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Abstract

AI-assisted clinical workflows are significantly transforming the healthcare
paradigm. One of the specific clinical tasks is the automation of radiation ther-
apy treatment planning, where multimodal-language models (MLLMs) have the
potential to play a pivotal role. However, the current automation pipeline faces
limitations due to visual shortcomings in MLLMs, where obviously inaccurate text
descriptions are generated given images. To resolve this, we sought to explore the
root causes of these visual shortcomings in MLLMs. In this project, we hypothe-
size that the visual shortcomings are fundamentally due to the biases in training
data distribution. We aim to systematically explore the effects of training data
distribution on visual shortcomings in MLLMs. Our results indicate evidences of a
potential positive correlation between the frequencies of semantic units in training
data and the accuracies of MLLMs on questions about semantic units.
External Collaborators: Sheng Liu, Department of Radiation Oncology, Stanford
University, shengliu66@stanford.edu
Mentor: Yuhui Zhang, yuhuiz@stanford.edu

1 Introduction

AI-assisted care has seen rapid progression in the field of radiation oncology over the past few years,
with methods like accurate tumor and organ segmentation using CNNs being actively integrated into
clinical workflows for treatment plans with improved dose optimization Huynh (2020). Recently, the
emergence of large language models has prompted researchers to explore their integration into the
radiation oncology domain Holmes (2023); Fabio Dennstädt (2024); Holmes (2024). During one
particular stage of the radiation therapy treatment planning pipeline that we are currently developing,
we obtain color-coded treatment plans similar to Fig. 1, and we aim to query the multimodal large
language models (MLLMs) to identify rough anatomical regions of the images that are labeled with
specific colors.

MLLMs, which integrate data from other modalities into Large Language Models (LLMs), leveraging
the powerful capabilities of LLMs to demonstrate exceptional performance in tasks such as image
understanding and visual question answering (VQA) Dai et al. (2023); Liu et al. (2023). Identifying
rough anatomical regions based on color in radiation therapy treatment planning, while straightforward
for clinicians, is a task we aim to fully automate with AI. However, for this seemingly simple task,
MLLMs often fail and disrupt the pipeline. Concurrently, it has been observed that many MLLMs such
as LLaVA, GPT-4V, do not possess very accurate color recognition and understanding capabilities of
natural images, further illustrating the visual shortcomings in MLLMs.

We hypothesize that the observed visual shortcomings in MLLMs may stem from the influence of the
distribution of training data on their core component, CLIP, inspired by MetaCLIP Xu et al. (2023).
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Figure 1: Example treatment plan. Credit: Google

MetaCLIP make a efficient data curation pipeline and retrain the metaclip by it, which achieves
similar result compared with clip in many downstream tasks. During the data curation process,
MetaCLIP specifically points out the issues that arises when the frequencies of an entry in the training
data is below a certain threshold and mitigates this problem by forcing the frequencies to match the
threshold.

To assess the model’s understanding of visual and textual pairs composed of different frequencies,
we developed a novel evaluation pipeline. We first selected an object and one of its attributes, such
as {building, color} or the {animal, action}, to combine into a semantic unit. Then we attempted to
compute the frequencies of semantic units from the captions in metadata. These semantic units then
serve as the basis for constructing questions designed to test the CLIP models’ visual interpretative
capabilities. This pipeline is generalizable to all semantic units consisted of an object and its attributes,
which includes the problem in treatment planning and many other VQA tasks.

Through our proposed evaluation pipeline and detailed analysis, our results indicate evidences of
a potential positive correlation between the frequencies of semantic units in training data and the
accuracies of MLLMs. Utilizing this correlation, MLLMs may be further refined during the training
stage or the fine tuning stage, enhancing their understanding of complex visual-textual interactions.
Additionally, we may develop an accuracy prediction model based on the frequencies of different
semantic units for existing MLLMs.

2 Related Work

2.1 Importance of Understanding CLIP’s Data Distribution

The distribution of training data directly impacts the performance, robustness of any machine learning
model and also, it is a critical factor in the success of data curation which is the key for understanding
how OpenAI trained CLIP Słowik and Bottou (2021). Ensuring a balanced and representative
distribution of training examples allows researchers to devise more effective and efficient algorithms.

2.2 Handling Noisy Internet Data

Handling Noisy Internet Data. Addressing noisy data from the Internet is a significant challenge, and
existing approaches often heavily rely on human-designed filter systems. Classical methods involve
dataset cleaning and outlier removal to discard samples that may introduce undesirable biases to
models Jiang et al. (2001).

2.3 Evaluating MLLM’s visual Understanding Capabilities.

Existing works evaluates the model’s visual understanding capabilities on visual multichoice or
captioning tasks with metrics such as accuracy, recall, and CIDer Peng et al. (2023); Chen et al.
(2023); You et al. (2023). However, these metrics fall short when it comes to evaluating visual
dialogue for large multimodal models in an open-world setting. To evaluate MLLM’s capability
in engaging in visual conversations for image-level understanding, two families of evaluation are
proposed: multiple-choice or using GPT-4 as a judge for free-form answers. However, these methods
do not adequately explain the issues between understanding capabilities and training data. Therefore,
we propose our evaluation method to more fairly assess the model’s visual understanding abilities.
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3 Approach

Our goal is to show a positive correlation between the frequency of semantic units in the training
data and the accuracy of multimodal language models. This section describes how the frequency of
semantic units are calculated and how the accuracies of multimodal language models are computed.

3.1 Extracting frequency of semantic units from training data

The semantic units are composed of an object and one of its attributes that describes the object’s state
or action. Although the semantic unit in the case of treatment planning composed of "anatomical
region" and "color", the amount of testing data was limited to show a general relationship between
training data distribution and MLLMs accuracy. Additionally, the training data does not contain
medical images with treatment planning labels. Therefore, we looked for another object to pair with
the "color" in the semantic unit. This turned out to be very noisy as "color" is a concept that is very
widely used for many objects, making the relationshp between frequencies and accuracies extremely
complex. Since to accurately compute frequencies of semantic units is a work in progress, we have
decided to use a surrogate semantic unit that is easier to demonstrate the principle relationship. To
do that, we have chosen "animal" and "action" as our units, which has a wide frequency range for
each element in the semantic unit. Since only certain animals will perform certain actions, this strong
association makes it simpler to compute frequencies.

We sought to count the number of times a semantic units appeared in the training data caption. The
training data that we were parsing consisted of too many captions that were unrealistic to perform
complicated dependency parsing for each caption. Thus, as a first pass, we applied a very coarse
parsing scheme using python multiprocessing to find all captions that contained the object and its
actions in the same sentence. From this step, we can calculate an unfiltered noisy frequency of
semantic units from the training data.

3.2 Training data denoising for frequency calculation

The noise in the training data is defined as deviation from ideal meanings of the semantic units. From
our experience dealing with the training data, this noise can be loosely categorized into the three
categories, the intra-caption noise, the intra-image noise and the inter-caption-image-noise. We will
describe how we attempted to filter out the first two kind of noises, where the filtering are applied in
the order of computation complexity to optimize for computation time. Then, we will describe how it
can be challenging to filter out the third kind of noise.

3.2.1 Intra-caption noise

The intra-caption noise exists when the description word in the caption is not directly describing the
object of interest. For example, some possible intra-caption noises are listed in Table 1, considering
the semantic units consist of an animal and its action, and the animal is cat and the action is sit.

Table 1: Example of intra-caption noises

Example numbers Example captions

1 While the cat roamed, we were told to sit.
2 I saw a cat dash past as I was about to sit.
3 The story mentioned a cat right when the character decided to sit.

First, we used the Natural Language Toolbox (NLTK) to Bird et al. (2009) filter out the verbs in
each caption. Then, we applied the spaCy to compute the dependency of every verbs to the object
and removed the captions that don’t have a direct relationship between the object and the action
wordHonnibal and Montani (2017).

3.2.2 Intra-image noise

The intra-image noise exists when the caption by itself is reasonable where the action word is
describing the object, but the image is entirely unrelated to the caption for some reason. As seen in

3



Fig. 2, for the animal hamster, many captions consisted phrases similar to "hamster chew toys" but
the images are actually about the "chew toys" without the presence of any hamsters.

Figure 2: Example of intra-image noises: Hamster chew toys

We tried to use the CLIP model to reduce intra-image noise. Specifically, we computed the cosine
similarity between the CLIP embedding for the image and the one word that represent the object. In
the previous hamster case, the cosine similarity is computed between the embedding of the word
"hamster" and the images of chew toys, which results in a low cosine similarity and is filtered out.

3.2.3 Inter-caption-image noise

The inter-caption-image noise exists usually when multiple meanings can be a reasonable match to a
caption corresponding to one semantic unit. For example, for an image of a hamster eating something,
the hamster can also simultaneously be standing or sitting. In this case, it is challenging to pin point
the caption-image pair to a specific semantic unit. We think it will be difficult to accurately and
robustly capture all possible scenarios with rule-based methods for calculation of both the frequencies
of semantic units and later on the accuracy of multimodal language models.

3.2.4 Further denoising using action word categorization

Since many of the action words have similar visual appearance on images and are reasonable
replacements for each other in the caption, we attempted to group them together. For example, the
words "eat" and "feed" mean the same action and show up similarly on images usually. The word
"feed" may have less frequency, but the multimodal language models have learned the action of
feeding from many other examples of eating. This phenomenon may introduce bias for certain low
frequency words that have shared meanings with high frequency words. Additionally, the action
words that have similar visual appearance may be different between animals. To solve this problem,
we queried chatGPT to provide a list of lists of action words that a specific animal can possibly
perform. Then, we computed the frequency and accuracy by category instead of by each action word.

3.3 Testing CLIP model and LLaVA accuracy on caption-image pairs

For each of the caption-image pair, we generated the a list of possible captions where the ground
truth action word is replaced with other action words on the list for a specific animal. Then, for
testing CLIP, we computed the probablity of CLIP selecting one of the captions for an image, and we
selected the caption with the largest probablity as the final answer of CLIP. For testing LLaVA, as
Figure3 we directly set the multiple-choice question as prompt and obatin a LLaVA reponse to see if
the answer is right.

4 Experiments

Based on the semantic units we designed {animal, action}, we tested similarity of image and caption
through CLIP and conduct multiple-choice questions on LLaVA, using the captions generated by us
to pose questions.
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Figure 3: LLaVA test demo

4.1 Data

This project involves the LAION-400M dataset, which is a open source and large-scale collection
of image and corresponding caption pairs. And it’s filtered with OpenAI‘s CLIP by calculating the
cosine similarity between the text and image embeddings and dropping those with a similarity below
0.3Schuhmann et al. (2021).

We have selected ten animal objects from the image caption, which are cobra, hippo, hamster, elephant,
spider, snake, crocodile, alpaca, mosquito, frog and use spacy to extract the action vocabulary related
to these animals, then we make prompt:

Title: Organizing {animal} Behavior Terms into Categories

Prompt: I have a list of verbs and terms, some relevant to {animal} behaviors and others not. My goal
is to first filter out the irrelevant terms and then organize the {animal}-specific actions into distinct
groups based on visual or thematic similarities. This effort aims to thoroughly represent {animal}
life across a spectrum of activities, care routines, interactions, and emotional expressions.

Given the list below, could you summarize the approach you would take to:

1.Filter out non-{animal}-related terms from the list.

2.Categorize the relevant {animal} actions into groups, ensuring these categories are visually or
thematically distinct. Furthermore, please ensure that the final categories are mutually exclusive,
contain only the appropriate terms from the provided list, and present the categorized actions in a
Python list of lists format for clarity.

to extract animal actions categories by GPT-3.5, Table 3 list all the categories and the corresponding
meanings.

For testing each image-caption pair, we extract the object word from the caption, and compute the
cosine similarity between the object word and the image with CLIP to make sure the object is present
in the image. We set a threshold of 0.2 where image-caption pairs that have cosine similarity higher
than the threshold are then subjected to further testing with CLIP and LLaVA.

4.2 Evaluation method

Since the output of the model is limited to two types (“correct” or “incorrect”), it is convenient to
measure the metrics of accuracy for both CLIP and LLaVA. For similar words in a category, we
calculated the categorical frequency by summing the frequencies and the categorical accuracy by
combining the correct counts. Then, we computed a linear interpolation and R2 for accuracy vs
frequency plots for both using keyword and categories.
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4.3 Results

4.3.1 CLIP test result

Results from keyword frequency don’t show a definitive relationship while results from categorical
frequency show a positive relationship for 8 out of 10 testing objects. The results are recorded in
Table 2. Figure 4 through Figure 23 contains the scatter plots and linear fittings.

animals R2-keyword keyword
relationship(positive:+/negative:-) R2-category category

relationship(positive:+/negative:-)

alpaca 0.075 - 0.976 +
cobra 0.001 - 0.211 +

crocodile 0.049 + 0.233 +
elephant 0.000 - 0.379 +

frog 0.047 + 0.137 +
hamster 0.210 - 0.807 -
hippo 0.126 + 0.835 +

mosquito 0.547 - 0.444 +
snake 0.307 + 0.963 +
spider 0.108 + 0.148 -

Table 2: CLIP test result

4.3.2 LLaVA test result

Due to computational resource and time constraints, we only present the accuracy results (Figure
24, 25) of answers for 2 objects and their associated actions after categorization in the testing of the
LLaVA model because the testing for these two objects is more comprehensive.

5 Analysis

We noticed that certain words that share very similar meanings may have drastically different
computed frequencies. For example, the word feed and the word eat have similar visual appearances
for many animals, but the frequency of feed is usually much lower compared to eat. Mostly due to
this effect, the accuracy vs frequency plots show a relatively random relationship when using only
keyword frequency and accuracy, where we see half and half negative and positive correlation.

The categorical frequency and accuracy was designed to solve this issue. From the results, we can
indeed see that 8 out of 10 testing objects showed a positive correlation. While this can’t prove
that there is a positive correlation, this is suggesting that there seem to be evidence of such positive
correlation. This signal is especially interesting since our denoising methods are far from optimized.

The results of the two objects in LLaVA also indicate that frequency has a significant impact on the
model’s visual understanding ability. Of course, the testing of LLaVA requires a more comprehensive
testing process to be more statistically significant and to better prove our hypothesis.

6 Conclusion

In conclusion, we have built a pipeline to extract the frequencies of specified semantic units from
a large image url + caption dataset. We tested the accuracy of CLIP models by computing the
probability between images from URLs and multiple caption options. The result shows 8 out of 10
test objects demonstrated a positive correlation between the frequencies of semantic units and the
accuracy. We also tested the accuracy of LLaVA for 2 objects by prompting multiple choice question
related to the semantic unit based on caption, the result also indicates the positive correlation between
frequencies and accuracy. In the future, we plan to further refine the caption denoising methods and
increase the sample size for further denoising, and test more MLLMs with semantic units to makes
our conclusions more robust. With proper denoising, we aim to apply the method to the treatment
planning problem to analyze the more subtle relationship between training data distribution and
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MLLMs accuracy. Then, strategies to improve the accuracy may be adopted or accuracy prediction
models may be employed based on the discovered relationship.
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7 Appendix

Figure 4: alpaca accuracy vs frequency Figure 5: alpaca accuracy vs frequency by verb
category

Figure 6: cobra accuracy vs frequency Figure 7: cobra accuracy vs frequency by verb
category
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Figure 8: crocodile accuracy vs frequency Figure 9: crocodile accuracy vs frequency by verb
category

Figure 10: elephant accuracy vs frequency Figure 11: elephant accuracy vs frequency by verb
category

Figure 12: frog accuracy vs frequency Figure 13: frog accuracy vs frequency by verb
category
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Figure 14: hamster accuracy vs frequency Figure 15: hamster accuracy vs frequency by verb
category

Figure 16: hippo accuracy vs frequency Figure 17: hippo accuracy vs frequency by verb
category

Figure 18: mosquito accuracy vs frequency Figure 19: mosquito accuracy vs frequency by verb
category
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Figure 20: snake accuracy vs frequency Figure 21: snake accuracy vs frequency by verb
category

Figure 22: spider accuracy vs frequency Figure 23: spider accuracy vs frequency by verb
category

Figure 24: hippo accuracy vs category frequency Figure 25: frog accuracy vs category frequency
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Animal Category Meaning

alpaca brush, greet, love, shear Care and Interaction
walk, show, take Activity and Presentation
knit, crochet, weave, spin, dye, paint, handcraft, craft, embroider, frame Handiwork and Crafts
wear, sock, scarf, glove, hood, handmade, fringe, pattern, strip, rib, print Apparel and Textiles
baby, alpaca, toy Offspring and Play
trim, shear, dye, paint, style, wed, look, save Grooming and Aesthetics

cobra spit, strike, rear, hold, fight Defense Mechanisms
drag, weave, propel, go, tour Movement
intake, strike Feeding and Hunting
greet Social Interaction
pose Body Language and Communication
find Environmental Interaction

crocodile swim, walk, run, jump, rest, lie, stand, rotate Movement and Activity
eat, feed, bite, hunt, capture, kill Feeding Behavior
attack Defensive Behaviors

elephant greet, herd, meet, roam, share, surround, talk, spend Social Interactions
walk, run, climb, swim, play, chase, jump, splash, trek, gather, spar Physical Activities
feed, sleep, wash, care, heal Care and Maintenance
laugh, hug, smile, wait Emotional Expressions
train, lead, teach Training and Handling
graze, locate, trek, roam Environmental Interaction
breed, bear, raise, protect Reproduction

frog eat, feed, catch, hunt Feeding Behaviors
jump, leap, hop, swim, dive, climb Movement
grow Reproductive and Life Cycle
croak, call Vocalizations and Sound Production
camouflage, hide Defensive Mechanisms

hamster run, walk Moverment
eat, chew Feeding Behaviors
play Playing
sleep Resting

hippo eat, sleep, swim, walk, run, stand, sit Basic Behaviors
greet, show, play, fight, leave, attend, isolate Social Interactions
find, cross Habitat and Environment
bear Reproduction

mosquito suck, transmit, bite, carry, breed Feeding and Reproduction
fly, hang, hunt Movement
spray, treat, prevent, repel, fumigate, shield, control Prevention and Control
test Detection and Testing
breed Reproduction

snake slither, strike, coil, swallow Movement
bite, feed, swallow, hunt Feeding and Prey
live, shed, crawl Habitat and Environment
warn, coil Defense and Interaction
breed Reproduction

spider spin, trap, hunt, crawl, weave Movement
web, dangle Web-related Activities
catch, feed, bite Feeding and Prey
live Habitat and Environment
greet, show, talk Interaction and Communication

Table 3: Animal Actions Category
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