
Difficulty-Controllable Text Generation Aligned to
Human Preferences

Stanford CS224N Custom Project

Allison Guman
Department of Electrical Engineering

Stanford University
aguman@stanford.edu

Udayan Mandal
Department of Computer Science

Stanford University
udayanm@stanford.edu

Nikhil Pandit
Department of Mathematics

Stanford University
npandit0@stanford.edu

Abstract

Controllable text generation (CTG) is a core problem in the field of natural language
processing (NLP), and in recent years there have been a multitude of approaches
to controlling the text generation of large language models (LLMs). Constraints
researched for CTG include detoxifying generated text or aligning outputs to a
particular sentiment. Despite the vast amount of existing research in CTG, we find
there is a general lack of research in aligning controlled text generation towards
human preferences or a classifier which has learned these human preferences. We
bridge this gap by (1) implementing a DeBERTa-based readability predictor on
teacher difficulty assessments and (2) training an LLM which can appropriately
provide outputs aligned to teacher assessments given an explicit prepended prompt
or a prepended code to the input. We showcase that methods used for pretraining
Salesforce’s LLM CTRL can be applied to successfully finetune a much smaller
Distilled GPT-2 LLM (∼ 20x fewer parameters). We also showcase that a novel
method leveraging the classifier as a discriminator for further training of a finetuned
Distilled GPT-2 LLM leads to vastly improved performance, reaching accuracies
above 98% on a test dataset of teacher preferences, noticeably beating out a
prompted Distilled GPT-2 baseline which achieves an accuracy of roughly 55%.
Additionally, our approaches can be easily applied to guide LLMs to provide
constrained outputs aligned to other human preferences outside of text difficulty.

1 Introduction

LLMs can generate fluent, readable text relevant to several domains and use cases, but the output is
remarkably difficult to fit to specific constraints. In CTG, a model aims to generate text satisfying
constraints or characteristics such as topic or sentiment. While LLMs like ChatGPT generate natural
and high quality text, controllability of these models often requires complex mechanisms during
training or inference in order to guide these models towards meeting prescribed constraints [11].

In the wide breadth of CTG approaches, while there have been successes in controlling text towards
objective measurements such as ensuring outputs contain specific vocabulary [12], research in
controlling LLMs towards finer-grained and subjective measurements aligned with user intent (such
as generating a review for a 3/5 rating) has been previously done with unwieldy and computationally
intensive pretraining approaches for massively large LLMs like Salesforce’s CTRL model [4], and
controlling LLM outputs to match human preferences has often been limited towards reinforcement
learning (RL) based approaches which require a learned policy [6; 7].

Stanford CS224N Natural Language Processing with Deep Learning

In this paper, we produce a difficulty-controllable text generation model trained on teachers’ assess-
ments of the difficulties of reading passages. We demonstrate that pretraining approaches leveraged
for the CTRL LLM with 1.6 billion parameters can be successfully applied to finetune a Distilled
GPT2 model of only 82 million parameters, and successfully produce (1) a regression model predict-
ing difficulty scores, and (2) a generative language model producing text at a user-specified difficulty
level. We additionally demonstrate that the alignment of the generative model towards the regression
model can be significantly improved by a novel discriminator-based approach, adapted from the
existing DisCup approach for guiding LLMs towards meeting an objective metric given by a binary
classifier [10], leading to a model vastly outperforming a prompted Distilled GPT-2 model.

2 Related Work

2.1 Overview of Controlled Language Generation

Existing approaches to CTG range from finetuning existing LLMs, pretraining LLMs with specific
architectures or labeled data, leveraging postprocessing or decode-time methods to modify outputs,
and reinforcement learning based approaches to learn from human preferences and feedback [11]. Our
approach is a finetuning approach which builds upon limitations from pretraining LLMs, decode-time
methods, and prompt-tuning based approaches.

Decode-time methods like DExperts serve as a postprocessing layer to the LLM’s outputs, and often
leverage a discriminator or classifier as an “expert” to ensure generated tokens by a causal langauge
model meet the intended constraints [5]. These approaches sometimes come at the cost of fluency and
additionally dramatically increase decoding and inference time [8], motivating finetuning approaches
like DisCup which use discriminator-based or adversarial learning for training instead of leveraging
the discriminator during post-processing [10]. Pretraining methods like CTRL and CoCon learn to
control textual outputs from prompts by leveraging control codes in inputs and control blocks in the
transformer architecture, respectively [4; 1]. However, these existing methods often function over
massive LLMs, require large amounts of data to function, and additionally have worse performance in
handling a versatile range of tasks [11]. Prompt-tuning approaches like Tailor learn to embed tokens
into an LLM’s prompt to better align it to constraints [9]. However, such approaches often freeze the
model’s parameters during fine-tuning and necessitate additional training procedures to learn prompt
embeddings—as well as decode-time methods to ensure the output is aligned to the prompt—leading
to increased inference time. We circumvent many of these issues by avoiding pretraining, replacing
prompt tuning with fixed prepended prompts or control codes, and leveraging a discriminator during
the training process instead of during decode time, similar to approaches in CTRL and DisCup.

2.2 Controlled Language Generation with CTRL

One effective strategy for CTG, developed in CTRL [4], involves prepending “control codes” to
training data before training time, in addition to a large amount of data appropriately aligned with
these “control codes”. For training, text is drawn from several different sources (numerous Reddit
forums, Wikipedia, etc.), and is prepended with a code specifying its source (e.g. Wikipedia,
Books, or Politics for text from r/Politics). Some multiply-specified pieces of text receive multiple
control codes: e.g., ratings receive the control code Reviews together with a control code Rating:n
specifying the numerical rating corresponding to the text. After prepending control codes, the large
Transformer model is trained on the modified training data, and the resulting generative language
model is successful in imitating domain-specific text (see Figure 1).

Figure 1: CTRL embedding for reviews

2.3 Controlled Language Generation with DisCup

Instead of placing constraints on outputs at decode-time, DisCup controls text generation in a two-part
process by leveraging a discriminator during the training process [10]. Specifically, the discriminator
leveraged during DisCup is trained to provide a probability of an input i meeting some constraint

2

or attribute a. During the training process, from a training sequence of tokens (Step 1 of Figure
2), the top-k most probable next tokens following this sequence are provided, and each of these
tokens are attached to form k sequences. These k sequences are then fed into the discriminator
to assign a probability to each sequence of the constraint being met. From this, the k tokens are
re-ranked according to their associated sequence probability (Step 2 of Figure 2). Finally, token
logit probabilities of the model with control-prompt embeddings (Step 3 of Figure 2) along with the
re-ranked distributions are used to guide the language model to produce logit rankings which are
aligned with the re-ranked distribution, through a loss function from unlikelihood training.

Figure 2: DisCup’s training approach

3 Approach

3.1 Training DeBERTa-Based Discriminator Aligned To Teacher Preferences

We start by training a discriminator to predict BT-Easiness scores using regression over the training
set. Given our training passages P1, . . . , Pn with associated BT-Easiness scores γ1, . . . , γn, our
objective is to train a model to find a real-valued function f minimizing the L2 loss

L(f ;P1, . . . , Pn) =

n∑
i=1

(f(Pi)− γi)
2.

We finetune a pre-trained DeBERTa V3 Small model with a classification head for a single class
with logits representing BT Easiness scores over reading passages with teacher-labelled BT Easiness
scores to obtain our regression predictor f . This is a small Transformer model with 6 hidden layers
with a size of 768, and 44M backbone parameters. We compare the performance of our discriminator
against the average BT Easiness standard error from teachers.

3.2 Control Code and Prompt Embeddings with Distilled GPT-2

Inspired by pretraining methods for CTRL, we finetune a generative language model by prepending
control codes for controlling the generation of excerpts of “easy” or “hard” text. Given a training
dataset with excerpts labelled as “easy” or “hard”, we prepend the control code <1> to the text of
each easy passage and <2> to the text of each difficult passage. We then finetune a pretrained 82M
parameter Distilled GPT-2 model to generate language similar to these training inputs.

For controllable language generation of this type, given a control code C and a sequence of tokens
x1, . . . , xn, the goal is to learn the conditional probability:

p(x|C) =

n∏
i=1

p(xi|x<i, C).

At generation time, the model should produce the next token xn+1 maximizing p(x1, . . . , xn+1|C).
Performance is compared against a Distilled GPT-2 model with no fine-tuning.

3

As an alternative to the CTRL method, we also investigate prepending the data with a natural language
prompt rather than a control code to guide outputs towards a difficulty. In this setup, we replace the
control codes <1> and <2> by the phrases “This is written by a 1st grader.” and “This is written by a
PhD student”. Finetuning proceeds in exactly the same way as with the control codes.

3.3 Discriminator-Based Training with Likelihood and Unlikelihood Training for Regression

Figure 3: Discriminator-Based Training Pipeline

Taking inspiration from DisCup, we now fine-tune a text generation model using a modified loss
function leveraging a discriminator f over training inputs with control codes or prepended prompts.

Let S1, . . . , SN be all the length-n sequences in the training data (we take n = 12). Each sequence
Sj has a control code/prepended prompt Cj derived from the BT easiness score of the passage to
which it belongs. Consider a single sequence Sj = {x1, . . . , xn}, and consider the problem of
generating xn from x<n. We wish for our model to predict an xn which produces a sentence which
is (1) fluent, and (2) conforms to constraint Cj . To ensure fluency, we restrict our attention to the top
k (we let k=10) most likely tokens y1, . . . , yk for the n’th token. We then compute the BT Easiness
scores for k concatenated sequences from the original sequence and the top-k tokens:

di = f({x1, . . . , xn−1, yi}) 1 ≤ i ≤ k.

di measures the difficulty of the sentence completed with yi. Additionally, we use the logits (lk) of
the top k tokens for xn and compute the softmax distribution of these k logits:

sk = softmax(lk)

We define a target BT Easiness score for the given constraint Cj , which we denote tCj
, and define

Llikelihood(Sj) =

k∑
i=1

ski (|di − tCj
|)

Lunlikelihood(Sj) =

k∑
i=1

(1− ski)(−|di − tCj |)

to be the likelihood loss and the unlikelihood loss of a training sequence Sj . The likelihood loss
guides top-k tokens with higher logit probabilities to produce sequences closer to the target BT
Easiness score, while the unlikelihood loss guides top-k tokens with lower logit probabilities to
produce sequences further away from the target BT Easiness score in order to prevent the model from
only recommending tokens with improved discriminator scores and improving fluency.

3.4 Extending Discriminator-Based Training With Larger Windows of Generated Text

We further extend our previous approach by considering larger windows of generated text tokens in
our likelihood and unlikelihood loss functions. For each input length-n sequence Sj = {x1, ..., xn},

4

we consider a window of length w. We then define the loss functions for this sequence as follows:

Lwindow likelihood(Sj) =

w−1∑
i=0

Llikelihood(x1,, xn−i)

Lwindow unlikelihood(Sj) =

w−1∑
i=0

Lunlikelihood(x1,, xn−i)

This allows our discriminator-based training to more appropriately consider the performance of our
model in generating multiple tokens, instead of a singular token, at the cost of more intensive training.
We set w to be 3 and additionally lower k to 4 in order to offset the increased training computation.

4 Experiments

4.1 Data

Our datasets are derived from the CLEAR Corpus, which is an open-source dataset of over 5,000
grade-level reading passages annotated with various measures of reading difficulty. In our analysis,
we focus on the BT Easiness score, the Bradley-Terry coefficient of the difficulty ratings of 1116
teachers [2]. If passages i and j have Bradley-Terry coefficients γi and γj , then

P(passage i more difficult than passage j) =
γi

γi + γj
.

Thus, higher Bradley-Terry coefficients correspond to more difficult passages. For our experiments,
we consider three data categories: the original training dataset, the original test dataset, as well as
an augmented training dataset consisting of all 50 word subsections of excerpts used in the original
training dataset, with the same assigned BT Easiness score and standard error. We additionally split
our training data into tertiles and let the BT Easiness upper bound of the lower tertile determine the
threshold for a passage being considered hard from teacher preferences, and the lower bound of the
upper tertile determinine the threshold for a passage being considered easy from teacher preferences.
We show the total number of data entries, the number of easy passages, as well as the average BT
Easiness Standard Error for the number of hard passages in Table 1 for each of our datasets.

Dataset Total Total Easy Total Hard Avg BT Easiness S.E.
Training Data Augmented 10997 3624 3695 0.4915
Test Data 1890 629 621 0.4909
Training Data 2834 944 944 0.4914

Table 1: Dataset statistics

4.2 Evaluation method

For our discriminators, we assess root mean squared error and mean accuracy error metrics.

For our CTG models, we generate text for evaluation by passing as input the first word in a data
entry’s excerpt prepended with the appropriate control code or phrase, and generate the next 30 tokens
greedily to build an output. The resulting output (excluding the prepended control code or phrase)
is then passed to our discriminator to provide a BT Easiness score, and this score is translated into
the generated text being categorized as easy or difficult depending on whether the score is above the
training data’s median score. We assess these categorizations using accuracy, recall, and F1 metrics.
We compute the root mean squared error and mean accuracy error metrics between the discriminator’s
outputted score and a target score. This target score is the minimum score of the training dataset
if the intention is to produce a hard output, and otherwise the maximum score if the intention is to
produce an easy output.

Finally, we compute a human evaluation for our final set of CTG models using control codes in
Table 4. Two human evaluators are given 5 sets of 2 generated outputs, where each set contains two

5

https://www.commonlit.org/blog/introducing-the-clear-corpus-an-open-dataset-to-advance-research-28ff8cfea84a/

generated outputs from one starting word in our test dataset prepended with either <1> or <2>. These
evaluators give a fluency metric (Fluency column) out of 5 for each set of output, and try to assign
each output to a control code, and the correctness of this is measured (H. Acc column).

4.3 Experimental details

All our models are trained using the AdamW optimizer correcting bias without any warmup steps,
and are trained on a NVIDIA 3050 Laptop GPU. We train both our DeBERTa-Based discriminators
and non-baseline CTG models on either the training data (denoted NDA) or the augmented training
data (denoted DA) in Table 1, and all data entries are truncated to the first 60 tokens.

Our discriminators (denoted Regression) are trained with a batch-size of 64 over 10 epochs with a
learning rate denoted in Table 2. We use the best performing discriminator in 2 (DA + Regression) to
both evaluate and train (with discriminator-based training) our CTG models.

Our CTG models leveraging control codes (denoted CTRLF) or leveraging prepended prompts
(denoted PromptedF) are trained with a batch-size of 64 over 10 epochs with a learning rate of
5× 10−5. The corresponding baselines without any finetuning are CTRLU and PromptedU.

Our CTG models in Table 3 trained with both likelihood and unlikelihood training (denoted FullDisc)
are trained over 1 epoch with a batch-size of 8, with data entries truncated to the first 60 tokens, with
a learning rate of 5× 10−5. Our CTG models in Table 4 leveraging either only likelihood training
(denoted Likelihood), both likelihood and unlikelihood training (denoted FullDisc), only likelihood
training with larger windows (denoted MultLikelihood), and both likelihood and unlikelihood training
with larger windows (denoted MultFullDisc) are trained over 10 epochs from the NDA + CTRLF
model, with a batch size of 8 with a a learning rate of 5× 10−6.

4.4 Results

Configuration Learning Rate MSE RMSE MAE
NDA + Regression 5× 10−4 0.4857 0.6951 0.5545
DA + Regression 5× 10−4 0.6149 0.7805 0.6272
NDA + Regression 5× 10−5 0.3697 0.6052 0.4819
DA + Regression 5× 10−5 0.3723 0.6077 0.4818

Table 2: Experimental results for aligned difficulty predictor on test set

We are able to achieve a mean accuracy error of 0.4818 for the test set with our best regression model
in Table 2, which does even better than the average human BT Easiness standard error of 0.4909
reported by the CLEAR dataset 1, indicating great discriminator performance.

Configuration MSE RMSE MAE Accuracy Recall F1
CTRLU 7.6770 2.7578 2.6754 0.4916 0.4868 0.4065
PromptedU 6.9567 2.6264 2.5609 0.5565 0.5584 0.4710
NDA + CTRLF 5.2368 2.2649 2.1308 0.7322 0.7329 0.6789
DA + CTRLF 6.0774 2.4386 2.3049 0.6408 0.6222 0.5355
NDA + PromptedF 4.5918 2.1396 2.0525 0.8691 0.8706 0.8252
DA + PromptedF 4.1663 2.0359 1.9523 0.8663 0.8639 0.8330
NDA + CTRL + FullDisc 7.2265 2.6881 2.6864 0.5267 0.5302 0.3972
DA + CTRL + FullDisc 7.1767 2.6786 2.6769 0.5417 0.5565 0.4923
NDA + Prompted + FullDisc 7.2164 2.6849 2.6771 0.4972 0.5058 0.3217
DA + Prompted + FullDisc 7.3084 2.7019 2.6965 0.4948 0.5000 0.3107
Table 3: Experimental results for baselines and various aligned language models on test set

We also see that our baseline GPT-2 models prompted with control codes (CTRLU) and with special
prompt phrases (PromptedU) have an accuracy close to random guessing with values of 0.4916
and 0.5565 respectively, which is far poorer than the accuracy from finetuned models like DA +
CTRLF and NDA + PromptedF. While the CTRLU baseline is not particularly surprising (a baseline

6

GPT-2 model should not know how to respond to an arbitrary control code), the PromptedF baseline
mimics how a user would typically prompt GPT-2 in order to generate language of either hard or
easy difficulty. Additionally, we surprisingly find that applying discriminator-based methods on the
pretrained model over 1 epoch leads to even poorer performance than baselines.

Configuration RMSE MAE Accuracy Recall F1 H. Acc. Fluency
NDA + CTRLF 2.2649 2.1308 0.7322 0.7330 0.6789 1 4.15
NDA + CTRLF + Likelihood 2.0276 1.9282 0.9595 0.9608 0.9341 0.4 2.45
NDA + CTRLF + FullDisc 2.9013 2.8946 0.0288 0.0321 0.0278 0.4 4.55
NDA + CTRLF + MultLikelihood 2.0158 1.9939 0.9867 0.9885 0.9739 0.95 4.1
NDA + CTRLF + MultFullDisc 2.9790 2.9374 0.2804 0.2685 0.2104 0.6 1.55

Table 4: Results for CTRL and discriminators, including human assessments

Using our finetuned model NDA + CTRLF as a baseline, we show that further likelihood training
over 10 epochs with our discriminator, both with or without extended token windows, leads to vastly
improved performance with good human accuracy, boasting accuracy more than 0.98. Most of our
models fine-tuned with discriminators also maintain good fluency measurements. Surprisingly, we
find that additionally incorporating unlikelihood training can even lead text to gravitate towards the
opposite of its intended constraints, likely due to how it can encourage lower discriminator scores.

5 Analysis

Of the five models in Table 4, two score highly both on human-evaluated measures of accuracy and
fluency, namely the NDA + CTRLF model and the NDA + CTRLF + MultLikelihood model. Table 5
below shows some example outputs of these two models:

Input NDA + CTRLF + MultLikelihood Output NDA + CTRLF Output
Input:<1> The next day, when the sun was setting, the little girl went

out to play. She was very hungry. She went to bed. She
went

The first thing I remember about the first day was that I
was in a coma. I was very sleepy. I was very sleepy. I was
very

Input:<2> The first step in the construction of a battery is to obtain a
suitable temperature of 1.5°C. The first step is to obtain a
suitable

The first step in the process of determining the
composition of the gas is to determine the composition of
the gas by the ratio of the two elements in the

Input:<1> A beginning A beginning-day boy called "Bobby" and said, "Bobby is
going to school today. He is going to school today. He is
going’

A beginning-day visit to the village of Sarnia was a very
pleasant one. The children were very fond of the village.
They were very fond of

Input:<1> A beginning is the
time for taking the most delicate
care

A beginning is the time for taking the most delicate care of
your baby. You will take care of your baby’s food and
water

A beginning is the time for taking the most delicate care of
your baby. You will not be surprised if your baby is not
very happy. You will not be surprised if your baby is not
very happy.

Input:<2> A beginning A beginning of the first phase of the study of the nervous
system is the development of a nervous system. The
nervous system consists of a series of nerves, called

A beginning of the first century B.C. was a city of about
300,000 people. It was the center of the British Empire,
and was the

Input:<2> A beginning is the
time for taking the most delicate
care

A beginning is the time for taking the most delicate care of
the body. The body is made up of a single piece of tissue,
called a tube, which is filled with blood. The tube is filled

A beginning is the time for taking the most delicate care of
the body. The body is not only made up of a single piece
of tissue, but is also made up of a whole body of cells

Table 5: Comparison of text generation with different control codes and prompt truncation lengths

As evidenced by the table, inputs with control code <2> produce saliently more difficult outputs than
inputs with control code <1>, as desired, noticeably containing more specific terms like “nervous
system”. However, because of the greedy text-generation strategy, many of the outputs have repeated
text; for longer output generation, a repetition penalty should be implemented. Additionally we see
that our NDA+CTRLF model sometimes fails to make text easy: its outputs can contain relatively
difficult words like “coma”, contributing to its lower accuracy in Table 4.

Interestingly, we find that outputs of the model are recognizably in the form either of fiction or of a
piece of scientific information from a book, likely an artifact of the reading comprehension passages
on which the model was finetuned. However we find these book-like outputs do not appear on a
pretrained model, since feeding inputs like "A beginning" and "He was the" to a pretrained Distilled
GPT-2 model produces general phrases like "A beginning of the year" or "He was the first person to
be arrested for a hate crime in the United States". This leads us to believe that finetuning should be
done on a multitude of corpora covering a range of textual data. Such corpora could be generated
with language models like GPT-4 in order to automatically label while maintaining language variety,
as done in TinyStories [3].

7

Finally, we observe that despite good fluency of outputs, some outputs by our models do not make
factual sense, like the phrase "The body is made up of a single piece of tissue, called a tube, which
is filled with blood". This is likely due to the poor reasoning qualities of an LLM of this size,
compounded with the emphasisis on stitching together language for it to be deliberately difficult. We
wonder if leveraging larger LLMs can prevent these factual inaccuracies, and additionally believe an
assessment of factual accuracy would be useful in understanding tradeoffs from imposing greater
controllability of text.

5.1 Investigating unlikelihood training

Due to the surprisingly poor accuracy given from models incorporating unlikelihood training like
NDA + CTRLF + MultFullDisc and NDA + CTRLF + FullDisc over our evaluations, we peer into
some example inputs in our evaluation set, along with their generated outputs.

Most significantly, we find that NDA + CTRLF + MultFullDisc fails to generate any coherent
sentences and suffers heavily from repetition, producing phrases such as “What was it then? Rome
was Rome; Rome was Rome; Rome was Rome; Rome was Rome; Rome was Rome; Rome was Rome;
Rome was” and “It was a country people dwelt in America was Rome; Rome dwelt Rome dwelt
Rome; Rome dwelt Rome dwelt Rome; Rome dwelt”. Additionally, we find a repeated “Rome" and
“America" in almost all generated textual inputs, showcasing that unlikelihood training is somehow
forcing the model to latch onto particular words in order to meet the discriminator’s score. We see
very similar responses irrespective of control codes.

While NDA + CTRLF + FullDisc does not showcase the same level of repetition with specific words
“Rome” and “America”, we still observe generally greater repetition with many phrases being repeated,
with generated phrases like “What is the name of the animal? It is a very common name for the
animal. It is a very common name for the animal. It is a”. Additionally, the model seems to present
easy outputs regardless of provided control code, as it presents a very simple sentence “Crows, and
the other birds, were all very happy. They were all very happy. They were all very happy. They were
all very happy. They were” as one given output for a hard control code. These findings emphasize to
us the necessity to explore unlikelihood training being done with an explicit repetition penalty, and
some level of regularization to prevent overfitting to particular words.

6 Conclusion

In this paper we showcase how language models can be finetuned to control their outputs in alignment
to user intent. We specifically demonstrate successes with a Distilled GPT-2 LLM being able to
control the human-specified difficulty of generated text given prepended prompts or control codes
from the user. To do so, we leverage approaches used to pretrain Salesforce’s CTRL model, and
develop novel discriminator-based methods taking inspiration from existing literature.

Due to the limited memory of the 3050 GPU used to finetune our models, the size of models used
for experimentation as well as the amount of training iterations was limited. Additionally, we note
that our results are demonstrated over limited control codes and prompts, and also only demonstrate
control with respect to the difficulty of generated English text.

As a result, we believe future work should explore our finetuning methods with larger language
models and applying control over different human-specified metrics. Finally, due to repetitions in
observed outputs and poor performance of our unlikelihood training approach, we believe repetition
penalties and a modified unlikelihood training scheme should be investigated in future work.

7 Key Information to include

Mentor: Tony Wang. This project has no external collaborators and is not shared. All group members
made equal contributions with work evenly split among coding, writing, and researching literature.

8

References

[1] Alvin Chan, Yew-Soon Ong, Bill Pung, Aston Zhang, and Jie Fu. 2022. Cocon: A self-
supervised approach for controlled text generation.

[2] Scott Crossley, Aron Heintz, Joon Suh Choi, Jordan Batchelor, Mehrnoush Karimi, and Agnes
Malatinszky. 2023. A large-scaled corpus for assessing text readability.

[3] Ronen Eldan and Yuanzhi Li. 2023. Tinystories: How small can language models be and still
speak coherent english?

[4] Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, Caiming Xiong, and Richard Socher.
2019. Ctrl: A conditional transformer language model for controllable generation.

[5] Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A.
Smith, and Yejin Choi. 2021. Dexperts: Decoding-time controlled text generation with experts
and anti-experts.

[6] Ruibo Liu, Guangxuan Xu, Chenyan Jia, Weicheng Ma, Lili Wang, and Soroush Vosoughi.
2020. Data boost: Text data augmentation through reinforcement learning guided conditional
generation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 9031–9041, Online. Association for Computational Linguistics.

[7] Ximing Lu, Sean Welleck, Jack Hessel, Liwei Jiang, Lianhui Qin, Peter West, Prithviraj
Ammanabrolu, and Yejin Choi. 2022. Quark: Controllable text generation with reinforced
unlearning.

[8] Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, Benjamin Piwowarski, and Jacopo
Staiano. 2020. Discriminative adversarial search for abstractive summarization.

[9] Kexin Yang, Dayiheng Liu, Wenqiang Lei, Baosong Yang, Mingfeng Xue, Boxing Chen, and
Jun Xie. 2022. Tailor: A prompt-based approach to attribute-based controlled text generation.

[10] Hanqing Zhang and Dawei Song. 2022. Discup: Discriminator cooperative unlikelihood
prompt-tuning for controllable text generation.

[11] Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou, and Dawei Song. 2023. A survey of
controllable text generation using transformer-based pre-trained language models.

[12] Wangchunshu Zhou, Yuchen Eleanor Jiang, Ethan Wilcox, Ryan Cotterell, and Mrinmaya
Sachan. 2023. Controlled text generation with natural language instructions.

A Appendix

We explore different hyperparameters for CTRLF tuning, and find relatively comparable performance
regardless of learning rate or data augmentation. We believe more training epochs are necessary to
get stable performance:

Configuration MSE RMSE MAE Accuracy Recall F1
DA + CTRLF, lr=5× 104 5.8219 2.3860 2.2574 0.7152 0.7219 0.6654
NDA + CTRLF, lr=5× 104 6.6521 2.5528 2.4245 0.6666 0.6760 0.6111
DA + CTRLF, lr=5× 105 6.3065 2.4807 2.3407 0.6675 0.6792 0.6071
NDA + CTRLF, lr=5× 105 6.4047 2.5020 2.3724 0.6855 0.7012 0.6357

Table 6: Test results over hyperparameter search for CTRLF after 10 epochs of training

We explore training of our discriminator-tuned models in Table 4. We find that unlikelihood training
seems to lead to overfitting on the training set, as while training metrics hover close to 1, test metrics
dramatically fall to near 0.

9

http://arxiv.org/abs/2006.03535
http://arxiv.org/abs/2006.03535
https://doi.org/10.3758/s13428-022-01802-x
http://arxiv.org/abs/2305.07759
http://arxiv.org/abs/2305.07759
http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/2105.03023
http://arxiv.org/abs/2105.03023
https://doi.org/10.18653/v1/2020.emnlp-main.726
https://doi.org/10.18653/v1/2020.emnlp-main.726
http://arxiv.org/abs/2205.13636
http://arxiv.org/abs/2205.13636
http://arxiv.org/abs/2002.10375
http://arxiv.org/abs/2204.13362
http://arxiv.org/abs/2210.09551
http://arxiv.org/abs/2210.09551
http://arxiv.org/abs/2201.05337
http://arxiv.org/abs/2201.05337
http://arxiv.org/abs/2304.14293

Figure 4: NDA + CTRLF + Likelihood Training

Figure 5: NDA + CTRLF + FullDisc Training

10

Figure 6: NDA + CTRLF + MultLikelihood Training

Figure 7: NDA + CTRLF + MultFullDisc Training

11

	Introduction
	Related Work
	Overview of Controlled Language Generation
	Controlled Language Generation with CTRL
	Controlled Language Generation with DisCup

	Approach
	Training DeBERTa-Based Discriminator Aligned To Teacher Preferences
	Control Code and Prompt Embeddings with Distilled GPT-2
	Discriminator-Based Training with Likelihood and Unlikelihood Training for Regression
	Extending Discriminator-Based Training With Larger Windows of Generated Text

	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Investigating unlikelihood training

	Conclusion
	Key Information to include
	Appendix

