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Abstract

We are exploring BERT because it was the first transformer model ever to accommo-
date bidirectional context understanding. Our problem is two-fold: 1) implement
a working miniature version of BERT (minBERT) to perform sentiment analysis,
and 2) explore extensions of minBERT on sentiment analysis as well as additional
downstream tasks such as paraphrase detection and semantic textual similarity
(STS). Our goal for the first part of our problem is to meet or exceed baseline
metrics set by the CS 224N teaching team as described in the Default Final Project
Handout. Our goal for the second part of our problem is to extend minBERT by
implementing cosine-similarity embedding loss for our training objective function
with a dynamic margin as well as explore gradient surgery to hone multi-task
learning when tasks may conflict with each other. We find that we accomplish
our first goal by successfully implementing minBERT as well as obtain our best
performance using cosine-embedding loss with a dynamic margin with gradient
surgery.

1 Key Information to include

• Mentor: Arvind Mahankali

• External Collaborators (if you have any): N/A

• Sharing project: N/A

• Team contributions: Although we were together most of the time when completing these
tasks, Jimming took the lead in implementing minBERT and its extensions, while Alex took
the lead in conducting background research and drafting the final report.

2 Introduction

In our increasingly digital world full of knowledge dissemnation in the form of language, big data,
technological advancements, and enhanced human-computer interaction, the need for AI in NLP has
never been greater. Devlin et al. (2018) introduced the world to Bidirectional Encoder Representations
from Transformers (BERT), the first transformer-based model to make use of bidirectional word
representations that simultaneously analyze both leftward and rightward context of a sentence.
BERT’s ability to capture subtle meanings of words based on their context made it effective for
addressing complex NLP tasks such as sentiment analysis, paraphrase detection, and semantic textual
similarity (STS). We will tackle these tasks through a two-step approach: 1) implementing a working
miniature version of the BERT model (minBERT) to specifically perform sentiment analysis, and 2)
explore two extensions of minBERT on sentiment analysis as well as paraphrase detection and STS.
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For our first step, we implement multi-head self-attention and the transformer layer, as well as its
corresponding AdamW optimizer.

We then test our two extensions. We first implement cosine-similarity embedding loss for our training
objective function, as initially proposed in Reimers and Gurevych (2019), and explore the possibility
of incorporating a dynamic margin into this objective function. Cosine-similarity embedding loss
has been shown to help fine-tune BERT specifically on STS, but we will implement it for paraphrase
detection and well and hope it helps sentiment analysis too. To further examine the effects of fine-
tuning, we will fine-tune BERT on multiple tasks (multi-task learning) and implement gradient surgery
as initially described in Yu et al. (2020), controlling for the effect of conflicting gradient directions
for the different tasks. We found that our best-performing model combined cosine-embedding loss
with a dynamic margin and gradient surgery.

3 Related Work

As BERT was first introduced in 2018, there have been several drawbacks discovered in the original
model that researchers have since sought to improve. One disadvantage, as described in Reimers and
Gurevych (2019), is that the naive BERT implementation simply averaged the BERT output layer
embeddings or used the first sentence-level classification [CLS] token’s output, producing sentence
embeddings unable to capture the very fine-grained semantic relationships between sentences. As
such, Reimers and Gurevych (2019) was the first to propose introducing cosine-similarity embedding
loss into their objective function to fine-tune their novel BERT model, complementing the model’s
improved semantically-enriched sentence embeddings. They found improved performance in several
downstream NLP tasks.

As cosine-similarity embedding loss helps task-specific performance, we also wanted to explore multi-
task learning to fine-tune BERT on multiple tasks at the same time. Several papers stimulated our
interest and inspiration in this topic. Stickland and Murray (2019) harnessed projected attention layers
enabling task-specific adaptions to fine-tune a single BERT model on multiple tasks. Bi et al. (2022)
added togehter the losses from different tasks, category classification and named entity recognition,
to enhance BERT’s news encoding capability. However, we ultimately settled on exploring gradient
surgery as originally proposed by Yu et al. (2020). Since our downstreak tasks are somewhat different,
we thought gradient surgery would be the best multi-task learning option to explore, as it projects the
gradient of one task onto the normal plane of a conflicting or different task.

Overall, our work builds on top of what has already been explored with cosine-similarity embedding
loss and replicates gradient surgery to confirm its efficacy in multi-task learning.

4 Approach

4.1 Implementing minBERT

For our first step, implementing minBERT, we follow the Default Final Project Handout. We first
implement the multi-head attention layer of the transformer, as depicted in Figure 1, which maps a
query and a set of key-value pairs to an output. We compute the query Q’s dot products with each
head’s corresponding keys K and apply softmax to these dot products (raw attention scores) to obtain
weights (probabilities) representing attention level on each value. Then, we multiply the weights by
values V to yield a weighted sum (attention mechanism) for each head, concatenate these outputs,
and apply a final linear projection to transform the concatenated output into the desired output’s
dimensions.

We then implement the actual transformer layer, as depicted in Figure 2. We first implement the
addnorm function, which applies the dense layer, dropout, and layer normalization to the input. Next,
we implement the forward function, where we integrate multi-head attention and feed-forward
layers with our implemented addnorm function. Lastly, we implement the embed function, which
obtains input embeddings and applies normalization.
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Figure 1: Multi-Head Self-Attention Mech-
anism from Vaswani et al. (2017)

Figure 2: Encoding Layer
for BERT Transformer from
Vaswani et al. (2017)

4.2 Extending minBERT: Cosine-Similarity Embedding Loss with a Dynamic Margin

After confirming that our minBERT implementation works, to enhance minBERT’s performance on
both paraphrase detection and STS, we extend it by using cosine-similarity embedding loss instead
of standard binary cross-entropy loss for our training objective function as well as implementing a
dynamic margin for this embedding loss. Specifically, we define the cosine-similarity embedding
loss as that taken from PyTorch’s CosineEmbeddingLoss function1, where cos(x1, x2) represents the
cosine similarity between two sentence embeddings. For STS, which is the task that cosine-similarity
embedding loss has been previously shown to be useful for:

CosineEmbeddingLoss(x, y) =
{
1− cos(x1, x2) if y = 3, 4, 5

max(0, cos(x1, x2)−margin) if y = 0, 1, 2

Note that this function is adjusted to accommodate the labels of our STS task ranging from 0 (not at
all related) to 5 (equivalent meaning). For paraphrase detection:

CosineEmbeddingLoss(x, y) =
{
1− cos(x1, x2) if y = "Yes"
max(0, cos(x1, x2)−margin) if y = "No"

Note that this function is adjusted to accommodate the labels of our paraphrase task: "Yes" means
that two sentences are paraphrases of each other, and "No" means otherwise.

Described in words, y = 3, 4, 5 (y = "Yes" for paraphrase detection) means that the input sentences
x1 and x2 are similar, so minimizing the loss 1− cos(x1, x2) between them maximizes their cosine
similarity cos(x1, x2). Furthermore, y = 0, 1, 2 (y = "No" for paraphrase detection) means that the
input sentences x1 and x2 are dissimilar, so loss will be 0 unless the cosine similarity cos(x1, x2) is
greater than the fixed margin (usually 0), which will yield a positive loss to train the model to rank
these sentences as dissimilar. Based on the equation, we can see that a lower margin means that the
model is more sensitive, as more sentence pairs would be considered to be dissimilar and have a
positive loss. The opposite is true for a higher margin. Thus, we can equate the margin to being the
"margin of error/discrepancy" between two sentences to be considered dissimilar.

1https://pytorch.org/docs/stable/generated/torch.nn.CosineEmbeddingLoss.html
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We want to explore the loss function’s margin. When analyzing this equation, we thought: why does
the margin have to be fixed? Can it change to adapt to accommodate different types of training pairs?
For example, we thought that sentence pairs with ambiguous relationships should have a lower margin
during fine-tuning to encourage more separation. As such, we explore the possibility of implementing
a dynamic margin to the cosine-similarity embedding loss function. To our knowledge, we are the
first research group to explore a dynamic margin for the cosine-similarity embedding loss to
tackle an NLP task.

Currently, we have developed a prototype DynamicMarginCosineLoss class, defined within the
PyTorch framework and extending torch.nn.Module. Our class dynamically adjusts the loss margin
of the CosineEmbeddingLoss function (Algorithm 1), encouraging the model to decrease its margin
and become more sensitive until performance is hindered, which is when margin is then increased to
mitigate overfitting and be more forgiving. To simulate learning rate decay, marginStep is multiplied
by 1

epoch# so that marginStep has less of an effect over time. We experiment with several different
initial margins and margin steps.

Algorithm 1 Dynamic Margin Adjustment for Cosine-Similarity Embedding Loss
Initialize:

previousMetric, currentMetric = 0
currentMargin = [0, 0.25, 0.5]
marginStep = [0.05, 0.1, 0.2]

for each epoch do
currentMetric← EvaluateModel(devSet)
improvement← currentMetric− previousMetric
if improvement > 0 then

currentMargin← currentMargin− 1
epoch# ·marginStep

else
currentMargin← currentMargin+ 1

epoch# ·marginStep

end if
previousMetric← currentMetric
UpdateLossFunctionMargin(currentMargin)

end for

4.3 Extending minBERT: Gradient Surgery

We also extend minBERT by implementing gradient surgery with PCGrad, as described in Yu et al.
(2020), which accommodates multi-task learning and mitigates negative transfer learning between
conflicting tasks. To achieve this, we draw batches of equal size from each of the three tasks and
compute task-specific gradients ∇SA, ∇PD, and ∇STS to represent the gradients for sentiment
analysis, paraphrase detection, and STS respectively. Then, we loop through these gradients, selecting
each one as gi and then randomly choosing a gj out of the remaining two task-specific gradients. If
the similarity s = gi · gj is negative, then we perform gradient surgery on the original gi as such:

gi = gi −
gi · gj

∥gj∥2
· gj

Then, we compare gi to the remaining task-specific gradient gk. If their similarity is negative,
gradient surgery is again performed on gi. In this manner, gradient directions of conflicting tasks
are effectively neutralized by projecting the gradient of one onto the normal plane of the other’s.
Summing the three gi’s from each task-specific gradient yields the final gradient for input to the
AdamW optimizer.

5 Experiments

5.1 Data

Below, we list the three tasks we are performing along with their associated dataset(s):
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• Sentiment Analysis: We primarily use the Stanford Sentiment Treebank (SST) dataset as
described in Socher et al. (2013). The SST dataset has 11,855 single sentences extracted
from movie reviews labeled between 0–4 as "negative", "somewhat negative", "neutral",
"somewhat positive", or "positive", respectively; it is split into train (8,544 examples), dev
(1,101 examples), and test (2,210 examples). For our first part, we will also test our working
minBERT implementatio on a second dataset called the CFIMDB dataset provided by the
CS 224N teaching team, which consists of 2,434 highly polar movie reviews labeled as
"negative" or "positive"; it is split into train (1,701 examples), dev (245 examples), and test
(488 examples).

• Paraphrase Detection: We use a subset of the Quora dataset as described in https://
quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs, which
consists of 400,000 question pairs with a label "Yes" or "No" indicating if the two questions
in a pair are paraphrases of each other or not; our subset is split into train (141,506 examples),
dev (20,215 examples), and test (40,431 examples).

• Semantic Textual Similarity (STS): We use the SemEval STS Benchmark dataset as
described in Agirre et al. (2013), which consists of 8,628 sentence pairs of varying similarity
on a scale from 0 (not at all related) to 5 (equivalent meaning); it is split into train (6,041
examples), dev (864 examples), and test (1,726 examples).

5.2 Evaluation method

For our first step, we will compare the metrics on the sentiment analysis task using our baseline
minBERT implementation to the baseline metrics provided by the CS 224N teaching team on page
14 of 28 in the Default Final Project Handout.

For our second step, to evaluate our extensions of minBERT, we will compare the metrics on
all three tasks using our extended minBERT model to the baseline minBERT model for both the
cosine-similarity embedding loss with dynamic margin extension as well as the gradient surgery
extension. Describe the evaluation metric(s) you use, plus any other details necessary to understand
your evaluation. For reporting sentiment analysis and paraphrase detection metrics, accuracy is used.
For reporting STS metrics, Pearson coefficient is used.

5.3 Experimental details

For our first step, testing baseline minBERT, we use the hyperparameters suggested by the default
code starter code for all experiments:

• Number of epochs: 10

• Batch size: 8

• Dropout: 0.3

• Pretraining learning rate: 1× 10−3

• Finetuning learning rate: 1× 10−5

For extending baseline minBERT using cosine-similarity embedding loss with a dynamic margin, we
maintained the suggested hyperparameters and changed the following variables: initialMargin and
marginStep, and whether the model got more sensitive (reduced margin) or less sensitive (increased
margin) when performance decreased after one epoch.

For extending baseline minBERT using gradient surgery, we maintained all suggested hyperparame-
ters.

We used a NVIDIA A100 Tensor Core GPU via Google Colab to run these experiments. The training
time for each experiment hovered around 40 minutes.
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5.4 Results

5.4.1 Our minBERT Implementation

We first evaluate our minBERT implementation on the sentiment analysis task and compare it to the
CS 224N teaching team-provided baseline accuracy metrics on the SST and CFIMDB dev sets (Table
1).

Method Dev Accuracy
PT for SST PT for CFIMDB FT for SST PT for SST

Our Implementation 0.465 0.878 0.520 0.967
CS 224N Baseline 0.390 (0.007) 0.780 (0.002) 0.515 (0.004) 0.966 (0.007)

Table 1: Dev accuracy results of our minBERT implementation compared to baseline metrics provided
by the CS 224N teaching team. Standard deviation in parentheses. PT: pretraining; FT: finetuning.

We see that our minBERT implementation significantly outperformed the CS 244N teaching team-
provided baseline metrics for all four sentiment analysis tasks. Indeed, for three out of the four tasks,
our minBERT implementation yielded an accuracy greater than one standard deviation above that of
the CS 224N baseline, demonstrating that our minBERT implementation works and allowing us to
confidently conduct experiments on minBERT extensions.

5.4.2 Gradient Surgery

Note that implementing cosine-similarity embedding loss with a dynamic margin and gradient
surgery were two separate extensions. We first ran experiments just using gradient surgery, and after
evaluating its effect on the metrics, we saw if it was good to implement with the cosine-similarity
embedding loss. We tested gradient surgery on all three tasks with the default using all suggested
hyperparameters as described in Section 5.3. Our findings are reported in Table 2.

Method
Finetuning Dev Metrics: Surgery

Sentiment Analysis
(SST)

Paraphrase Detection
(Quora)

STS
(SemEval)

Baseline Implementation 0.501 0.392 0.312
Gradient Surgery 0.524 0.477 0.393

Table 2: Dev results of minBERT with gradient surgery.

We found that gradient surgery helped improve our performance by quite a bit. It seems that these
tasks are dissimilar enough for gradient surgery to mitigate the negative effect from training on
conflicting tasks. As such, we implement gradient surgery in all future experiments.

5.4.3 Cosine-Similarity Embedding Loss + Gradient Surgery

We then ran tests harnessing the power of gradient surgery using cosine-similarity embedding loss
as the training objective rather than standard binary cross-entropy loss. We tested cosine-similarity
embedding loss using a static margin of 0 as well as a dynamic margin using Algorithm 1, as described
in Section 4.2. Our results are in Table 3.

Variable Finetuning Dev Metrics

Type Initial Margin Margin Step Sentiment Analysis
(SST)

Paraphrase Detection
(Quora)

STS
(SemEval)

Static 0 N/A 0.511 0.461 0.870
Dynamic 0 0.05 0.503 0.479 0.880
Dynamic 0.5 0.05 0.509 0.463 0.872
Dynamic 0.5 0.1 0.510 0.454 0.862

Table 3: Dev results of minBERT using cosine-similarity embedding loss using a static margin or
dynamic margin.
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We found that there was a very marginal improvement in performance when using a dynamic margin
compared to a static margin. The static margin performed the best on the sentiment analysis task with
an accuracy of 0.511, which makes sense because a dynamic margin wouldn’t help in a task such as
sentiment analysis because two sentences aren’t being compared anyways. However, the model with
an initial margin of 0 and dynamic margin step of 0.05 marginally outperformed all other models in
paraphrase detection accuracy and STS Pearson correlation coefficient. As such, albeit slightly, a
dynamic margin allows the model to adjust its training to be more or less sensitive across epochs,
enhancing its performance.

5.4.4 Final Test Leaderboard Submission

Our best model from Subsections 5.4.2 and 5.4.3 that obtained the highest overall test accuracy was
the one that combined cosine-similarity embedding loss with a dynamic margin (initial margin of 0
and margin step of 0.05) and gradient surgery. We submitted the predictions from this model to the
Test Leaderboard and obtained the metrics shown in Table 4.

Test Metrics
Sentiment Analysis

(SST)
Paraphrase Detection

(Quora)
STS

(SemEval) Overall Score

0.524 0.477 0.393 0.566

Table 4: Test results of our cosine-embedding similarity loss with a dynamic margin + gradient
surgery model.

Our model ended up performing moderately well on the test set but unfortunately quite poorly on STS.
Perhaps the dynamic margin caused the model to overfit to the training data and performing poorly
on STS. Paraphrase detection was second-best. The model surprisingly had the best performance on
the sentiment analysis task, which we attribute to gradient surgery.

6 Analysis

Qualitatively, we can see that our system performs well on sentiment analysis and not so well on
semantic textual similarity. Diving deeper into the input, we can see that our model does indeed
overfit for STS. There are many similar sentence pairs with a highly dissimilary cosine similarity,
and vice versa. We believe that normal loss functions such as standard binary cross-entropy loss
would help the model reduce overfitting on the traiing set and improve its performance on the test
set. Furthermore, we saw a similar phenomenon with paraphrase detection: several sentences that
seem very similar to the human eye were classified as not paraphrased, and vice versa. We again
attribute this to our dynamic margin in the cosine-similarity embedding loss. When digging deeper
into sentiment analysis, we see that although there is variation between ground-truth and predictions,
it does a better job analyzing sentiment than it does comparing two sentences. Our dynamic margin
seemed to be overkill.

7 Conclusion

In our project, we implement a working minBERT and successfully extend it to 1) accommodate
cosine-similarity embedding loss with a dynamic margin, and 2) build on top of this using gradient
surgery to facilitate multi-task learning. Our baseline minBERT implementation outperformed the
CS 224N teaching team-provided baseline metrics on all tests. After integrating our extensions, we
found that the strongest model was the one that combined cosine-similarity embedding loss with a
dynamic margin and gradient surgery. Furthermore, we are the first research group to successfully
implement a dynamic margin into the cosine-similarity embedding loss objective fuction to address
an NLP task.

Our biggest limitation was computational complexity. We wanted to run more models testing more
initial margins and margin steps, but we didn’t have the resources or time to do so. In the future, we
would run more experiments with the dynamic margin to further hone the best algorithm for adjusting
it as well as exploring the possibility of having a unique margin for each training sample rather than
for each epoch.
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