
SEER-MoE: Sparse Expert Efficiency through
Regularization for Mixture-of-Experts

Stanford CS224N Custom Project

Alex Muzio Alex Sun Churan He
Department of Computer Science

Stanford University
{alexfm, xs15, churanhe}@stanford.edu

Abstract

The advancement of deep learning has led to the emergence of Mixture-of-Experts
(MoEs) models, known for their dynamic allocation of computational resources
based on input. Despite their promise, MoEs face challenges, particularly in terms
of memory requirements. To address this, our work introduces SEER-MoE, a
novel two-stage framework for reducing both the memory footprint and compute
requirements of pre-trained MoE models. The first stage involves pruning the total
number of experts using a heavy-hitters counting guidance, while the second stage
employs a regularization-based fine-tuning strategy to recover accuracy loss and
reduce the number of activated experts during inference. Our empirical studies
demonstrate the effectiveness of our method, resulting in a sparse MoEs model
optimized for inference efficiency with minimal accuracy trade-offs.

1 Introduction

Recent advances in deep learning have propelled the field towards increasingly large and complex
models to achieve state-of-the-art performance across a myriad of tasks. Among these, Mixture-of-
Experts (MoEs) models have emerged as a promising architecture, distinguished by their ability to
dynamically allocate computational resources based on the input (Fedus et al., 2021; Zoph et al.,
2022; Jiang et al., 2024; et al, 2024). This paradigm, characterized by a sparse gating mechanism that
routes inputs to a subset of specialized expert networks, allows for the scalable expansion of model
parameters while maintaining a relatively constant computational footprint per input token.

However, the path forward for MoEs involves addressing significant challenges, particularly regarding
their substantial memory requirements. The advent of very large MoE models such as Grok-1 xAI
(2024), with 314B parameters distributed across 8 experts, underscores the urgency of addressing this
issue. While the sparse nature of MoEs promises enhanced efficiency and scalability, the sheer size
of the models introduces a new set of complexities, particularly in terms of memory footprint.

In light of these challenges, our work aims to investigate and develop pruning and fine-tuning
strategies that dynamically adjust the quantity and allocation of experts in an MoE-based language
model.

The main contributions of our paper is an in-depth study of Parameter Count / FLOPs for MoE models
and the SEER-MoE method, a novel 2-stage approach that takes a step in the direction of reducing
the memory footprint / compute requirements for pretrained MoE models. Our first stage proposes to
prune the total number of experts in the model with a novel heavy-hitters counting guidance to reduce
the memory footprint for loading the entire MoE model. Our second stage proposes an effecitve
regularization-based finetuning strategy to recover the accuracy loss from previous pruning while
simultanously reducing the number of activated experts during inference. The combination of both
stages yields a sparse MoEs model with cheaper memory requirements while being optimized for
inference efficiency, at the compensation of minimized accuracy drops.

Stanford CS224N Natural Language Processing with Deep Learning



We perform extensive empirical studies with the popular Mixtral 8x7b Jiang et al. (2024) MoEs model
on both SST5 Socher et al. (2013) and MMLU Hendrycks et al. (2020) to validate the effectiveness
of our method, including an in-depth ablation study to understand different design choices for each of
our stage.

2 Related Work

Mixture-of-Experts (MoE) dates back at least since work from Jacobs et al. (1991), which introduce
a new model architecture composed of many separate networks and each one handles a subset of the
complete set of training cases. Each expert specializes in a different region of the input space. Eigen
et al. (2014) extended the Mixture-of-Experts to a stacked model with multiple layers of gating and
experts, and exponentially increases the number of effective experts through layers of combination.
As the rapid advancement of LLM, MoE (Jiang et al., 2024; et al, 2024; xAI, 2024) gained increased
popularity for it’s scalability, efficiency and STOA evaluation result from various benchmarks. Most
MoE architectures Fedus et al. (2021); Zoph et al. (2022); Jiang et al. (2024) includes a specific
gating network that learns the optimal routing from input tokens to experts. However, the weights of
the gating network stay fixed, regardless of what task is being solved. To the best of our knowledge,
there is no such method that explores Top-K routing adaptation.

Sparsification aims to remove certain parts of the network. In Mixture-of-Experts models, only a
few experts (top-K) chosen by the router will be activated in each layer to generate output, therefore
removing unused experts can linearly reduce the model size without loss in performance. (Lu et al.,
2024) introduced a heuristic search method to prune the number of experts in post-training. The
method is based on the enumeration of expert combinations and choosing the target eliminating
experts based on the lowest reconstruction loss. They verified their approach’s effectiveness on
Mixtral 8x7b (Jiang et al., 2024). However, the method has high time complexity and isn’t applicable
to models with large expert counts nor cross-layer pruning (Zhang et al., 2023) proposed an eviction
algorithm targeting on KV cache based on "Heavy Hitters" which holds a significant role for model
performance. We hypothesize that a similar strategy in expert activation counting can be applied to
MoE pruning.

3 Methodology

The computation and resources used by large MoEs models (FLOPs) mainly come from two factors:

The total number of available experts at each MoE layer, denoted as Ml for layer l, and determines
how much VRAM we need to completely load the model on the GPUs/TPUs.

The top-K number of experts activated, denoted as kl for layer l, and controls how much computa-
tion is used per token.

In terms of notation, suppose we have a fine-tuning dataset D which consists of sample (xi, yi) pairs,
the gating network at layer l is gl, and the jth expert at the lth layer is denoted as ejl . Moreover,
suppose the features collected at layer l is fl(xi).

3.1 Parameter and Compute Scaling of MoE Transformers

Following the work of Kaplan et al. (2020), we extend the parameterization of the Transformer
architecture to that of the sparse MoE architecture (more details in Appendix A). We utilize the
Transformer hyperparameters together with nexperts (number of experts per layer) and ntopk (number
of experts activated per token). Using N to denote the number of non-embedding parameters and
considering dattn = dff/4 = dmodel

N ≈ 4d2modelnlayer(1 + 2nexperts) (1)

And the FLOPs for the forward pass:
Cfwd ≈ 8d2modelnlayer(1 + 2ntopk) + 2nlayernctxdmodel (2)

It is notable that for the MoE blocks of the network, the number of parameters from the MoE
Feedforward layers increase in proportion to nexperts while the FLOPs per Token to ntopk. This

2



Stage 1
Expert Pruning

Heavy-Hitters Counting Finetuning

(a)

(b)

(c)

Stage 2
Top-K Adaptation

Token

Token

Top-2 Router

Top-1 Router

Top-2 Router Top-1 Router

Figure 1: SEER-MoE visualized in a two-stage process. (a) The initial model with all experts and
top-2 router. (b) Stage 1 involves expert pruning based on heavy-hitters counting to identify and
retain the most critical experts; Stage 2 includes top-K adaptation through fine-tuning to optimize
the number of active experts, culminating in a model that balances efficiency and performance. (c)
SEER-MoE with expert pruning and top-K adaptation.

motivates us to think whether we can target reducing both the compute FLOPs of the model and the
memory separately.

Specifically for the Mixtral 8x7B Jiang et al. (2024) model, which utilizes 2 experts per token, Expert
blocks computations account for about 55% of the total FLOPS. Additionally, for a model with
the same architecture but with only a single expert being activated, FLOPs reduces by 27%. This
motivates us to explore whether we are able to adapt existing models to use less compute.

3.2 Expert Sparsification with Heavy-hitters Counting

Considering the large memory requirement of MoE models described and considering that the bulk
of the parameters belong to the Expert layers, we propose reducing the total number of experts Ml

at each layer l. We do so, by reducing the number of expert models. We propose to carry out this
investigation with a data-driven strategy.

For a MoEs model, an expert ejl is activated for a token if its corresponding router logit gl(fl(xi))
j is

ranked in the top-K after softmax. Specifically, we denote this selection process with a function γ(.):

γ(ejl , xi) = 1 if j ∈ ArgTopK(softmax(gl(fl(xi))),K), (3)

γ(ejl , xi) = 0 else (4)

For each expert ejl , we define the activation counts ajl as the total number of times it gets activated.
Formally, this could be expressed as follows:

ajl =
∑

(xi,yi)∈D

1[γ(ejl , xi) = 1] (5)

Equivalently, Eqn.6 is performing a Monte-Carlo estimate of the marginal probability
P (ejl gets activated) using the dataset D, which provides theoretical motivation for our adopted
technique here.

Soft Counting We also propose another variant with a softer and more relaxed version of heavy-
hitters counting. Intuitively, for certain tokens, if expert ejl is activated, we don’t know whether it
wins over other experts by a slight margin or gets activated with high confidence. Since the binary
activation count can not capture this exact magnitude of confidence in activating certain experts, we
propose to directly leverage the softmax probabilities as soft counts. Formally, this can be defined as:

ajl =
∑

(xi,yi)∈D

softmax(gl(fl(xi)))
j (6)

3



Layer Expert Pruning Now with the statistics of the heavy-hitters counts, we could leverage them
as powerful guidance to remove experts that are unlikely to be activated for data from PD. Suppose
we want to keep a total of M̂l experts per layer, the kept experts at layer l are denoted as:

ArgTopK(
⋃

j∈[1,Ml]

{ajl }, M̂l) (7)

We repeat this for every layer in the MoEs model to get an entire mask.

Global Expert Pruning Since the counts have uniform magnitude range across all layers, we can
also carry out a global sorting and pruning to remove the experts with the least probability of getting
activated. Suppose we only want to keep a total of M̂ experts in the network. The kept ones are
denoted as:

ArgTopK(
⋃

l∈[1,L]

⋃
j∈[1,Ml]

{ajl }, M̂) (8)

Compared with the above Layer Expert Pruning option, this will provide a nonuniform expert sparsity
pattern across layers but could potentially be of higher-quality.

To recap, for pruning experts from the MoEs model to reduce storage burden and memory footprints,
we propose to perform pruning based on heavy-hitters counting. This counting could be either actual
activation counts or a soft counting with softmax probabilities. The actual removal of experts
could be conducted either layer-wise or globally. This gives us a total of four configurations with
combinations of pairs of counting and removal strategies, and we are going to provide detailed
ablation results in the Experiment section.

3.3 Enhancing Expert Efficiency: Advanced Finetuning Strategies

With the goal of reducing the number of experts activated for each token during inference, while still
maintaining competitive performance, we propose different fine-tuning procedures for MoE model.

3.3.1 Top-K adaptation

Starting from a pretrained model trained with top-k > 1, we posit that by fine-tuning the model on
a downstream task while reducing k during training is a feasible and simple strategy to adapt the
model to utilize. We focus on fine-tuning since we are interested in utilizing existing pretrained more
efficiently.

Given that we are trying to target the best open-source available MoE model, which is the Mixtral
8x7b 1 standard fine-tuning was not feasible given the amount of memory required (even using
8xA100 80GB), therefore we opted for explore QLoRA Dettmers et al. (2023) fine-tuning on the
self-attention blocks to reduce the memory footprint of the optimization.

In this work, we propose Top-K reduction procedures with simplicity in mind: Static top-k with
k < K and Annealing top-k from K → k with k < K. We also explore additional methods such as
QLoRA fine-tuning targeting only the gating network.

3.3.2 Entropy-based gating regularization

Entropy, in the context of information theory, is a measure of the unpredictability or randomness of a
distribution. For a categorical probability distribution (which is the case of the expert gating network),
entropy is defined as H(X) = −

∑n
i=1 p(xi) log p(xi). We posit that a gating network with a more

peaky distribution, meaning lower entropy, relies more heavily on a single expert. Therefore, by
minimizing the entropy of the gating network’s distribution, we encourage the model to make more
decisive selection of experts while reducing the computational overhead associated with activating
multiple experts.

The final loss we propose is loss = Lcross entropy + λLentropy, and explicitly:

1On March 17th, 2024, on the final deadline of this report, Grok-1 model came out which is the largest
open-source MoE model with 314B parameters. Interestingly, this model has a very similar architecture to
Mixtral 8x7b model, with 8 experts and top-2 routing which makes this work also applicable for that model.

4



loss = −
T∑

t=1

∑
i

yt,i log(pt,i) + λ

−
T∑

t=1

∑
j

pt,j log(pt,j)

 (9)

Here λ is a hyperparameter, and the first term denotes the standard cross-entropy loss, and the second
term denotes the entropy loss. The top-2 gating mechanism inherently provides a form of redundancy,
which can be beneficial for robustness and handling uncertainty. Moving to a more peaky, top-1
distribution could reduce this redundancy, potentially making the model more sensitive to errors in
the expert selection.

3.4 SEER-MoE: Sparse Expert Efficiency through Regularization for Mixture-of-Experts

We introduce SEER-MoE (Sparse Expert Efficiency through Regularization for Mixture-of-Experts),
a two-stage approach designed to enhance the computational efficiency of pslightlyed MoE models,
specifically targeting the Mixtral 8x7b (but is also applicable to other MoE models) such as Grok-1:

Stage 1: MoE-specific sparsification decreases the total number of available experts (Ml) in each
MoE layer via effectively pruning the less significant ones.

Stage 2: Top-K adaptation i regularization techniques during fine-tuning, encouraging the model to
rely on fewer experts without compromising the quality of the learned representations while better
utilizing the information from the experts that have been pruned in Stage 1.

Finally, considering the total Model Parameter/FLOPs analysis from Section 3.1, by reducing the
number of experts by 25% and using a single activated expert, we reduce the model parameters by
≈ 25% and FLOPs by ≈ 27% while only slightly degrading model performance.

4 Experiments

This section outlines the experimental setup, including model configurations, training details, and
evaluation metrics used to assess the performance of our proposed SEER-MoE method.

4.1 Experimental details

We utilized the Mixtral 8x7b model for all our experiments, chosen for its superior performance over
OpenMoE in our initial tests (for more quality results, check Appendix C). Our fine-tuning employed
QLoRA on 8 NVIDIA A100 GPUs (80GB), running for 1000 steps (unless specified otherwise) using
Adam optimizer with a weight decay of 0.01.

Distributed training (Technical challenges with sharding). Despite facing challenges with dis-
tributed training and sharding, we managed to optimize our setup for efficient training. We utilized
QLoRA fine-tuning to minimize memory usage, crucial for our hardware constraints. We also
explored PyTorch’s Fully Sharded Data Parallelism (FSDP) Zhao et al. (2023) as a viable option
but given that QLoRa was showing good results with focused on QLoRA. We implemented the full
distributed training loop using the Gugger et al. (2022) library.

4.2 Data

We chose MMLU (Hendrycks et al., 2020) for multitask language understanding with 57 subjects
and Stanford Sentiment Treebank-5 (SST5) dataset (Socher et al., 2013) for sentiment classification.

MMLU dataset contains questions, choices, and correct labels. The question and choice pairs are
formulated to prompt the following format in Appendix B. The answer will be extracted from model
output and compared against the correct label to determine output accuracy, which is used to evaluate
various expert sparsification strategies (counting, pruning, subject-specific masking) quantitatively.

SST5 dataset contains texts and sentiment labels (very negative, negative, neutral, positive, very
positive). The text is applied to the instruction template from Appendix B to form the prompt to the
model. Accuracy will be computed by comparing the extracted label from the model’s text output
with the ground-truth label. We use the the SST5 training set (≈ 8.5k examples) for fine-tuning

5



model on different configurations (expert sparsity, top-K, fine-tuning precedure) and evaluate on the
validation set (≈ 1.1k examples).

4.3 Evaluation Method

The evaluation metrics we used are result accuracy and reduced computation (FLOPs) and memory
footprint.

Accuracy is measured by the percentage of answers extracted from model output matches with the
validation dataset’s labels. For MMLU task, we calculate the accuracy from number of correct answer
among all questions and total number of 1531 questions in validation set. For SST task, we calculate
the accuracy from number of correctly assigned sentiment with the total number of 1101 texts in
validation set.

FLOPs and Memory Reduction is calculated based on model sparsification and ablation configura-
tion. The FLOPs per token of the pruned model are calcuated based on Table 4. With expert removal,
the model would contain less experts thus less parameters. The memory reduction can be calculated
by number of expert reduction at each layer.

5 Results and Analysis

5.1 Expert Sparsification with Heavy-hitters Counting

We start by evaluating the effectiveness of our proposed pruning strategy to reduce the storage and
memory footprint of MoE models with Heavy-hitters Counting.

Baselines We have 3 baselines to compare against: Dense baseline without expert, randomly pruning
the experts and the state-of-the-art expert pruning stategy proposed by Lu et al. (2024).

For clarity, we report the results with the dense model numbers serving as the reference to indicate
how much pruning affects the model. In terms of the baseline statistics of the dense model, from our
evaluation on MMLU, we get a Mean Accuracy of 60.55% over all subjects and a Memory Usage of
86GB with bf16. Notice that our dense accuracy of Mixtral on MMLU does not exactly match the
numbers reported in Lu et al. (2024) due to potential hardsware mismatch and prompt difference.
However, we are comparing with the accuracy drop from the respective dense baselines which ensures
a fair comparison on the same scale.

All reported results are zero-shot without fine-tuning.

Comparison We demonstrate the comparison of our top-confirming configuration with the baselines
in Table 1. As observed, at either 25% or 50% expert sparsity, we significantly surpass all the
baselines by a clear margin, achieving much smaller accuracy drop. For example, compared with the
latest SOTA approach Lu et al. (2024), at the same 25% expert sparsity, we only lose 3.85 accuracy
points, almost halve the accuracy drop of 6.40 of Lu et al. (2024).

Moreover, we could observe that with the expert sparsity introduced into the model, we successfully
reduce the memory footprint for loading Mixtral by 24% with 25% expert sparsity and 45% with
50% expert sparsity. While it is not possible to fully load the entire dense Mixtral 8x7b model on a
single 80GB A100 GPU(Dense: 86GB), our proposed apporach provides a viable solution at the
compensation of minimized accuracy loss by pruning unimportant experts from the model guided
by Heavy Hitters Counting. We are also going to show later that this accuracy drop could be further
minimized with Task-Specific Finetuning.

Ablation Here, we will compare different heavy hitters counting option and expert removal strategies.
Recall that we could use either actual activation counts or soft counting to gather count data
and conduct either layer pruning or global pruning to actually remove the experts. Moreover,
for MMLU containing 57 total subjects, we also study whether using a Subject-Specific Pruning
strategy benefits the performance. Concretely, with Subject-Specific Pruning, we are going to gather
counting statistics and perform pruning for each subject independently, which creates a unique expert
mask for solving each subject. Without this option, we gather counting numbers from samples of
all subjects and adopt the same expert mask to solve all subjects. We demonstrate comprehensive
ablation results in the following Table 2.

6



Method Total Expert Sparsity ↑ Accuracy Drop from Dense ↓ Memory Usage↓ Speedup↑

Dense 0 0 ×1 ×1

Random 25% 6.17 ×0.76 ×1.20
Lu et al. (2024) 25% 6.40 ×0.76 ×1.20

Ours 25% 3.85 ×0.76 ×1.20

Random 50% 15.19 ×0.55 ×1.27
Lu et al. (2024) 50% 16.12 ×0.55 ×1.27

Ours 50% 13.78 ×0.55 ×1.27

Table 1: Comparison with baseline approaches. Ours achieves the minimized accuracy drop from the
dense baseline at all expert sparsity levels. Notably, we beat the state-of-the-art Lu et al. (2024) with
a clear margin.

Method Counting Strategy Pruning Strategy Subject-Specific Pruning Accuracy Drop from Dense ↓

Dense n/a n/a n/a 0

Ours Activation Layer Yes 16.59
Ours Activation Global Yes 14.63
Ours Soft Layer Yes 15.54
Ours Soft Global Yes 7.90
Ours Soft Layer No 12.80
Ours Soft Global No 3.85

Table 2: Ablation results of ours. Using soft counting with global pruning and no subject-specific
mask yields the best result.

From the table, we could make the following three observations:

Observation #1: Global pruning works better than layer pruning. Given our count statistics are
uniform in magnitude across all layers, global pruning offers more flexible solutions without the layer
constraint. Expectedly, we see the results are better with it.

Observation #2: Using soft counting works better than actual activation counts. Recall that soft
counting, by directly accumulating the softmax probability for each expert, gives us a sense of the
confidence in selecting each expert to better cope with the scenarios when certain expert barely wins
over others. This is validated by the superiorty in results shown in the table.

Figure 2: Heavy Hitters Counting Heatmap
with Mixtral 8x7b on MMLU.

Observation #3: Subject-specific pruning does not
help to gain better performance on MMLU. Although
we expect the subject-specific pruning could offer
improvements by varying the expert mask adaptively
based on the subject, the results suggest otherwise.
There could be a theoretical support for this phe-
nomenon. Recall that as discussed in Sec. 3.2, heavy-
hitters counting is equivalently performing a maginal
probability Monte-Carlo estimation. Without subject-
specific pruning, more samples are used to build this
estimation, which could make it more solid.

Visualization and Analysis Here, we provide a
heatmap visualization of the collected heavy-hitter
statistics of Mixtral on MMLU in Fig. 2. As observed
in the figure, we could observe that some experts are
heavily activated and leveraged during inference for
example Expert #2 from Layer 26 and 30; whereas
some experts are barely activated for example Ex-
pert #7 from Layer 22 and 23. From this discrepancy of acitvation patterns, we could see why
heavy-hitters counting could serve as an effective guidance for pruning experts.

5.2 Finetuning

We assessed the efficacy of various strategies for reducing the number of activated experts within
the Mixtral 8x7b model by fine-tuning on a sentiment classification task, SST5. The model was

7



finetuned using the training set and evaluated on the evaluation set via text generation employing
greedy decoding. For details regarding the prompts we used, refer to Appendix B.

Method Top-K SST5 acc ↑

Zero-shot 1 42.6%
Zero-shot 2 50.8%

QLoRA FT 1 50.8%
QLoRA FT 2 53.6%

QLoRA on router 1 diverges
QLoRA on router 2 51.4%

FT + Entropy loss, λ = 1 1 45.5
FT + Entropy loss, λ = 0.1 1 50.7%

+ Annealing Top-K 1 48.6%
+ Annealing Top-K

(more steps) 1 51.4%

+ Annealing Top-K
+ Entropy Loss 1 51.8%

Table 3: Comparison of fine-tuning strategies and
their impact on SST5 accuracy.

We established a baseline by fine-tuning with
top-2 routing to gauge the performance delta
attributed to the reduced number of activated ex-
perts. This was further compared with a baseline
in-context learning approach. We also evaluate
the different procedures proposed in Section 3.3.
Table 3 summarizes our findings.

Our results reveal a performance gap when us-
ing a single expert as opposed to two, with zero-
shot accuracy dropping by 8.2 percentage points.
However, through QLoRA fine-tuning (FT), this
gap is mostly bridged, yielding a similar accu-
racy of 50.8%. Notably, employing two experts
still holds a marginal advantage, as indicated by
the 53.6% accuracy rate post fine-tuning. Never-
theless, when allowed two experts, the QLoRA
approach demonstrated a slight improvement
over the zero-shot baseline. These findings sug-
gest that fine-tuning can recover some of the
losses attributed to reducing the number of activated experts. Finally, the approach that works the
best combines Annealing with Entropy minimization approach, performing better than naive Top-1
finetuning and only 1.8% less than Top-2 finetuning.

5.3 SEER-MoE: putting everything together

We now explore whether combining both approaches yield additional gains. We first sparsify the
experts via the heavy-hitters counting and then finetune. Our goal with this is to understand how we
can reduce FLOPs utilization without losing performance.

Counting / Pruning Strategy Top-K FT Method Top-K SST5 acc ↑

Activation / Global (25%) QLoRA FT 2 49.0%
Activation / Global (25%) QLoRA FT 1 47.5%

Soft / Global (25%) QLoRA FT 1 46.7%

Activation / Global (25%)
QLoRA FT

+ Annealing Top-K
+ Entropy Loss

1 48.0%

Figure 3: Full stage approach results on SST5.

Notably, our SEER-MoE
approach, achieved a com-
petitive accuracy of 48.0%
while only activating a sin-
gle expert. This highlights
the potential of SEER-MoE
to maintain high model per-
formance even under sig-
nificantly reduced computa-
tional overhead. Remark-
ably, the accuracy attained
mirrors that of the two-expert configuration following only QLoRA fine-tuning, underscoring the
effectiveness of our comprehensive strategy in reducing FLOPs without detriment to accuracy.

Furthermore, it is evident from the results that the activation-based pruning combined with a single-
expert QLoRA fine-tuning confers a substantial accuracy gain over the soft pruning approach. This
suggests that the more targeted activation-based pruning method combines effectively with our
fine-tuning paradigm.

6 Conclusion

Our SEER-MoE framework effectively mitigates some of the computational inefficiencies of Mixture-
of-Experts (MoE) models with minor compromise to performance. Through a two-stage process that
includes expert sparsification and Top-K adaptation via fine-tuning we’ve significantly cut down both
FLOPs and memory usage for Mixtral 8x7b. Testing on SST5 and MMLU benchmarks shows that
SEER-MoE achieves strong performance while reducing the number of active experts and parameters,
making MoE models more viable across various applications and hardware constraints.

8



References
Machel Reid et al. 2024. Gemini 1.5: Unlocking multimodal understanding across millions of tokens

of context.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023. Qlora: Efficient
finetuning of quantized llms.

David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. 2014. Learning factored representations in
a deep mixture of experts.

William Fedus, Barret Zoph, and Noam Shazeer. 2021. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. CoRR, abs/2101.03961.

Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, Sourab Man-
grulkar, Marc Sun, and Benjamin Bossan. 2022. Accelerate: Training and inference at scale made
simple, efficient and adaptable. https://github.com/huggingface/accelerate.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. 2020. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. 1991. Adaptive
mixtures of local experts. IEEE Neural Computation.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
2024. Mixtral of experts.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. Scaling laws for neural language
models. CoRR, abs/2001.08361.

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan Huang, Bo Zhang, Junchi Yan, and Hongsheng
Li. 2024. Not all experts are equal: Efficient expert pruning and skipping for mixture-of-experts
large language models.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

xAI. 2024. Open release of grok-1. https://x.ai/blog/grok-os. Accessed: March 17th, 2024.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang You.
2024. Openmoe: An early effort on open mixture-of-experts language models. arXiv preprint
arXiv:2402.01739.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. 2023. H2o:
Heavy-hitter oracle for efficient generative inference of large language models.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania,
Bernard Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. 2023. Pytorch fsdp:
Experiences on scaling fully sharded data parallel.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. 2022. St-moe: Designing stable and transferable sparse expert models.

9

http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2403.05530
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/1312.4314
http://arxiv.org/abs/1312.4314
http://arxiv.org/abs/2101.03961
http://arxiv.org/abs/2101.03961
https://github.com/huggingface/accelerate
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2402.14800
http://arxiv.org/abs/2402.14800
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://x.ai/blog/grok-os
http://arxiv.org/abs/2306.14048
http://arxiv.org/abs/2306.14048
http://arxiv.org/abs/2304.11277
http://arxiv.org/abs/2304.11277
http://arxiv.org/abs/2202.08906


A Parameters/FLOPs per Token for MoE Transformers

Table 4 describes the amount of parameters and FLOPs per token for a Transformer MoE model.

Operation Parameters FLOPs per Token
Embed (nvocab + nctx)dmodel 4dmodel

Attention: QKV nlayerdmodel3dattn 2nlayerdmodel3dattn
Attention: Mask — 2nlayernctxdattn
Attention: Project nlayerdattndmodel 2nlayerdattndembd

MoE Feedforward nexpertsnlayer2dmodeldff 2ntopknlayer2dmodeldff
MoE Gating nexpertsnlayerdmodel 2nexpertsnlayerdmodel

De-embed — 2dmodelnvocab

Table 4: Parameter counts and compute (forward pass) estimates for a MoE Transformer model.
Nonlinearities, biases, and layer normalization are omitted.

B Prompts

In this section we describe the different prompts that we use for different tasks to query the desired
answer. We have experimented with different prompts and the ones presented below are chosen due
to better performance or that match previously reported benchmarks.

SST5 For Mixtral:

[INST] You are a helpful assistant. Your task is of sentiment classification.
Categorize the following text as either "very negative", "negative",
"neutral", "positive" or "very positive":

\{TEXT\}
Only generate the label, without explanations:[/INST]

SST5 For OpenMoE:

<<SYS>> You are a helpful assistant. Your task is of sentiment classification. <</SYS>>
<s>[INST] Categorize the following text in one of the following sentiments
’very negative’, ’negative’, ’neutral’, ’positive’ or ’very positive’:
\{TEXT\} [/INST]

MMLU For Mixtral 8x7b:

[INST] The following are multiple choice questions (with answers) about \{SUBJECT\}.

\{QUESTION\}

\{CHOICES\}

Only respond with the letter of the correct answer and no explanation.
Answer:
[/INST]

MMLU For OpenMoE:

<<SYS>> You are a helpful assistant. Your task is of multiple choice question answering
based on your knowledge.
For subject \{SUBJECT\}
Choose the best answer (A), (B), (C), or (D)
to the following question without explanation:<</SYS>>

10



<s>[INST] \{QUESTION\} from the following choices:

\{CHOICES\}

[/INST]

C OpenMoE results

We also experimented with OpenMoE Xue et al. (2024) models but we were not able to get reasonable
results. We evaluate the OpenMoE-8B-Chat model on MMLU and SST5 and the results can be seen
in Table 5.

Model Setup SST5 Acc. MMLU Acc.
OpenMoE-8B-Chat (1.1T+SFT) expert-topk=1 35.0% 25.7%
OpenMoE-8B-Chat (1.1T+SFT) expert-topk=2 35.6% 26.5%

Table 5: Evaluation on MMLU and SST5 for different for OpenMoE models with top-1 and top-2.

Considering the random-guessing baseline for MMLU to be 25% and for SST5 to be 20%, we did
not further pursue utilizing these models for additional experiments.

11


	Introduction
	Related Work
	Methodology
	Parameter and Compute Scaling of MoE Transformers
	Expert Sparsification with Heavy-hitters Counting
	Enhancing Expert Efficiency: Advanced Finetuning Strategies
	Top-K adaptation
	Entropy-based gating regularization

	SEER-MoE: Sparse Expert Efficiency through Regularization for Mixture-of-Experts

	Experiments
	Experimental details
	Data
	Evaluation Method

	Results and Analysis
	Expert Sparsification with Heavy-hitters Counting
	Finetuning
	SEER-MoE: putting everything together

	Conclusion
	Parameters/FLOPs per Token for MoE Transformers
	Prompts
	OpenMoE results

