
Minimal Clues for Maximal Understanding: Solving
Linguistic Puzzles with RNNs, Transformers, and LLMs

Stanford CS224N Custom Project

Ishan Khare
Department of Computer Science

Stanford University
iskhare@stanford.edu

Anavi Baddepudi
Department of Computer Science

Stanford University
anavib@stanford.edu

Emma Wang
Department of Computer Science
Hasso Plattner Institute of Design

Stanford University
emmwang@stanford.edu

Abstract

There is a critical gap in the ability of current deep learning models to mimic human-
like reasoning and understand complex language phenomena from minimal data. To help
understand these limitations, we apply a variety of modern deep-learning approaches to solve
puzzles from the Linguistic Olympiads, which are designed to be solvable with minimal
data and without the need for external linguistic knowledge. In particular, we implement
three main approaches: i) RNNs with Attention, ii) finetuning pretrained transformer-based
models, and iii) in-context learning with GPT-4. All three approaches are significant
improvements from our baselines (BLEU scores ≈ 0.09), with the best performances
achieved by transformer finetuning and GPT-4, which have BLEU-scores of 0.387 and
0.420, respectively. Perfect solutions achieve BLEU scores of 1.0, highlighting a large
gap between the best humans and current state of the art models. We hypothesize that
meta-learning approaches are essential to make further progress in solving linguistic puzzles
from small data.

Key Information

Our 224N mentor is Tathagat Verma. All team members contributed equally at all stages i.e., ideation, data
collection, code-writing, experiments, analysis, and paper writing.

1 Introduction

Linguistic puzzles, especially those involving low-resource languages, pose a distinctive challenge within the
field of computational linguistics. This study delves into “Rosetta Stone” puzzles, which require deciphering
translations of sentences between a source and target language, utilizing only a minimal set of bidirectional
translations available, as seen in figure 7. These puzzles are designed to be solvable without prior knowledge
of the languages involved, leveraging the solver’s ability to deduce linguistic frameworks and apply them
effectively. Our research aims to address these puzzles computationally, evaluating various models to identify
the most effective approach for solving such puzzles with limited data.

Our investigation seeks to understand the existing gap in computational linguistics by conducting a series
of experiments to explore different methodologies for solving these puzzles with minimal data input. In
their work, Magueresse et al. (2020) raise concerns that current NLP research predominantly concentrates
on merely 20 of the 7, 000 known languages, leaving the vast majority of languages understudied. Echoing

Stanford CS224N: Natural Language Processing with Deep Learning

these concerns, our work aspires to extend the focus to the largely overlooked linguistic diversity. Our results
could be beneficial for translation tasks in crucial fields such as healthcare and education where being able to
translate native, underrepresented language understanding could significantly impact outcomes. In this manner,
we hope to extend the reach of NLP technologies to encompass a broader array of languages, while also
highlighting the capabilities and limitations of current translations models when working with small datasets.

We experimented with three distinct approaches: i) recurrent neural network (RNN) models with attention,
ii) finetuning pre-trained transformer-based neural machine translation (NMT) models, and iii) in-context
learning with the GPT-4 LLM (OpenAI et al., 2024). This three-fold approach aims to span the spectrum of
computational models and provide a comprehensive analysis of their strengths and limitations in addressing
the challenges presented by Rosetta Stone puzzles. Although all three of our methods outperform the baselines,
our results from sections 4.4 and 5 highlight a gap between current deep-learning and LLM approaches and
the human-like reasoning and understanding necessary to solve these puzzles.

2 Related Work

For the specific application of small-data translations on linguistic puzzles, a notable contribution has been
made by the Ubiquitous Knowledge Processing Lab (UKP) (Şahin et al., 2020). The authors use Moses (Koehn
and Knowles, 2017) with default settings to train a 5-gram English LM, and then a RoBERTa base, where they
tune the Byte Pair Encoding (BPE) merge parameter, learning rate and number of epochs. The UKP team’s
findings show the limitations of relying solely on default model configurations. Moreover, this study pushes
for a shift towards models that can more closely mirror human cognitive processes, and highlights issues with
current models in understanding the nuance of linguistic structures and semantics beyond the patterns and
associations found within large datasets.

Although this paper sheds light on the areas where the existing models fall short, it is limited in its lack of
in-depth error analysis for the models compared to the simple baselines, and performs manual error analysis
for two of the models in total. Additionally, this paper emphasizes the dataset creation more than insight into
model performance and limitations. Furthermore, this paper was written before the advent of more recent
models – notably, LLMs.

On a more general level, broader research in the field of machine learning for low-resource languages has
been advancing. Maillard et al. (2023) discusses the current state of machine learning for low-resource
languages, introducing techniques like self-supervised learning and back translation to reduce dependency of
large annotated datasets. The study suggests that small amounts of high-quality, translated data can improve
machine translation performance using these techniques.

These collective efforts show a pivotal shift towards developing machine translation models capable of
achieving higher accuracy and understanding with limited data. While the UKP study presents a critical look
at the limitations of current models, the research by Maillard et al. (2023) offers a hopeful perspective on
overcoming these barriers, marking a significant step towards making more efficient and effective translation
models.

3 Approach and Methodology

3.1 Baselines

We implemented two baselines for our evaluation of the translation tasks. The first is a Random Words baseline
for the translation task, which is essential for gauging the efficacy of more advanced translation methodologies.
It involves generating translations by randomly selecting a word from the target language’s lexicon for each
token in the source text. This method establishes a basic performance level that any effective model must
exceed.

When applied to our linguistic puzzle data, the Random Words method achieved an average BLEU (Papineni
et al., 2002) score of 0.083. The second baseline employs the translation alignment tool FastAlign (Dyer et al.,
2013). Since FastAlign produces alignments for each training pair, we choose to post-process the output to
create a translation dictionary separately for each direction. We then randomly choose from the translation
entries for each token in the source test sentence. This baseline has similar performance to Random Words,
with a BLEU score of 0.096.

2

3.2 Recurrent Neural Network (RNN)

We build a Neural Machine Translation (NMT) system by implementing a sequence-to-sequence (Seq2Seq)
network with multiplicative attention (Luong et al., 2015). In addition to the following explanation, our
Seq2Seq Model is depicted in Figure 1.1

Figure 1: Model architecture of our Seq2Seq Model with Multiplicative Attention

First, we obtain the character or word embeddings from an embeddings matrix, which gives us x1, . . . , xn

(xi ∈ Re), where n is the length of the source sentence and e is the embedding size. We subsequently feed
these embeddings to a convolutional layer f and ensure that the outputs maintain their shapes. Next, the
outputs from the convolutional layer are given as input to the bidirectional LSTM encoder. This procedure
yields hidden and cell states for both LSTMs (forwards and backwards), which we concatenate to get our
hidden states hidden states henc

i and cell states cenci , as shown by equations 1 and 2:

henc
i = [

−−→
henc
i ;
←−−
henc
i] where henc

i ∈ R2h×1,
−−→
henc
i ,
←−−
henc
i ∈ Rh×1 1 ≤ i ≤ n (1)

cenc
i = [

−→
cenc
i ;
←−
cenc
i] where cenc

i ∈ R2h×1,
−→
cenc
i ,
←−
cenc
i ∈ Rh×1 1 ≤ i ≤ n. (2)

The next step is to initialize the decoder’s first hidden and cell states using equations 3 and 4:

hdec
0 = Wh[

−−→
henc
n ;
←−−
henc
1] where hdec

0 ∈ Rh×1,Wh ∈ Rh×2h (3)

cdec
0 = Wc[

−→
cenc
n ;
←−
cenc
1] where cdec

0 ∈ Rh×1,Wc ∈ Rh×2h. (4)

The input to the decoder on the tth step is the embedding to the tth subword yt ∈ Re×1 concatenated
with ot−1 ∈ Rh×1, where ot−1 is the combined output vector from the previous step. This concatenated
result is represented as yt ∈ R(e+h)×1 in the equation hdec

t , cdec
t = Decoder(yt,h

dec
t−1, c

dec
t−1) where hdec

t ∈
Rh×1, cdec

t ∈ Rh×1. The remaining part of the model architecture is to compute multiplicative attention over
henc
1 , . . . ,henc

n by using hdec
t as in equations 5 and 6:

et,i = (hdec
t)TWattProjh

enc
i where et ∈ Rn×1,WattProj ∈ Rh×2h 1 ≤ i ≤ n (5)

at =

n∑
i=1

αt,ih
enc
i where at ∈ R2h×1;αt = softmax(et) ∈ Rn×1. (6)

1Figure adapted from CS 224N Assignment 4.

3

Note that WattProj represents the attention projection in the above equations. To obtain the combined
output vector introduced earlier, we concatenate the decoder hidden state with the attention output and
pass this through a linear layer, tanh, and dropout. Thus, we have ut = [hdec

t ;at] where ut ∈ R3h×1;
vt = Wuut where vt ∈ Rh×1,Wu ∈ Rh×3h; and ot = dropout(tanh(vt)) where ot ∈ Rh×1.
Now, we create a probability distribution Pt as described in the equation Pt = softmax(Wvocabot)
where Pt ∈ RVt×1,Wvocab ∈ RVt×h;Vt = |target vocab|. Thus, we can use the cross entropy loss
Jt(θ) = CrossEntropy(Pt,gt) between Pt and gt, where gt is the one-hot vector of the target subword at
timestep t to train the network.

3.3 Transformer Finetuning

We further implemented a series of pre-trained transformer-based neural machine translation (NMT) models
known as OPUS-MT, with the models pre-trained on parallel corpora as described in Tiedemann and Thottingal
(2020). These models, designed around the standard transformer architecture, feature an encoder and decoder
mechanism enhanced with self-attention to analyze and interpret the significance and context of words within
inputs. Each model incorporates six layers – each layer is equipped with eight attention heads, enables
simultaneous focus on various elements of the input, facilitating nuanced translation processes. Specifically,
we performed fine-tuning on three OPUS-MT models for translations from English to Swahili, Georgian, and
Malay, respectively, leveraging their pre-trained capabilities to adapt to these specific language pairs.

There was no OPUS-MT model available for Norwegian to English. Hence, we chose to use and fine-tune
on the NLLB-200 model for Norwegian as an alternative. Like OPUS-MT, NLLB-200 aims to provide high-
quality machine translations using the transformer architecture and a reliance on self-attention mechanisms.
NLLB-200 combines self-attention and cross-attention in an encoder-decoder configuration, contributing
to its capture of semantic subtleties across a broad linguistic range and making it especially effective for
low-resource languages. This model has extensive multilingual training, and was pre-trained on a massive,
diverse corpus of texts from 202 languages, as described in Costa-jussà et al. (2022). NLLB-200 utilizes
multi-head attention as well, which allows the model to focus on distinct aspects of the inputs simultaneously.

Each model was initially fine-tuned using the Adam Optimizer (Kingma and Ba, 2017) on a substantial external
corpus of translations encompassing a wide range of translations. The model was then tested on the linguistic
puzzles. Following this, for comparison, the models were subjected to a targeted fine-tuning process using
a small, specific training set composed of linguistic puzzles. This step was designed to hone the models’
proficiencies in the nuanced task of puzzle translation.

3.4 GPT-4 In-Context Learning

Using the in-context learning capabilities of GPT-4 (an example of a prominent Large Language Model), we
sought to analyze the performance of LLMs on the Rosetta Stone puzzle challenge. GPT-4 is characterized by
its comprehensive training across a wide array of corpora that includes an extensive range of human knowledge
and linguistic nuances. This background means that it can proficiently deduce linguistic rules/patterns and
structures from specific inputs without explicit instructions. By providing the model with examples of
translations within the puzzle and instructive prompts that mimic the structure and objectives of the puzzles,
we primed the model’s understanding and application of linguistic patterns and rules specific to the puzzle at
hand. The goal of this approach was to simulate a learning environment where the model could draw on its
extensive pre-training in combination with the provided context to generate accurate translations.

4 Experiments

4.1 Data

Our puzzle dataset is from the Linguistic Olympiad dataset and is solvable without previous understanding of
the source languages. These languages are chosen to represent a broad spectrum geographic locations, thereby
ensuring a comprehensive evaluation of our models across diverse linguistic contexts. We chose Swahili,
Georgian, Norwegian and Malay, which come from different linguistic families as well as varying character
representations and syntactical rules. Our experimental framework distinguishes between two primary datasets
for training purposes: a 10, 000-sentence dataset (“large dataset”) and a more constrained dataset (“small
dataset”). It is important to note that our nominally large dataset is only 10, 000 sentences, whereas most
language datasets consist of hundreds of thousands or millions of sentences.

4

The small dataset consists of the Olympiad linguistic puzzles provided in the PuzzLing Machines dataset by
Şahin et al. (2020) for our four chosen languages. This dataset’s training component features bidirectional
translations provided within the Olympiad context. For evaluation, we included sentences from the Olympiad
that had not been translated. Each language has a JSON file containing a dictionary with two keys: training
and test data set. The training key has a list of completed puzzles, and the test data set has incomplete puzzles
that require translations. We wrote a script for combining the JSON files from Linguistic Olympiad websites
as well external files for Swahili (OzC, UK Linguistics Olympiad (2020)), Georgian, Malay and Norwegian
(NAC, Vig (2019)), into larger files that contained all the “training data” and all the “test data” found into one
JSON file per language.

The large training dataset, used for our RNN and transformer finetuning experiments, is taken from the TedTalk
corpus Neu (2024). Due to their varying subject matter and accuracy in translations, we used the TedTalk
corpus for the 4 languages to finetune the models. For each language’s TedTalks corpus, we implemented a
random division of data: allocating 80% to the training set, and dividing the remaining equally between the
validation and test sets, with 10% for each.

4.2 Evaluation method

One automatic evaluation metric we can use is to compare the average BLEU score of the
model’s output when compared with the target answer. The BLEU score for candidate c with
respect to r1, . . . , rk is: BLEU = BP × exp

(∑4
n=1 λn log pn

)
, where λ1, λ2, λ3, λ4 are

weights that sum to 1, pn =

∑
ngram∈c

min

(
max

i=1,...,k
Countri(ngram), Countc(ngram)

)
∑

ngram∈c

Countc(ngram)
, and BP =

{
1 if len(c) ≥ len(r)

exp
(
1− len(r)

len(c)

)
otherwise

.

BLEU is the standard metric in machine translation, and it prevents the assignment of partial credit to subword
matches, which may be especially relevant for foreign language targets. Other shortcomings may exist in
that a system could achieve high BLEU scores by producing translations that mimic the reference but that
lack natural language flow due to the method’s dependence on n-gram matching. From this, we additionally
utilized the characTER, chrF, and Exact Match metrics as well, which operate on the level of word pieces.

CharacTER (Wang et al., 2016) is derived from Translation Edit Rate (TER), where the edit rate is calculated
as the minimum number of character edits required to adjust a hypothesis until it matches the reference,
normalized by the length of the hypothesis sentence. CharacTER calculates the character level edit distance
while performing the shift edit on the word level. ChrF (Popović, 2015) calculates the similarity between
a machine translation and reference using character n-grams, not word n-grams – it is a simple F-measure
reflecting the precision and recall of matching character n-grams. Lastly, we calculate the exact match score,
which is a 1 if the hypothesis and reference sentences match and 0 otherwise.

4.3 Experimental details

For both the RNN and Transformer Finetuning experiments, we trained four models for each language for a
total of 16 RNN models and 16 finetuned transformer models. More specifically, for each source language
SRC we trained the following models: i) SRC to English on the large dataset, ii) SRC on the large dataset, iii)
SRC to English on the small dataset, and iv) English to SRC on the small dataset.

All experiments were performed on NVIDIA A100 GPUs with 80GB RAM. With this high-performance
compute, the training time for a single RNN model was shortened to about 16 minutes, on average. This gives
a time of about 4.5 hours to train the final 16 RNN models. Furthermore, transformer finetuning took about
45 minutes per model for a training time of 12 hours. Thus, training for the RNN and transformer finetuning
experiments collectively took about 16.5 hours 2.

2Note that the time for hyperparameter finetuning is not included.

5

4.3.1 Recurrent Neural Network (RNN)

We performed hyperparameter tuning for the learning rate, batch size, and dropout by evaluating on the
validation set. We experimented with various learning rates ranging from 0.01 to 0.0001. Eventually, we
settled on a learning rate of 5× 10−4, which provides a good balance between convergence speed and stability.
Additionally, our experiments involved batch sizes of 4, 16, and 32. We observed that a batch size of 32
yielded the best performance with respect to convergence and computational efficiency for the models trained
on the large dataset, whereas a batch size of 4 was better for the models trained on the smaller dataset. To
prevent overfitting, we applied dropout regularization with rates of 0.2, 0.3, and 0.4. A dropout rate of 0.3
was found to be effective in regularizing the model without sacrificing too much learning capacity. The final
models were trained with hyperparameters: learning rate = 5× 10−4 with decay = 0.5, batch size

=

{
4, for small dataset
32, for large dataset

, dropout = 0.3, patience = 1, and kernel size = 2× 2.

4.3.2 Transformer Finetuning

We performed hyperparameter tuning for the learning rate, batch size, and number of epochs by evaluating on
the validation set. We experimented with various learning rates ranging from 0.001 to 1× 10−5. Eventually,
we settled on a learning rate of 2 × 10−5. Additionally, our experiments involved batch sizes of 16, 32,
and 64. We observed that a batch size of 32 yielded the best performance with respect to convergence and
computational efficiency. Finally, we considered training for 1, 2, 4, and 10 epochs and eventually settled on 4
for the balance between accuracy and time. The final models were trained with hyperparameters: learning
rate = 2× 10−5, weight decay3 = 0.01, batch size = 32, and num_epochs = 4.

4.3.3 GPT-4 In-Context Learning

Using GPT-4, we wrote a script to process the JSON files which each had the Rosetta Stone puzzles for a
language. The script extracted the training examples section from these files, and used it as an input to guide
the model in generating translations. The model was then directed to create a new JSON file that contained
the test output in the same format as the input JSON file. A critical aspect of our experimental setup was the
adjustment of the temperature parameter of GPT-4. We decided to set the temperature to 0.0 to minimize the
randomness in the model’s responses. This setting ensured that the translations generated by the model were
as deterministic and accurate as possible and returned with a high degree of confidence in the translations
derived from the input data.

Further, to ensure we maintained the integrity of the challenge, our prompts explicitly instructed the model to
not include any pre-exisitng language-specific knowledge. This instruction tried to simulate a scenario where
the model approaches the puzzle from a “new” perspective, just as a participant in the Linguistic Olympiad
might.

4.4 Results

We present our results averaged across all languages for each model in table 4.4. In particular, we report
the BLEU, ChrF, CharacTER, and exact match scores. For the sake of brevity, we have provided additional
in-depth data tables in Appendix section A.2.

Model BLEU CHRF CTER EM
Random Words 0.083 0.271 0.188 0.000
Fast Align 0.096 0.295 0.237 0.000
RNN 0.132 0.295 0.059 0.000
Transformer Finetuning 0.387 1.710 11.142 0.000
GPT-4 0.420 0.793 0.243 0.000

Table 1: Averaged results across all languages for each model.

Compared to the Random Words and FastAlign baselines, we find our models have better BLEU and ChrF
scores, as expected. Additionally, it is clear that GPT-4 has the best performance on the linguistic puzzle tasks,

3The weight decay applied to all layers except all bias and LayerNorm weights in the AdamW optimizer.

6

which meets our expectations. One anomaly, however, is that the transformer-based finetuning method leads to
a very high average CharacTER score.

We hypothesize that part of this reason may be due to the inadequate handling of rare or out-of-vocabulary
words. This can contribute to extremely high outlier CharacTER scores even if the model performs well
on more common vocabulary. As shown in table A.1, many of the CharacTER values are extreme outliers.
Another plausible reason is domain shift. Fine-tuning may not adequately address domain shifts between
the training and evaluation data. Since the test data differs significantly from the training data in terms of
vocabulary, syntax, and style, the model may struggle to generalize, leading to high CharacTER scores despite
good BLEU scores.

Figure 2: Baseline BLEU scores by language Figure 3: RNN BLEU scores by language

Figure 4: Transformer BLEU scores by language Figure 5: GPT-4 BLEU scores by language

5 Analysis

In general, we expect transformer models to achieve higher BLEU scores when fine-tuned on larger datasets,
since these datasets provide more examples for the model to learn and generalize from, leading to more
accurate translations that capture nuances in the target language. Swahili exhibited the highest BLEU scores
for finetuning on both the large and small datasets. Though surprising, this may be because Swahili has the
furthest linguistic distance from English, so translations end up being much simpler, with limited translation
options and more direct translations. There may also be less linguistics experts with knowledge of Swahili to
create complex linguistics puzzles. From this, the puzzles in Swahili may be easier to solve, making it easier
for the models to generate correct translations and high BLEU scores.

Malay, on the other hand, uses the Latin script to simplify text processing but overall has significantly different
grammatical and contextual structures compared to English due to their distinct language families (Azmi et al.,
2016). Consequently, the model may exhibit proficiency in translating Malay when finetuned with a concise,
smaller, puzzle-specific dataset by picking up on patterns deliberately set in the linguistic puzzle, but struggle

7

to find more complex connections between Malay and English when given a more extensive, varied external
corpus. These results are also reflected in finetuning the RNN model with Malay.

Furthermore, we can see that both the RNN and GPT-4 models generated the highest BLEU scores for
Norwegian. This can be attributed to several key factors. Firstly, Norwegian is a language that utilizes the Latin
alphabet similar to English and has close proximity to English, as they are both Germanic languages – this
closeness enhances the models’ abilities to grasp and replicate the subtleties of the language pair. Additionally,
the higher quality of the Norwegian-English datasets – stemming from Norway’s presence in the European
sphere – provides a rich training ground for our models. These datasets likely contain nuanced sentence
constructions and diverse vocabulary, which is crucial for the models to learn and predict accurate translations.

Additionally, we used the interactive tool BertViz (Vig, 2019) to visualize attention for several attention heads
in our finetuned transformer Swahili and Georgian models. We decide to compare these two languages since
the transformer models on the small dataset have the highest BLEU score for Swahili and the lowest for
Georgian so it is easier to find discrepancies. We display these visualizations in figure 6.

Figure 6: Attention heads are examined across layers for the Georgian and Swahili finetuned models

Notice that almost all attention in the attention heads from the Georgian model is focused on the <.>
punctuation mark across layers. This suggests a weak understanding of the relationships necessary to solve a
linguistic puzzle. On the other hand, the attention heads for Swahili clearly focus on different English words
across layers. For example, the layer 2 attention head for Swahili shows a strong link between “mfaime” and
“king” and “mbaya” and “bad”, both of which are correct translation pairs. Thus, it is not surprising that the
finetuned Swahili model has better performance that the Georgian one.

6 Conclusion

Linguistic puzzles, particularly those involving low-resource languages, pose a distinctive challenge within the
field of computational linguistics. Our work focuses on solving such puzzles for Swahili, Georgian, Norwegian,
and Malay. We implement three main approaches: i) RNNs with Attention, ii) finetuning pretrained transformer-
based models, and iii) in-context learning with GPT-4. All three approaches are improvements from our
baselines (BLEU scores ≈ .09) with the best performances achieved by transformer finetuning and GPT-4,
which have BLEU-scores of 0.387 and 0.420, respectively. Moreover, we highlight a gap between state of the
art deep-learning and LLM approaches and the human-like reasoning and understanding necessary to solve
linguistic puzzles. Thus, we propose that meta-learning approaches are essential to make further progress
beyond the performance of LLMs. A limitation of our work is that linguistic puzzle difficulty differs by
language. We suggest future work should standard the difficulty of puzzles using human performance as a
metric.

8

References
Australian Computational and Linguistics Olympiad (OzCLO). https://ozclo.org.au/. Accessed 16

Mar. 2024.

What Is NACLO? http://naclo.org/. Accessed 16 Mar. 2024.

2024. NeuLab-TedTalks Dataset. https://opus.nlpl.eu/NeuLab-TedTalks/en&ms/v1/
NeuLab-TedTalks. Accessed 16 Mar. 2024.

Mohd Nazri Latiff Azmi, Lidwina Teo Pik Ching, Norbahyah, Muhammad Nur Haziq, Muhammad Habibullah,
Muhammad Ammar Yasser, and Kauselya A/P Jayakumar. 2016. The comparisons and contrasts between
english and malay languages. English Review: Journal of English Education, 4(2):209–218.

Marta R. Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe
Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, Anna Sun, Skyler Wang, Guillaume Wenzek, Al Young-
blood, Bapi Akula, Loic Barrault, Gabriel Mejia Gonzalez, Prangthip Hansanti, John Hoffman, Semarley
Jarrett, Kaushik Ram Sadagopan, Dirk Rowe, Shannon Spruit, Chau Tran, Pierre Andrews, Necip Fazil
Ayan, Shruti Bhosale, Sergey Edunov, Angela Fan, Cynthia Gao, Vedanuj Goswami, Francisco Guzmán,
Philipp Koehn, Alexandre Mourachko, Christophe Ropers, Safiyyah Saleem, Holger Schwenk, and Jeff
Wang. 2022. No language left behind: Scaling human-centered machine translation.

Chris Dyer, Victor Chahuneau, and Noah A. Smith. 2013. A simple, fast, and effective reparameterization of
IBM model 2. In Proceedings of the 2013 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 644–648, Atlanta, Georgia. Association
for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A method for stochastic optimization.

Philipp Koehn and Rebecca Knowles. 2017. Six challenges for neural machine translation. In Proceedings of
the First Workshop on Neural Machine Translation, pages 28–39, Vancouver. Association for Computational
Linguistics.

Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective approaches to attention-based neural
machine translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 1412–1421, Lisbon, Portugal. Association for Computational Linguistics.

Alexandre Magueresse, Vincent Carles, and Evan Heetderks. 2020. Low-resource languages: A review of past
work and future challenges.

Jean Maillard, Cynthia Gao, Elahe Kalbassi, Kaushik Ram Sadagopan, Vedanuj Goswami, Philipp Koehn,
Angela Fan, and Francisco Guzman. 2023. Small data, big impact: Leveraging minimal data for effective
machine translation. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2740–2756, Toronto, Canada. Association for Computational
Linguistics.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, and Sam Altman et. al. 2024. Gpt-4 technical report.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for automatic evaluation
of machine translation. In Proceedings of the 40th Annual Meeting on Association for Computational
Linguistics, ACL ’02, page 311–318, USA. Association for Computational Linguistics.

Maja Popović. 2015. chrF: character n-gram F-score for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation, pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Gözde Gül Şahin, Yova Kementchedjhieva, Phillip Rust, and Iryna Gurevych. 2020. PuzzLing Machines: A
Challenge on Learning From Small Data. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1241–1254, Online. Association for Computational Linguistics.

Jörg Tiedemann and Santhosh Thottingal. 2020. OPUS-MT – building open translation services for the world.
In Proceedings of the 22nd Annual Conference of the European Association for Machine Translation, pages
479–480, Lisboa, Portugal. European Association for Machine Translation.

9

https://ozclo.org.au/
http://naclo.org/
https://opus.nlpl.eu/NeuLab-TedTalks/en&ms/v1/NeuLab-TedTalks
https://opus.nlpl.eu/NeuLab-TedTalks/en&ms/v1/NeuLab-TedTalks
http://arxiv.org/abs/2207.04672
https://aclanthology.org/N13-1073
https://aclanthology.org/N13-1073
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.18653/v1/D15-1166
http://arxiv.org/abs/2006.07264
http://arxiv.org/abs/2006.07264
https://doi.org/10.18653/v1/2023.acl-long.154
https://doi.org/10.18653/v1/2023.acl-long.154
http://arxiv.org/abs/2303.08774
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/2020.acl-main.115
https://doi.org/10.18653/v1/2020.acl-main.115
https://aclanthology.org/2020.eamt-1.61

UK Linguistics Olympiad. 2020. UKLO Training Resources. https://archives.uklo.org/wp-content/
uploads/2020/10/UKLO-Training-Resources.pdf. Accessed 16 Mar. 2024.

Jesse Vig. 2019. A multiscale visualization of attention in the transformer model. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 37–42,
Florence, Italy. Association for Computational Linguistics.

Weiyue Wang, Jan-Thorsten Peter, Hendrik Rosendahl, and Hermann Ney. 2016. CharacTer: Translation edit
rate on character level. In Proceedings of the First Conference on Machine Translation: Volume 2, Shared
Task Papers, pages 505–510, Berlin, Germany. Association for Computational Linguistics.

10

https://archives.uklo.org/wp-content/uploads/2020/10/UKLO-Training-Resources.pdf
https://archives.uklo.org/wp-content/uploads/2020/10/UKLO-Training-Resources.pdf
https://doi.org/10.18653/v1/P19-3007
https://doi.org/10.18653/v1/W16-2342
https://doi.org/10.18653/v1/W16-2342

A Appendix

A.1 Puzzle Example

Figure 7: This image shows an example Rosetta Stone linguistic puzzle in Chickasaw.

A.2 Data Tables
Source Languages Baseline Model BLEU CHRF CTER EM
Swahili Random Words 0.084 0.219 0.184 0.000

FastAlign 0.108 0.242 0.189 0.000
Georgian Random Words 0.066 0.255 0.150 0.000

FastAlign 0.058 0.247 0.178 0.000
Norwegian Random Words 0.138 0.324 0.222 0.000

FastAlign 0.086 0.326 0.341 0.000
Malay Random Words 0.095 0.285 0.194 0.000

FastAlign 0.081 0.364 0.241 0.000

Table 2: Results across all languages for the Random Words and FastAlign baselines.

Source Languages Dataset Type RNN Model BLEU CHRF CTER EM
Swahili Large Source to English 0.000 0.144 0.063 0.000

English to Source 0.000 0.203 0.068 0.000
Small Source to English 0.087 0.260 0.100 0.212

English to Source 0.000 0.250 0.124 0.022
Georgian Large Source to English 0.022 0.130 0.030 0.000

English to Source 0.000 0.116 0.061 0.000
Small Source to English 0.258 0.384 0.039 0.083

English to Source 0.000 0.337 0.064 0.000
Norwegian Large Source to English 0.289 0.450 0.058 0.143

English to Source 0.385 0.547 0.061 0.143
Small Source to English 0.138 0.271 0.067 0.000

English to Source 0.283 0.348 0.066 0.000
Malay Large Source to English 0.101 0.202 0.046 0.000

English to Source 0.083 0.302 0.041 0.000
Small Source to English 0.345 0.411 0.030 0.000

English to Source 0.119 0.358 0.029 0.000

Table 3: Results for all four RNN models per language.

11

Source Languages Dataset Type Transformer Model BLEU CHRF CTER EM
Swahili Large Source to English 0.489 1.334 1.672 0.000

English to Source 0.629 1.557 1.729 0.000
Small Source to English 0.491 1.403 1.605 0.000

English to Source 0.692 1.679 1.572 0.000
Georgian Large Source to English 0.346 2.198 6.967 0.000

English to Source 0.289 0.852 9.295 0.000
Small Source to English 0.187 0.946 10.897 0.000

English to Source 0.199 0.883 10.897 0.000
Norwegian Large Source to English 0.495 1.888 1.143 0.000

English to Source 0.300 1.515 3.781 0.000
Small Source to English 0.422 1.618 15.429 0.000

English to Source 0.300 1.985 18.286 0.000
Malay Large Source to English 0.264 2.623 35.000 0.000

English to Source 0.414 2.317 20.000 0.000
Small Source to English 0.264 2.317 20.000 0.000

English to Source 0.414 2.317 20.000 0.000

Table 4: Results for all four finetuned transformer models per language.

Source Languages GPT-4 Model BLEU CHRF CTER EM
Swahili Source to English 0.244 0.642 0.571 0.256

English to Source 0.333 0.817 0.798 0.333
Georgian Source to English 0.375 0.506 0.517 0.250

English to Source 0.487 0.839 0.827 0.125
Norwegian Source to English 0.394 0.884 0.852 0.250

English to Source 0.680 0.984 0.943 0.333
Malay Source to English 0.448 0.877 0.850 0.000

English to Source N/A N/A N/A N/A

Table 5: Results for GPT-4 model per language

12

	Introduction
	Related Work
	Approach and Methodology
	Baselines
	Recurrent Neural Network (RNN)
	Transformer Finetuning
	GPT-4 In-Context Learning

	Experiments
	Data
	Evaluation method
	Experimental details
	Recurrent Neural Network (RNN)
	Transformer Finetuning
	GPT-4 In-Context Learning

	Results

	Analysis
	Conclusion
	Appendix
	Puzzle Example
	Data Tables

