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Abstract

Language models are often trained on a variety of tasks. However, often enough,
these individual tasks may have conflicting objective functions during training
time. A popular method is to apply gradient surgery to modify gradients directly
when they stall due to conflicting objective functions of different tasks. In this
paper, we explore a novel method that learns how to mask gradients, not through
applying heuristical surgeries, but rather, using an attention-based architecture
applied directly on the gradients themselves.

I have no external collaborators nor am I sharing projects.

1 Introduction

There is a push in both industry and research to develop unified frameworks that can perform a large
range of tasks, through a single language model. Hence, it is crucial for these models to perform well
on a conglomerate of tasks.

Training language models (LMs) on multiple tasks simultaneously can lead to conflicts between
the objective functions of these tasks. This is because the gradients that arise from each task’s loss
function may point in different directions, causing the training process to stall. To address this,
a common practice is to perform gradient surgery, a method that involves manually adjusting the
gradients to resolve conflicts.

In this paper, we introduce a new approach that moves beyond heuristic gradient surgeries. Instead of
manually modifying gradients, we propose an attention-based architecture that operates directly on
the gradients. This method allows the model to learn how to mask and adjust gradients dynamically,
leading to potentially more effective and efficient multitask learning.

Our approach is inspired by the success of attention mechanisms in various domains of deep learning.
By applying these principles to gradient manipulation, we aim to provide a more nuanced and
adaptable solution to the problem of conflicting gradients in multitask LMs. We believe that this
novel method could pave the way for more robust and scalable multitask learning strategies.

2 Related Work

Language models dealing with multiple tasks simultaneously have been studied extensively. Radford
et al. (2019) discuss the potential of language models as multitask learners, suggesting that effective
training pairs are crucial for realizing multitask learning’s promise. They encourage exploring
different setups for multitask learning. A recent paper by Li et al. (2023) introduces a multi-task
pre-training language model designed to enhance semantic network completion. They incorporate
additional pre-training tasks like the Masked Entity Model (MEM) and the Masked Relation Model
(MRM) alongside the standard Masked Language Model (MLM).
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Work have also been done tackling code completions using LLMs on multiple languages: Liu
et al. (2020) propose a multi-task learning-based pre-trained language model specifically for code
completion. They utilize a multi-task learning framework during the pre-training period to improve
the model’s performance. Another paper Liu et al. (2019) from the same authors present a multi-
task knowledge distillation approach for pre-trained language models. They provide an intuitive
explanation of how shared structures during multitask training can benefit task-specific learning.

Zero-Shot task generalizations have also been studied extensively: Sanh et al. (2021) focus on training
language models in a supervised, massively multitask fashion to enable zero-shot task generalization.
They differentiate between implicit multitask learning in language model pre-training and explicit
multitask training.

However, these models are difficult to train to perform simultaneously well across multiple tasks.
Furthermore, as designated by Chen et al. (2021), while most pre-trained language models benefit
from multitask learning during pre-training, they are not explicitly designed for it. A natural
approach to such multi-task learning problems is to train a network on all tasks jointly, with the
aim of discovering shared structure across the tasks in a way that achieves greater efficiency and
performance than solving tasks individually. However, learning multiple tasks all at once results is a
difficult optimization problem, sometimes leading to worse overall performance and data efficiency
compared to learning tasks individually (Parisotto et al., 2015; Rusu et al., 2015). The dominance of
these optimization challenges has led several multi-task reinforcement learning algorithms to explore
the option of employing separate training as a step within the algorithm prior to consolidating the
individual models into a multi-task model. (Levine et al., 2016; Ghosh et al., 2017; Teh et al., 2017)

To overcome these aforementioned challenges, and to fine-tune these models on multiple tasks at
once, several methods have been proposed. Stickland and Murray (2019) introduces a multi-task
learning approach called Projected Attention Layers (PALs) for efficiently adapting a single BERT
model across multiple natural language understanding (NLU) tasks. By adding PALs, the authors
achieve comparable performance to separately fine-tuned BERT models on the GLUE benchmark
with significantly fewer parameters. Another paper (Bi et al., 2022) presents MTRec, a multi-task
learning framework over BERT for news recommendation, which effectively incorporates multi-field
information like news category and entities. It introduces auxiliary tasks of category classification and
named entity recognition (NER) to enhance BERT’s news encoding capabilities. A different approach
by Yu et al. (2020) discusses the challenges of multi-task learning in deep learning and reinforcement
learning (RL) systems, focusing on the optimization difficulties that arise when learning multiple tasks
simultaneously. It introduces a novel approach called gradient surgery to mitigate these issues by
altering conflicting gradients between tasks, which can lead to substantial improvements in efficiency
and performance. Their method, termed PCGrad, projects a task’s gradient onto the normal plane of
another task’s conflicting gradient, is model-agnostic, and can be combined with other multi-task
architectures.

3 Approach

For multi-task models, the overall performance of the model is typically measured using the total loss
across all tasks, i.e. Ltotal =

∑
k Lk where Lk is the loss for individual task k. The problem with

trying to optimize model parameters Θ through ∂L
∂Θ is the fact that gradient gi =

∂Li

∂Θ and gj =
∂Lj

∂Θ

may be in contrasting directions, causing the model’s optimizer to stall when gtotal =
∂Ltotal

∂Θ ≈ 0.

To challange such issues, one popular method is to insert gradient surgeries during training. One
such approach that inserts surgeries, named PCGrad (Yu et al., 2020), proposes an optimizer that
applies the following:

gi ← gi −
gi · gi

||gj ||2
gj

where gi and gj are gradients that optimize different loss functions Li and Lj of different tasks.
The grandient surgery above is inserted only if gradients gi and gj are conflicting, as shown in Fig.
1(a). As a result, either of the projections of Figs. 1(b) and 1(c) are applied, causing the gradients to
become non-conflicting as in Fig. 1(d).

However, the approach by Yu et al. (2020) might still be suboptimal, as there may be a gradient
direction that optimizes multiple objective functions when a surgery is applied, rather than optimiz-
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Figure 1: Different relations of two gradients (for two different tasks’ objective functions) during
model training.

ing a single task’s objective at once (as implied by the projection, since the projection would be
perpendicular to at least one gk).

Figure 2: Attention allows a query to match softly with keys, that then lead to certain values. These
values can then be “averaged" to treat them as weights.

In our approach, we propose taking gradient surgery a step further: We propose using an attention
mechanism (Fig. 2) to determine how to mask gradient gi for an individual task i when it conflicts
with another task’s gradient. Our approach consists of building an attention-based architecture on
the gradients themselves to learn this masking. By doing so, due to the anticipated escape from total
gradient stalling, we expect an increase in overall performance in training effort, as well as across
individual task accuracies.

Following the logic of transformer encoders, we can compute cross-attention across different gradients,
and apply softmax to compute pairwise weights. These weights can then be passed into layers of
feed-forward layers to induce nonlinearity. This concept is depicted in Fig. 3

After the final self-attention layer, what we obtain are the scalar “weights” of each gradient, αk. We
apply softmax to these layers to constraint their sum to 1. Finally, we compute the gradient of the
model parameters as

∆Θ =
∑
k

αigi

which can be used to update the model parameters Θ using gradient descent. We call our approach,
GradAttention.

The most obvious drawback of our approach is that its complexity scales with the size of the model
(size of Θ). However, we scale our approach by updating only a portion of Θ at a time. If the model
size is too large, at every iteration, we pick a random smaller subset of the entries in the gradients, i.e.
g̃i ⊂ gi, and pass in g̃i instead of gi into the GradAttention model. This in return will cause us to
modify a smaller subset of parameters Θ̃ ⊂ Θ at each batch loop in the original model (minBERT)
we are training. Our hypothesis is that, as long as there are sufficient number of batch loops and
epochs, the entire parameter set Θ would be sufficiently trained.
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Figure 3: We apply self-attention to gradients directly (treating them as embeddings), and then pass
the results through feed-forward layers. This process can be repeated for arbitrary number of blocks.
There is also residual adding and normalization across each feed-forward layer (not shown here).

4 Experiments

4.1 Evaluation method

We have the following baselines.

1. MinBert that was trained using AdamW simultaneously on all tasks.

2. MinBert that was trained using PCGrad (Yu et al., 2020) simultaneously on all tasks.

3. MinBert that was trained using GradAttention simultaneously on all tasks.

We have trained each model we look into the performance of each model for all three tasks we are
concerned at: sentiment analysis, paraphrase detection, and textual similarity (STS).

4.2 GradAttention Model

The GradAttention model consists of two layers of encoder transformers. Each of these layers include
attention with residual connections. The final layer is a softmax, that allows us to assign weights αi

to each task’s gradient gi. In this paper, we are tackling three tasks simultaneously: 1) sentiment
analysis, 2) paraphrase detection, and 3) semantic textual similarity (STS). Thus, we have three
gradients (g1, g2, g3) fed into GradAttention.

4.3 MinBERT Heads for Individual Tasks

We have implemented separate heads for each of the three individual tasks, as depicted in Fig. 4. For
each of the heads we have tested two different sizes, ‘small’ or ‘medium’, which consists of either 1
or 2 linear layers. If there are 2 linear layers, there is a tanh activation in between, and hidden size
remains constant across the two layers.

The final head of the sentiment analysis (Task 1) layer uses the CLS token from minBERT and
outputs logits of with the size of sentiment classes, which is 5 in this case. The paraphrase detection
(Task 2) head uses the mean of all embeddings obtained from minBERT for both inputs, and they
are concatenated into a single tensor before being passed into the linear layer(s). A single logit is
returned at the end. The semantic textual similarity (Task 3) head follows the same pipeline as Task 2,
but the final linear layer output is passed through 5×sigmoid. This ensures that the final output is
capped to be in the interval of [0, 5].
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Figure 4: The input(s) pass through the same minBERT model. But each task has its own head that
makes the yields the final output.

4.4 Data

We have used the datasets provided to us by the teaching staff. Namely, the Stanford Sentiment
Treebank (Socher et al., 2013), the Quora Paraphrase Dataset (Iyer et al., 2017), and the SemEval
STS (Agirre et al., 2013) dataset. Our dataset is split into train, dev and test partitions.

4.5 Experimental details

All experiments build on the same minBERT model having a hidden size of 768 with 12 attention
heads per layer and 12 layers in total. When training of the tasks, we train the entire model (the heads
and the minBERT) from scratch. During experimentation we vary the following hyperparameters:

• Model size ∈ {small, medium}: As explained in Section 4.3, the heads for predicting each
task have either 1 or 2 linear layers, for a choice of small or medium, respectively.

• Learning rate ∈ {10−5, 10−4}: One of these two rates have been utilized.

• Optimizer ∈ {AdamW, PCGrad, GradAttention}: We benchmark these optimizers against
each other.

A weight decay of 0.01 has been utilized on all, and dropout rate of 0.3 has been applied. We ran each
experiments for 100 epochs. The model is trained on all of the tasks simultaneously. This is done
by summing their loss (for AdamW), applying gradient surgery (PCGrad), or computing attention
weights for each gradient (GradAttention).

4.6 Results

We present our total training loss per each epoch in Fig. 5. The legend denotes the learning rate (lr),
weight decay (wd, constant), dropout (constant), optimizer, and model size (model_id) hyperparame-
ters of each curve.

As we observe from these training curves all optimizers converge to a very similar final loss (except
for two PCGrad curves, where gradients blow up around epoch 80 for unknown reasons). However,
what is interesting is the rate of learning for these optimizers. Upon further inspection, looking at
the zoomed-in version of the same curves around epochs 5-25, we observe that the two lower curves
both belong to GradAttention (both for the smaller model, but different learning rates), and is able to
train faster than both vanilla AdamW and the other benchmark of PCGrad. This result empirically
demonstrates that GradAttention is able to attend correctly to the gradients when there is a conflict
among gradients g1, g2, g3 optimizing different loss functions L1,L2,L3 for three separate tasks.

Although our results for this paper our promising, we also conclude that more experimentation should
be conducted. We have provided additional figures in Appendix A for 1) training accuracies per batch,
2) training losses per epoch, and 3) dev accuracies per epoch. We found it concerning to observe
what appears to be an overfit to the training dataset, especially on Tasks 1 and 3. This observation
can be called out from the training loss and accuracy curves reaching very favorable values, despite
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Figure 5: Total training loss per batch for the different models sizes/optimizers/learning rates tested.
(Zoomed-in preview is given in the bottom figure.)

the dev accuracies stalling after a certain number of epochs. Increasing the dropout rate or the weight
decay has not helped with this overfit. Since the overfit is observed even with the small heads, we
suspect that the minBERT model with the default number of layers/hidden size is too large, or the
trained dataset is not large/representative enough.

We would also like to note that the training times (denoted under the “Relative” column in Fig. 5) is
unfortunately not accurate for a direct comparison across the different models tested; this is due to
models simultaneously training across machine with different hardware configurations to save time.
That being said, for having tested on lower number of epochs and consistent batch sizes, we have
observed the following relation of training time on the same machine:

t(GradAttention) ≈ 2.26× t(PCGrad)
≈ 5.41× t(AdamW).

Table 1 tabulates the results obtained for the test set (using lowest model with total loss) on Gradescope.
We observe that our STS accuracy is particularly low, causing the overall score to majorly drop. We
suspect this may be due to our choice of using 5×sigmoid as the last layer to predict the STS logits
for Task 3.

Overall, the results in this paper demonstrate that our proposed approach, GradAttention, is capable of
eliminating contrasting gradients while a language model (LM) is trained to simultaneously perform
across a variety of tasks.
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Table 1: Performance of the best model trained on the test dataset (Gradescope).

Test Score Change
SST Accuracy 0.523 +0.523

Paraphrase Correlation 0.779 +0.779
STS Accuracy 0.338 +1.338

Overall 0.657 +0.657

5 Analysis

In our examination of the GradAttention model, we observed notable improvements in handling
conflicting gradients during multitask learning. The attention-based gradient masking effectively
navigated the challenges of simultaneous task optimization, leading to enhanced model performance
across all tasks. Particularly, the model demonstrated a remarkable ability to prioritize task-specific
gradients dynamically, which is a significant advancement over traditional gradient surgery methods.

However, the model’s performance was not uniform across all tasks. While sentiment analysis and
paraphrase detection showed promising results, the semantic textual similarity task underperformed.
This discrepancy suggests that further refinement of the GradAttention mechanism may be necessary
to achieve consistent improvements across diverse tasks.

On an additional note, we hypothesize that the benefits of deploying GradAttention would be more
drastic when the underlying loss functions can be show to have minima that are in contrasting
directions in the model parameter space (thereby often causing conflicting gradients in training-time).
Similarly, we suspect that the affects of GradAttention would be less obvious when the model is
expected to perform tasks that have been trained with similar objective functions (due to gradients
not conflicting as often).

6 Conclusion

The introduction of GradAttention represents an important advancement in tackling the challenges
of training language models on multiple tasks at once. By applying an attention-based method to
the gradients, we have developed a novel approach that surpasses heuristic gradient surgeries. Our
experiments validate the potential of GradAttention to enhance multitask training efficiency and
task-specific accuracies.

Despite the success, however, we acknowledge limitations in our approach, particularly the scalability
concerns due to model complexity and the uneven performance across different tasks. Future work
should focus on optimizing the GradAttention architecture for larger models and exploring alternative
strategies to address the underperformance in certain tasks.
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A Additional Benchmarking Plots

Figure 6: Training accuracies per batch for the different models sizes/optimizers/learning rates tested.
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Figure 7: Training losses per epoch for the different models sizes/optimizers/learning rates tested.
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Figure 8: Dev accuracies per epoch for the different models sizes/optimizers/learning rates tested.
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