
Optimizing minBert via Cosine Similarity and
Negative Sampling

Stanford CS224N Default Project

Neha Vinjapuri and Ananya Vasireddy
Department of Computer Science

Stanford University
Mentor: Cheng Chang

nehavin@stanford.edu, ananyasv@stanford.edu

Abstract

In recent years, natural language models that are able to generalize to multiple
tasks have become increasingly significant. In this report, we investigate several
different methods to improve the baseline minBERT model on three different
tasks: sentiment analysis, paraphrase detection, and semantic textual similarity.
As a result of our experiments, we found that implementing cosine similarity, as
examined in (Reimers and Gurevych, 2019), as well as using an unconventional
method of negative sampling, inspired by (Henderson et al., 2017) and (IamMrX,
2022), yielded the best improvement on the three tasks. Our final multitask model
achieved an overall score of 0.655.

1 Key Information to include

• External collaborators (if you have any): N/A

• External mentor (if you have any): N/A

• Sharing project: No

2 Introduction

With the recent explosion of large language models like OpenAI’s ChatGPT, the field of natural
language processing has seen an increased demand for models that are able to generalize to different
tasks. These models can respond to a variety of prompts, answering questions and producing human-
like language in seconds. However, the predecessor of many of these models, BERT (Bidirectional
Encoder Representations from Transformers), can also be used to generalize to diverse tasks. In this
report, we investigate BERT’s multitask potential by presenting an augmented version of minBert,
optimized to perform well on several different natural language processing tasks. Specifically, these
tasks are 1) sentiment analysis, 2) paraphrase detection, and 3) semantic textual similarity. By
incorporating cosine similarity and an unconventional method of negative sampling into our model,
we successfully finetuned our baseline model to perform better on these three downstream tasks.

3 Related Work

Two papers inspired our approach: "Sentence-BERT: Sentence Embeddings using Siamese
BERT-Networks", which involves cosine similarity, and "Efficient natural language response sugges-
tion for smart reply", which focuses on negative sampling and multiple negatives ranking loss learning.

In the first paper, the authors introduce a Siamese neural network architecture and use co-
sine similarity as a measure for the semantic textual similarity task. Since this is one of the tasks

Stanford CS224N Natural Language Processing with Deep Learning



we are attempting to improve our model’s performance on, we decided to use this cosine similarity
measure in our own model when evaluating the similarity between two embeddings.

In the second paper, the authors hope to address the problem of suggesting responses in hu-
man conversations. To do this, a dot-product multi-loss scoring model, which involves minimizing
the approximated mean negative log probability of the data, was utilized. Inspired by this paper, we
decided to build on this approach and incorporate negative samples into our own model - but without
using the dot-product multi-loss scoring model. We saw that this had worked for Stable Diffusion, a
deep learning text-to-image model (IamMrX, 2022), which improved its image generation by using
negative samples (the model specifically made its images very different from corresponding negative
prompts). In the context of our project, this is an important exploration because it will illustrate
whether simply introducing negative samples, without the corresponding loss function, also improves
performance in a wholly natural language processing context.

4 Approach

Our project leverages the baseline minBERT model, as outlined in the Default Project handout.
The baseline uses a transformer architecture featuring multi-headed attention mechanisms and a
feed-forward network. Each task takes calculates embeddings from our minBERT model and uses
linear layers to output prediction values.

Our goal was to refine the model’s ability to capture intricate semantic relationships within text data.
To advance the performance of our model, we iteratively proposed five new approaches to improve
our baseline, including some of our own innovative methodologies.

1. Expanding to All 3 Datasets. Our first improvement to our baseline was expanding
our model to train on three datasets over only one, the Stanford Sentiment Treebank (SST)
dataset. We included the Quora dataset and SemEval STS Benchmark dataset, which would
dramatically increase the quality of our embeddings for the paraphrase detection and semantic
textual similarity tasks. For each of the datasets we trained on, we chose to calculate a loss that
would best fit the type of data. In the equations below, yi is the truth value, and ŷ is the predicted value.

Semantic Analysis: Cross-Entropy (CE) Loss
Because we output a probability score for each category (1-5) for the given sentence, CE loss will
penalize the model when the probabilty of the wrong category is higher than the correct one.

CE(y, ŷ) = − 1

N

N∑
i=1

yi log(ŷi)

Paraphrase Detection: Binary Cross-Entropy (BCE) Loss
Because we output a binary score (0 or 1) for each sentence pair, BCE loss will penalize the model

2



when the probabilty of the wrong category is higher than the correct one.

BCE(y, ŷ) = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)]

Semantic Textual Similarity: Mean-Squared Error (MSE) Loss
Because we output a float value for similarity between sentence pairs, MSE loss will calculate loss by
measuring the distance from the actual score to the predicted value.

MSE(y, ŷ) =
1

N

N∑
i=1

(yi − ŷi)
2

To decide if our model improved after an epoch, we would update our best model if there was
improvement in any single task from the previous state of the model.

2. Cosine Similarity. To improve our semantic textual similarity prediction function, we decided
to utilize cosine similarity, inspired by its use in (Reimers and Gurevych, 2019). This extension also
aligned well to our decision to use MSE loss, as the researchers in Reimers and Gurevych (2019)
used MSE loss with their cosine similarity implementations as well. We tried this via two methods:
1) appending it to our baseline model with linear layers, and 2) only having cosine similarity. We
hypothesized that the second method would reduce the required compute needed as there are less
parameters and it would better measure the similarity of the between two embeddings, which is the
goal of our task.

3. Alternative Optimizer. To improve our model’s overall performance, we decided to test a new
optimizer, Rectified Adam (RAdam), instead of our implemented AdamW optimizer. RAdam uses
the new rt term to correct the variance, while AdamW uses weight decay to stabilize the training
process. We chose this as it doesn’t require tuning of the weight decay hyperparameter, making it
more efficient to use in practice.

rt = ρt − 2βt
2 + 1

αt = η

√
1− βt

2

1− βt
1

·min

(
rt√
vt−1

, 0.001

)
θt+1 = θt − αt · gt

4. Negative Sampling (Original). Because we are calculating the similarity between sentences
using the STS dataset, we brainstormed methods to improve the accuracy scores for the semantic
textual similarity task. We were inspired by two applications of introducing negative samples.
First, Stable Diffusion (IamMrX, 2022) uses negative prompts in order to improve the quality of
their images by making them very different from their negative prompts. In the ’Efficient Natural

3



Language Response Suggestion for Smart Reply’ paper (Henderson et al., 2017), the authors used a
set of K possible responses to approximate P (y|x), where y represents possible responses and x
represents a given input email. This set of K possible responses was split into 1 correct response
and K − 1 random negatives. They utilized negative ranking loss, which maximized the distance
between the input email and negative responses and minimized the distance between the input email
and positive response. (Henderson et al., 2017).

In our case, we are trying to penalize pairings of sentences that are not related. Therefore in our
approach, for every sample in the dataset, we create a negative sample using the following method
(see Algorithm 1).

Algorithm 1 Negative Sample Generation Function
1: function NEGATIVE_SAMPLE_GENERATION(all_data)
2: negative_samples← randomly_sample(num_negative_samples, all_data)
3: pos_data← all_data
4: neg_data← negative_samples
5: for i = 1 to len(negative_samples) do
6: neg_data[i]← (pos_data[i][0],neg_data[i][1], 0,pos_data[i][3])
7: end for
8: all_data← pos_data + neg_data
9: end function

We are now able to pair non-related sentences and assign them to a similarity score of 0, essentially
augmenting our dataset by a factor of 2 with the assumption that randomly paired sentences are more
likely to be unrelated.

5. Weighted Average to Update Model. As we ran our experiments, we noticed that our highest
accuracies were from the paraphrase detection task. This makes logical sense as the number of training
examples for this task (17,688) far surpassed the number of examples for semantic analysis (1068)
and semantic textual similarity (755). Because of this, we proposed a new method to incentivize the
model to improve other tasks over the epochs. Initially, as mentioned in dataset expansion, if there
was improvement in any task, we would update the entire model. In this case, we decided to take a
weighted average of the accuracies of each task, weighting semantic analysis and semantic textual
similarity higher, so that we would update model when we noticed an improvement in the overall
model due to the two tasks.

weighted_average_accuracy = α · acc_sst + β · acc_para + γ · acc_sts

5 Experiments

Data. For this project, we used the three datasets provided for the Default Project. First, we used
the Stanford Sentiment Treebank (SST) for the sentiment analysis task, which contains 11,855 single
sentences from movie reviews. After being parsed, these sentences produced 215,154 unique phrases,
and each phrase was labeled either negative (0), somewhat negative (1), neutral (2), somewhat positive
(3), or positive (4). Next, for the paraphrase detection task, we used the Quora dataset. This dataset
was the largest of the three, containing 400,000 question pairs with binary labels (with a label of 1
meaning paraphrase) indicating whether the pairs were paraphrases of each other. Finally, we used
the SemEval STS Benchmark dataset for the semantic textual similarity task. This dataset had 8,628
different sentence pairs scored on similarity from 0 (unrelated) to 5 (equivalent meaning).

Evaluation method. We have used the evaluation methods detailed in the Default Project handout.
Specifically, we have used accuracies for the sentiment analysis and paraphrase detection tasks and
Pearson correlation for the semantic textual similarity task.

Experimental details. For all 8 experiments, we used a finetune learning rate of 1e−5. For our 1st
Milestone Baseline experiment, we used 10 epochs, but for our next 5 experiments we only used 1
epoch to more efficiently finetune and assess improvements after each experiment. For our last 2

4



experiments, we used 6 epochs, in order to 1) get the best results possible over multiple epochs and
2) compare which conditions to save the model between epochs would be best (as changing those
conditions was what was relevant to the experiment).

Results. Below is a table summarizing all of our experiments for our 5 approaches. All the scores,
unless otherwise specified as "Test", are what we obtained from the Dev Leaderboard. Our final
submission to the Test Leader board is the entry bolded, named "Increased Number of Epochs". Here,
we will analyze the progression of our model as a result of these experiments.

1. Expanding to All 3 Datasets: To begin with, upon expanding to all 3 datasets, we saw
a significant increase in overall dev score. This is because the paraphrase accuracy increased
significantly, which makes sense due to the large size of the Quora training dataset for this task.
We also saw a decrease in SST accuracy, which was also expected because the previous Milestone
Baseline only trained on the SST dataset, resulting in better performance for that task. Unexpectedly,
we saw a decrease in STS correlation, which motivated us to try our next experiment: cosine similarity.

2. Cosine Similarity: For our cosine similarity extension, we specifically chose to focus on the
semantic textual similarity task to improve our STS correlation scores. In the predict_similarity
function, our initial approach involved passing both embeddings through the same linear layer (input
size of 768, output size of 1) and then returning the cosine similarity of the result. The results were
promising, as the STS correlation and overall score improved. However, upon looking at the csv
prediction files for the semantic textual similarity task qualitatively, we realized that our model was
only outputting logits of -1 or 1. We realized that these binary logits could be limiting our model’s
ability to scale up to the 0 - 5 labels used in the STS dataset, and decided to try modifying our
architecture. Instead of passing the embeddings through the same linear layer before calculating the
cosine similarity, we decided to simply compute the cosine similarity on the embeddings themselves
and return the result. This gave us floating point logits in the range of [-1, 1] and improved scores
across the board, particularly in the STS correlation category.

3. Alternative Optimizer: In this experiment, we wanted to try a different optimizer than
the default AdamW, so we chose to use RAdam due to its use of weight decay to stabilize
training. However, we found that the RAdam optimizer resulted in significantly worse performance,
particularly in terms of STS correlation. This could be due to the lack of a learnable parameter. Thus,
we decided to continue using AdamW.

4. Negative Sampling: Although the cosine similarity extension did improve our STS
correlation score, it was still much lower than our scores for the other two tasks. As a result, we
decided to try our negative sampling approach specifically on the semantic textual similarity task.
This was a success; the negative sampling greatly improved our STS correlation score, and also
moderately improved the SST accuracy as well.

5. Weighted Average to Update Model: After achieving improvements through our negative
sampling approach, we decided to start using the full 6 epochs to train the next 2 experiments. For
the first experiment with the full 6 epochs, we simply ran our previous negative sampling model, with

5



its method of saving the model as long as a single task’s score was better than the model’s previous
state. But for the second experiment, we wanted to try a weighted average approach when choosing
whether to update the model or not after each epoch. This is because, while our paraphrase accuracy
was high, both our SST accuracy and STS correlation scores were comparatively lower. Thus, we
kept track of a weighted average of the three task-specific dev scores, increasing the weight of the
SST and STS scores by multiplying them by 1.5 to give those tasks more importance in the training
process. The results, as visualized below for the three tasks (Increased Number of Epochs = Single
Method, Weighted Average to Update Model = Weighted Average Method), seemed to favor the
weighted average approach on the Dev Leaderboard, but only by a small amount overall. Although
the SST accuracy (as well as the paraphrase accuracy, interestingly) did increase as a result of the
weighted average approach, the STS correlation decreased - causing a barely greater score. Thus,
since both models were so close in overall score, we chose to submit both to the Test Leaderboard.
Upon doing so, we found that the model without the weighted average approach performed better, so
we chose that model as our final submission.

6 Analysis

Each task exhibited some positive trends, along with challenges.

Sentiment Analysis: For the Stanford Sentiment Treebank dataset, we noticed that our model
performed well at determining relative importance of words based on their ordering. For example,
“Great story, bad idea for a movie.” seems to be more of a negative connotation, despite having an
equal distribution of words for describing the movie as positive and negative, and the predicted score
was 1. This would suggest that the model is able to pick up on these subtleties and the fact that this

6



sentence is more negative since the negative context came after the positive.This feature could be
exhibited because of our use of attention in minBert.

We also noticed that words that illustrated superlatives had a big influence on the rating of the sentence.
For example the three sentences “Extremely dumb.”, “Extremely confusing.”, and “Extremely boring.”
are all ranked as 1.

Paraphrase Detection: For the Quora dataset, we noticed that certain question pairs that could
be easily mistaken as the same question because of their very similar wording were still correctly
classified by the paraphrase detection model. For example, “Which era does ’Game of Thrones’ most
resemble from history?” and “Which actors in the Game of Thrones do you think bear a resemblance
to a historical figure?” were classified as 0, or not a paraphrase. This is an important and positive
feature of the model.

However, another thing we noticed is that sentences missing on specificity were often accidentally be
categorized as paraphrases, even when they were not. For example, “What are the folk dances of
India?” and “What are some folk dances in your country?” are not paraphrases, but were labelled
as so by our model. We can see that India is in the category of countries, which is why they could
be mistaken, but the lack of specificity would make this not actual a paraphrase. As we saw in
past assignments, categories and items within the category tend to be very close in similarity of
embeddings.

Semantic Textual Similarity: For the SemEval STS Benchmark dataset, we noticed that sentences
that use very similar wording were given high scores. Because a sentence embedding is a combination
of the word embeddings, we could imagine that sentences that directly use the same words are more
likely to have a higher cosine similarity than sentences that have similar meaning but do not use the
same exact words.

For example, the BLEU score of “Two women are sheering a white sheep inside of a wooden
building.” and “Two women shearing a white sheep in a wooden stall.” is 0.7016, relatively high, and
correspondingly the predicted score by our final model is high, 0.9799. Similarly, "A man is slicing a
bun." and "A man is slicing an onion." has a high BLEU score and high similarity score of 0.9863.

This could be helpful but also harmful in situations where the sentence structures are similar and use
similar words (like ‘a’, ‘is’, etc.), while the sentences themselves don’t have as high of a similarity.
For example, "The girl is carrying a baby." and "A man is eating a food." have very similar structure,
but are not very semantically similar. Their predicted similarity however was 0.9579.

7 Conclusion

In this project, we investigated 5 new methods for improving our minBert model. First, we ex-
panded our model to train on three datasets (Stanford Sentiment Treebank, Quora, SemEval STS
Benchmark) corresponding to three tasks. After seeing improved results, we experimented with our
predict_similarity function to utilize cosine similarity and have a variable number of linear layers.
We found that solely using cosine similarity resulted in enhanced performance. We then created a
novel negative sampling methodology that significantly outperformed our previous model. We tested
two different optimizers (AdamW and RAdam) and found that AdamW performed better. Finally, we
experimented with a new weighted average accuracy to update our best model, and found that there
were only minor and variable improvements in performance. Our best and final model utilizes cosine
similarity, negative sampling, AdamW, and single accuracy updates. In the future, we aim to better
finetune our model by testing with different hyperparameters (ex. different learning rates, weight
values for accuracy). We also want to look further into negative sampling, as it provided the largest
improvement in our data. Other methods would be to increase the number of negative samples, or
find a method for choosing the negative samples rather than random selection.

8 Contributions

Neha worked on the initial milestone classifier BERT model, negative sampling extension, and
the milestone optimizer baseline and extension. Ananya worked on the initial multitask milestone
submission, three dataset expansion extension, the cosine similarity extension, and the weighted
average update model. Both partners collaborated on the final writeup and poster.

7



References
Matthew Henderson, Rami Al-Rfou, Brian Strope, Yun-hsuan Sung, Laszlo Lukacs, Ruiqi Guo,

Sanjiv Kumar, Balint Miklos, and Ray Kurzweil. 2017. Efficient natural language response
suggestion for smart reply. Online. arXiv at Cornell University.

IamMrX. 2022. Negative prompts. Online. Hugging Face.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks. Online. arXiv at Cornell University.

8

https://doi.org/10.48550/arXiv.1705.00652
https://doi.org/10.48550/arXiv.1705.00652
https://huggingface.co/spaces/stabilityai/stable-diffusion/discussions/7857
https://doi.org/10.48550/arXiv.1908.10084
https://doi.org/10.48550/arXiv.1908.10084

	Key Information to include
	Introduction
	Related Work
	Approach
	Experiments
	Analysis
	Conclusion
	Contributions

