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Abstract

As climate change continues to pose a significant threat to global stability, the
precision in tracking and reporting carbon emissions has never been more crucial.
Our project aims to enhance the accuracy and efficiency of carbon emission tracking
for businesses using a language model. The goal is to minimize human labor in
data mapping processes and improve the reliability of emission data. In order to
tackle this problem, we developed a fine-tuned BERT model on synthetic business
activity data which is able to properly map divergent user carbon emission tags
to their golden standard. This synthetic fine-tuning data was generated through a
conjunction of a Python script that randomly samples column examples returned
by ChatGPT. This simulates business activity data which we further introduced
deterministic error to replicate human mistakes. With our initial Random Forest
Classifier, we were able to achieve 90% accuracy with initial set of noise injected
in the input data. When we improved the noise injection more controlled the
Random Forest Classifier the accuracy was 99.64% while our BERT fine-tuned
model boosted this to 99.9% and above.

1 Key Information to include
• Mentor: Caleb Ziems suggested use of bert, and noise generation approach, and helped us

focus on measurements.
• External Collaborators (if you have any): N/A
• Sharing project: N/A
• Group Contributions: Amar came up with the original project idea, found research related

work, created the initial dataset, performed the initial experiments with the RandomForest-
Classifier, and created the movie error dataset. Gerry significantly improved our accuracy by
integrating the use of a pre-trained BERT model, fine-tuning the model, and testing it on our
data. Esteban created the twitter error dataset and introduced a sentence embedding model
to score the quality of datasets. All members were significantly involved in progressing the
project by researching for new ideas and preparing the final report.

2 Introduction

Carbon reporting remained an after thought for large corporations until fairly recently. Given world-
wide focus on climate change the quality of carbon reporting is becoming important from regulations
perspective, but even more critical from brand recognition perspective. Carbon reporting expects

Stanford CS224N Natural Language Processing with Deep Learning



to track emissions for products from cradle to grave. This data exists in large corporations but in
disparate systems such as enterprise relationship management systems, travel management systems,
various other back-office, IT, and HR systems. Today, that business activity data is tagged and classi-
fied manually to identify correct emission factor as prescribed by the United States Environmental
Protection Agency (EPA) and other equivalent government agencies. This paper focuses on improving
the quality and human labor in mapping the business activity data from various IT systems to the
correct emission data. We are excited by, recent advancements in large language model specially in
text classification area. This paper discusses applying recent advancements in language model to
business activity mapping to EPA’s emission factor data. Additionally, we share the results for the
mapping activity. We specifically focus on understanding error rate in the business activity data large
language models can tolerate.

3 Related Work

In recent research conducted at IBM (1), advances have been made in utilizing large language models
for estimating supply chain emissions. This work is crucial in simplifying the complex task of carbon
emission reporting, particularly for Scope 3 emissions, which can often account for the majority of
a company’s environmental impact. By fine-tuning BERT models, researchers aim to categorize
business activities more accurately to Environmental Input-Output (EEIO) categories, thereby refining
the emission factor computation process for these activities.

The IBM study not only enhances the method of data collection for emissions reporting but also
compares the efficiency of various models and featurization techniques. Their findings suggest
that, despite the challenges of diverse product descriptions across companies, pretrained language
models like BERT, Roberta, and ClimateBert significantly outperform traditional machine learning
algorithms in emissions classification. This breakthrough presents a promising direction for future
research in environmental sustainability, offering a benchmark for models and methodologies that
efficiently process and categorize emission-related data.

This body of work, however, acknowledges certain limitations. It points out that while identifying
the most effective language model is essential, the overall accuracy of EEIO category mapping can
be further improved by incorporating additional transactional parameters. These parameters might
include vendor names or categories which can enhance the precision of mapping, especially when
product descriptions are ambiguous. Such insights are invaluable as they guide subsequent research
to not only focus on model performance but also on the richness of the data used, ensuring more
accurate and meaningful environmental reporting.

4 Approach

To approach this classification problem, we utilized two different models: Random Forest Classifier
and BERT. While Random Forest Classifier utilizes a tree architecture, BERT employs encoders.
Due to their difference in structure, we exercised a fine-tuning approach for BERT whereas a
hyperparamter optimization training method for the Random Forest Classifier. These are further
explained below:

4.1 Random Forest Classifier

The Random Forest Classifier operates on the principle of ensemble learning; combining the
predictions from multiple machine learning algorithms to consolidate them into a singular, more
accurate prediction. The ensemble method builds numerous decision trees and merges their outputs
leading to an improvement in overall predictive accuracy. The key term "Forest" in Random Forest
Classifier highlights this architecture, where this model builds an ensemble of decision trees trained
upon the bootstrap aggregating method (training multiple models on different subsets of data, then
averaging their results). Because each ensemble is built from a random sample of training, this means
that the "best nodes" within that "forest" is only the best for that subset of data. This leads to the
Random Forest Classifier, which inherently holds diversity, having innate robustness.
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Figure 1: Bert Architecture

The preprocessing and training of the data consisted of converting textual information to its TF-IDF
representation. TF-IDF, short for Term Frequency-Inverse Document Frequency, is a numerical
statistic reflecting a word’s importance based on its frequency in the document and the corpus. This
relationship allows us to lessen the effect of commonly used, but trivial words. These transformed
inputs are then used for the training of our model (from a newly initialized stage). Furthermore, the
Random Forest Classifier holds a hyperparameter tuning process using RandomizedSearchCV which
is initiated during training, allowing it to optimize parameters such as the number of estimators, tree
depth, and minimum samples for splits/leaves for the best classification accuracy.

4.2 BERT

BERT, short for Bidirectional Encoder Representations for Transformers, is a model relying on an
attention mechanism rather than sequence analysis. This allows the model to weigh the influence of
different words within a sentence, regardless of its index.

The key to BERT is its multi-layer bidirectional Transformer encoders. A Transformer encoder reads
an entire sequence in a certain direction (left to right or right to left) allowing the model to learn a
word’s context based on its surroundings. Because BERT is bidirectional, meaning a word’s context
is learned both left to right and right to left, the model’s understanding of a word’s meaning is more
complete and thorough. The attention mechanism within transformers assigns a weight to each word
in a sentence based on its contribution to the surrounding context of the predicted word.

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V

Q,K,and V respectively correlate to the query, key, and value matrix while dk refers to the
dimensionality of the key matrix. Mathematically, the attention mechanism computes the dot product
of the query with all of the keys to determine the relevance of other words to the current word (i.e.
matrix Q). This relevance is then scaled down by dividing by dk. These probabilities are then
distributed along a scale from 0 to 1 through the softmax equation, resulting in an output representing
the weighted representation of the input based on its context.

The attention layers within the BERT encoders are followed by a feed-forward network, applying
additional transformations to the output matrix. As these transformations are passed down through
each encoder, the final layer outputs a cumulative contextual representation of each input token.
This output matrix can then be built upon by adding a final layer trained on task-specific data. This
process is known as fine-tuning.

For our approach to tackle proper mapping of user carbon emission tags to their golden standard,
we fine-tuned a smaller version of BERT (’bert-base-uncased’) on our synthetically created, error-
induced training set so that the final encoder layer can identify subtler mistakes within business
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activity data. An example of a nuance that BERT with pretraining would catch if particular vendor
handles packaging and business activity is marked incorrectly as a raw material instead of packaging
material, it would correctly classify as a packaging material. The inherently "messy" enterprise data
can be systematically self-corrected using power of the language model and specifically pre-training
as shown by the results.

5 Experiments

5.1 Data

We generate synthetic business activity data using the python script. The script generates comma
separated values (csv) file containing columns described below in detail. The description of the
activity, vendor names, comments though fictional but generated with help of GPT 4 to make it close
to real world. There was considerable randomness added to avoid overfitting during the training
phase. To get the synthetic data closer to real world, we have put considerable consideration in adding
the noise. We took words from a movie title database available on kragle and removed punctuation
and numerals from the titles. We also discarded all words that are less than 4 character long. This
gave us very realistic noise that then we added to the data by replacing only a certain set of words
from the description, vendor, and comment columns.

5.2 Dataset Description

Our datasets are supposed to reflect realistic business activities, each associated with specific North
American Industry Classification System (NAICS) titles. The enterprise data is expected to be messy.
These activities are categorized across several sectors, such as "Support Activities for Metal Mining,"
"Sewage Treatment Facilities," "New Single-Family Housing Construction," and more, encompassing
a wide range of industries. For each activity, the dataset details the vendors involved, costs in USD,
and comments highlighting the nature of the activity, including environmental and sustainability
considerations. The business activity data includes the following key columns:

Business Activity Description: Describes the nature of the business activity.
Business Activity Vendor: Names the vendors involved in the activity.
Business Activity Cost USD: Lists the cost associated with the activity in U.S. dollars.
Business Activity Comment: Provides additional context or comments about the activity.
2017 NAICS Title: Specifies the industry category to which the activity belongs, according to the
2017 NAICS titles.

5.3 Dataset Creation

We first defined the column names (csv columns) that form the dataset’s structure, capturing essential
aspects such as business activity descriptions, vendors, associated costs, comments, and the cor-
responding NAICS titles. We have used a data model (Business Activities) to represent business
activities across various industries, detailing the role of activity pertaining to product, vendors in-
volved, and descriptive comments. To dynamically generate individual records reflecting real-world
scenarios, we created a generate_record function, which samples business activities and pairs them
with randomly generated costs. The randomly generated cost simulate financial variability. We also
created a generate_dataset function that creates and aggregates a large number of these records into
an extensive dataset (csv file). To support robust model development and testing, we partitioned this
dataset into training and test subsets. We did this by selecting a predetermined fraction, 0.83% of
the data for training purposes, with the rest of the data allocated for testing. The rows are randomly
partitioned to the training and test dataset csv files. We created 13744 examples for the training data
2756 examples for the test data.

5.3.1 Successfully Adding Synthetic Noise to Datasets

We wanted to effectively simulate the presence of errors within the datasets, offering a valuable
resource for testing imperfect data which is realistic and expected in the real world. To infuse our
datasets with errors, simulating the imperfections commonly found in real-world data, we randomly
introduced a range of errors into the text fields of a dataset, from minor typographical errors to
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significant inaccuracies, reflecting the nuances of data quality challenges. First, we developed two
distinct functions, introduce_minor_errors and introduce_major_errors, to embed synthetic errors
within text data. While the former mimics common typing mistakes like substitution, omission, or
swapping of characters, the latter drastically alters the text, either by scrambling it or appending
irrelevant content, to represent major inaccuracies. We then implemented the apply_random_error
function, which, based on a predetermined probability, decides whether to inject an error into a given
piece of text. This introduces variability, ensuring that not all records are uniformly affected, thereby
mimicking real-world data inconsistency. We also created a apply_errors_with_limit function to
randomly apply errors to a limited number of specified text fields within a dataset row. This method
ensures a controlled dispersion of errors, preventing the dataset from becoming overwhelmingly
inaccurate while still reflecting realistic data quality issues. Finally, we applied to these functions to
both our training and test datasets, outputting large datasets with errors to test our model. Our model
performs really well on these datasets. It is possible that the randomness we use with Python may be
too deterministic which is unlike human errors. This led us to explore other options.

5.3.2 Failing to add Human-Like Noise to Datasets

We planned to use another model to inject human-like errors into our datasets. First, we used a
pre-trained LLM, fine-tuned on a Twitter Corpus. We found around 10000 tweets across a couple
datasets online, parsed them, and aggregated them into a text file. Then we fine-tuned a pre-trained
GPT2 model, which we imported, on this huge file of collected tweets. We thought that the tweets
would accurately capture human-like mistakes in language. We looped through each row and relevant
column in the datasets, and we provided a prompt with instructions to inject errors into the content
along with the content to the model for text generation. Unfortunately, it always failed to regenerate
the content with errors. Although the generated text was very Twitter-like, so the fine-tuning work,
regardless of how carefully-crafted the prompt and experimenting with other variables, it would only
generate new text after the original content and not within. We also tried with a version of of GPT2
that was not fined-tuned and a more powerful pre-trained GPT Neo 2.7 model, but they still failed to
understand the prompt. Any more powerful model was off-limits to due price.

This failure to create a strong dataset was reaffirmed when we decided to use another model that is
small and could classify our dataset into a score that reflects how realistic these errors are to rate the
quality of our datasets with errors and measure how human-like these errors. We used a sentence
embedding model which we could feed our dataset without errors and our dataset with errors to This
model can output a similarity score for each cell and an average for all scores. A high similarity
score would reflect that they datasets are very similar, which reflect that dataset with errors is realistic
because human-like errors are usually very similar to the correct language. If we compared the
original data with the aesthetic error data and the original data with the error data with more realistic
noise, getting a higher score on the latter would reaffirm that we were able to inject realistic noise
into our dataset. Unfortunately, this test dataset with noise from Twitter got an average similarity
score of 0.701. Our original synthetic test dataset got an average similarity score of around a 1. Thus,
this new dataset is less similar to the original dataset than the previous synthetic dataset, proving that
it was not a good representation of human-like errors and we had to find a new approach.

5.3.3 Using Movie Title Dataset to Integrate Quality Noise

Initially for the first iteration we added words generated using random characters. That approach
only generated 90% success rate. This approach had either very high test and training accuracy or
failing poorly. Language model was able to tease apart meaningless errors quickly. As a result, we
decided to inject noise from more realistic data. We retrieved movie titles from the movie database
available online. By removing obvious noise from the movie names by simply removing numerals,
punctuation’s, and less than 4 character words, we could extract 33,466 words that we use to inject
the noise. For testing purposes we do the controlled noise injection in the business activity data. The
error_rate parameter controls percentage of rows in the training and test dataset would have error.
Additionally the same parameter controls in a given row percentage of words replaced by noise words.
This gives fine control over the noise in the business activity data to help us understand how robust
the classifier models are. This approach fared well because RandomForestClassifier can tolerate
errors up-to 70% beyond that error rate, the classification accuracy reduces drastically.
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5.4 Evaluation method

To test our models, we evaluated their performance based on how accurately the models can predict
the correct EPA emission category for each business activity. Specifically, the percentages we provide
are the number of data points the model predicts correctly over the total number of data points.
Furthermore, as mentioned above, we decided to use a sentence embedding model based on the
MiniLM architecture with 6 layers to score the quality of our datasets with errors.

5.5 Experimental details

5.5.1 Random Forest Classifier

The best parameters returned by RandomizedSearchCV was:

• n_estimators: 1200, min_samples_split: 15, min_samples_leaf: 2,
• max_features: log2, max_depth: 60

5.5.2 BERT

The parameters that returned the best results were:

• learning_rate: 1e−8, weight_decay: 2e−5, batch_size: 64,
• max_len: 128, epochs: 50

5.6 Results

5.6.1 Random Forest Classifier

The RandomForestClassifier achieved 90% accuracy on the synthetic error dataset. After improving
our method for injecting errors by using move titles, we tested the RandomForestClassifier on several
error rates. We tested on both test data and on the training data that we used to train BERT. For the
most part, outcomes were about the same when testing on these 2 datasets. As you can see below,
for anything below a 40% error rate, RandomForestClassifier achieved about 100% accuracy. It dips
below 99% accuracy at around 66% error rate and below 99% at around 68% error rate. Once the
70% error threshold is met, the accuracy starts to decline faster until its around 80% accurate at about
95% error rate, which is good. After this, the accuracy plummets to 0% as the error rate approaches
100%, which makes sense because this is when every word in the original dataset is replaced with the
noise.

Figure 2: Accuracy on RandomForestClassifier for Error Dataset with Movie Key Words
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5.6.2 BERT

When training and testing BERT on the deterministic error data without movies data, BERT exhibits
an extraordinary 99.89% accuracy. Furthermore, we graphed the training loss for each epoch below,
and it decreased to minimum of around 0.00001. The training time was 54 minutes. However, due to
the obvious synthetic nature of our data, we knew this did not capture the model’s full ability.

Figure 3: Training Loss on Error Dataset without Movie Key Words

Unlike with the RandomForestClassifier, we were only able to train and test BERT on the more robust
error dataset with key movie words using one specific error rate. This is because each run for each
error rate takes about an hour, using a costly GPU, so resources are limited. We decided to use a 50%
error rate as a sweet spot because this is a little after where the RandomForestClassifier was no longer
able to achieve 100% accuracy. Thus, this error rate would give some room for BERT to improve.
On this 50% error rate data with moves titles, BERT achieved an accuracy of 99.7%, which is really
good. We graphed the training loss for each epoch below, and it decreased to minimum of around
0.000047. The training time was 55 minutes on a T4 GPU.

Figure 4: Training Loss on Error Dataset with Movie Key Words

5.6.3 Random Forest Classifier vs. BERT

BERT performed better than the Random Forest Classifier on all datasets. The resilience of BERT
against increasing levels of noise is noteworthy, as it not only maintains a high accuracy far longer
than the RandomForestClassifier but also showcases the robustness of its pretraining methodology
when it comes to understanding and filtering out irrelevant information. This ability to discern and
retain valuable data points becomes crucial in practical applications where noise is an inevitable part
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of the input data. Furthermore, the sharp decline in accuracy observed in the RandomForestClassifier
beyond the 70% noise threshold underscores the limitations of traditional machine learning models in
the face of substantial data corruption. It highlights the need for more sophisticated approaches, like
BERT, that can leverage context and semantics to withstand high noise levels.

6 Analysis

We know that Enterprise data is messy. That is one of the reasons most of this data go underutilized
or unused. This article (3) from Forrester sums it well: On average, between 60% and 73% of all
data within an enterprise goes unused for analytics. We propose to use language models to to learn
from past tedious and manual mapping activity that enterprises have done and apply that for all future
classification work. This fine-tuned model could be used by various organizations.

Business activity data in enterprises have details such as vendor name, cost of activity, timing of it,
that can give lot more clues about activity. When business activities data have errors, those additional
parameters associated with core data can provide additional context. That is the additional insight got
solidified when we looked at data and performance of various models closely. As BERT’s ability to
pre-tune itself from the data in additional columns such as vendor name, comments, etc, gives it a leg
over other models. As a result, BERT far exceeded our expectations, on this simple but error-prone
task of classification to improve quality of carbon reporting for organizations.

7 Conclusion

Based on the qualitative analysis, it’s evident that both the BERT and RandomForestClassifier models
are robust, maintaining accuracy with up to a 60% error rate in the synthetic business activity data.
To harness this model’s capabilities in practical scenarios, further efforts are needed to adapt it for
real-world data application. We believe the optimized hyperparameters should be directly applicable
in real-life situations, although fine-tuning them based on actual data observations might require
minimal effort. Such refinements are anticipated to enhance carbon emission tracking substantially,
enabling organizations to more effectively concentrate on reducing carbon emissions—a critical and
urgent goal for humanity.
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