding ’smoothness-inducing regularization’ to address the above issue. We tried to
incorporate this technique as an additional experiment taking inspiration from a github rep on
this paper. The training results are presented in figure[5}] We did not observe any significant benefit
through the regularization. We believe this might have been most likely due to some issue with our
implementation. However, we could not conduct more experiments to fix it because of limited time
and compute resources. (Figure [)

(Figure3)
6 Conclusion

In this default project, we implemented the minBERT and adamW optmizier followed by a detailed
exploration of several extensions for multitask learning. We initally thought that contrastive learning
could help us improve the performance of multitask learning, but our experiments and analysis
indicated that though it does significantly improve the STS performance on single-task finetuning,
it does not give similar results for multi-task learning. We further tried to improve the multitask
performance through the use of gradient surgery and experimented with different training strategies.
We observe a significant improvement in the STS task compared to our baseline through the use of
these techniques, but the performance on the other tasks does not improve much. We identified areas
for further improvements like - better regularization, resolving task interference and better sentence
embeddings to improve the performance on multitask learning.

"https://github.com/archinetai/smart-pytorch

0.91

0.8

0.7 4

0.6 q

—8— sentiment accuracy
0.5 4 =%~ paraphrase accuracy
: i --m- semantic correlation

o 2 4 6 8
Epoch

Figure 4: Training Accuracy for 'Random Order’ multitask experiment

0.8 1

0.7 4

0.6 4

—&— sentiment accuracy

-x- paraphrase accuracy

054
L] --m- semantic correlation

0 2 4 6 8
Epoch

Figure 5: Training Accuracy for SMART

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805.

Tianyu Gao, Xingcheng Yao, and Danqgi Chen. 2021. Simcse: Simple contrastive learning of sentence
embeddings. In Empirical Methods in Natural Language Processing (EMNLP).

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2019.
SMART: robust and efficient fine-tuning for pre-trained natural language models through principled
regularized optimization. CoRR, abs/1911.03437.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. |Gradient surgery for multi-task learning. In Advances in Neural Information Processing
Systems, volume 33, pages 5824-5836. Curran Associates, Inc.

http://arxiv.org/abs/2104.08821
http://arxiv.org/abs/2104.08821
https://proceedings.neurips.cc/paper_files/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf

	Introduction
	Related Work
	Approach
	Contrastive learning
	Gradient surgery
	Different training order approaches
	Different loss update approaches

	Experiments
	Data
	Evaluation method
	Baseline
	Experimental details
	Results

	Analysis
	Conclusion

