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Abstract

We explore extensions and methods to improve and fine-tune BERT, a model that
uses Bidirectional Encoder Representations from Transformers to develop deep
contextual word representations. Since its release, BERT has shown to be the base
for state-of-the-art models for a wide range of tasks. In this project, we employ
the following extensions for the Vanilla BERT model: Additional pretraining
using Simple Contrastive Learning, Gradient Surgery, Multitask Fine-Tuning,
Hyperparameter Finetuning, and Model Ensembling to improve performance on
three downstream tasks: 1) Sentiment Analysis, 2) Paraphrase Detection, and 3)
Semantic Textual Similarity. As a baseline, our model performance using vanilla
fine-tuning was 0.526, 0.0442, and -0.041, respectively. After implementing various
extensions, our ensembled model yielded the respective accuracies of 0.528, 0.625,
and 0.446.

1 Introduction

BERT is a language representation model that utilizes bidirectional transformers to develop con-
textually rich representations of text and language. This large pre-trained model is often helpful
for downstream tasks as it can be fine-tuned to create task-specific models [Devlin et al.| (2019) that
perform at a high level. In this project, we finetune MinBERT, a scaled-down version of BERT, to im-
prove performance on three specific downstream natural language tasks. This is an exciting problem
as large language models often attempt to encode universal sentence embeddings but sometimes fail
to capture or understand the exact semantics of words in various contexts. For this reason, it may be
the case that these large models may do exceptionally well for a subset of downstream tasks but not
others.

Pretraining models, however, is one way for models to generate and utilize relevant and meaningful
sentence embeddings. When trained on large pieces of data, pre-trained models can learn more
meaningful and complex language patterns and be fine-tuned for specific tasks by capturing domain
and context-specific meanings from the dataset. BERT is already a pre-trained model, but in this
project, we introduce additional pretraining with simple contrastive learning to further finetune the
model for our specific tasks. In addition, we introduce refinements such as Multitask Fine-tuning,
Gradient Surgery, and Hyperparameter Finetuning to improve the overall model performance.

2 Related Work

SimCSE by Gao et al.|(2021)), which stands for Simple Contrastive Sentence Embedding framework,
is a way to improve sentence embeddings in unsupervised and supervised cases. The general idea
behind contrastive learning is to form representative embeddings by looking at sentences in pairs or
triples to pull semantically close sentences together and push apart semantically different sentences.
One big motivation for better sentence embeddings is that it can massively cut down the time for
search and clustering-based problems. For example, finding the most similar pair of sentences in a
collection of 10,000 sentences requires about 50 million pair-wise computations with regular BERT,
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but then having a method of mapping sentences close to their neighbors dramatically cuts down the
pool of candidate pair-wise computations needed (Reimers and Gurevych, |2019).

Unsupervised Contrastive Learning paired with pre-trained models develops these deep sentence
embeddings from unlabeled data. It exploits BERT’s ability to produce contextual embeddings
because it uses the same sentence with differing dropout masks as positive pairs, effectively turning
Unsupervised Contrastive Learning into a task that requires no additional supervised data. In
extension, Supervised Contrastive Learning builds on this by incorporating annotated sentence pairs
and optimizes for the learning objective by comparing labeled positive and negative pairs. This has
been shown to significantly outperform existing sentence embedding methods on standard Semantic
Textual Similarity (STS) tasks.

(a) Unsupervised SimCSE (b) Supervised SimCSE
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Figure 1: Unsupervised Contrastive Learning Work Flow (Left) and Supervised Contrastive Learning
Work Flow(right), taken from Gao et al.|(2021)

Other works that we draw from include an implementation of multitask learning from [Bi et al.| (2022),
where the researchers added together the losses of multiple tasks, and an implementation of gradient
surgery from|Yu et al.|(2020) for fixing gradient descent when there are conflicting directions for the
different tasks.

3 Approach

3.1 Multitask Fine-tuning Extension

In the baseline, BERT is fine-tuned on a single task, and in this extension, we wanted to fine-tune
BERT on multiple tasks using multiple datasets. To do this, we explore three different methods of
multitask fine-tuning. First, we executed sequential training, also known as round-robin training,
where BERT is fine-tuned on one task and dataset, then on another task and corresponding dataset.
Second, we performed concurrent training, where in each epoch, a batch is taken from every dataset,
and the loss is computed for every task before being combined, and a step is taken. In this framework,
the multiple datasets are iterated concurrently. Lastly, we add gradient surgery to the concurrent
setup. This method comes from the idea that the gradient directions of different tasks may conflict, so
surgery can be used to project the gradient of a particular task onto the normal plane of a conflicting
task’s gradient.

3.2 Unsupervised Contrastive Learning (UCL) Extension

At a high level, unsupervised SimCSE takes an input sentence and predicts itself using dropout as
noise (see Fig 1). To do this, we feed the same input sentence into the encoder twice. The encoder
uses the same standard dropout rate. The two outputs from the encoder are now regarded as "positive"
pairs. Every other sentence in the batch is regarded as a "negative" pair to this input sentence. The
goal is for the model to predict the "positive" one amongst all the other "negatives" in the batch by



optimizing for this objective function:
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where z,2’ are the two different embeddings of the same input sentence, and N represents the
number of sentences in the batch. In our implementation, we use Unsupervised Contrastive
Learning as a Pretraining method for our MinBERT model. We first conduct Unsupervised
Contrastive Learning on the SST, STS, and Quora datasets, using input sentences as positive
pairs to themselves. The loss function would be the training objective highlighted above. Once
done, we save the weights of our pre-trained models, which are loaded in for the official training phase.

3.3 Supervised Contrastive Learning (SCL) Extension

This method extends the unsupervised SimCSE framework by using neutral, positive, and negative
embedding sentences. In Supervised Contrastive Learning, semantically dissimilar sentences are
treated as negative examples. The objective function for Supervised Contrastive Learning is modified
as follows:
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where h; is the anchor sentence embedding, ht+ is a positive sentence embedding that is semantically
similar to h;, hj_ is a negative sentence embedding that is semantically dissimilar from h;, IV is the
number of sentences in the batch, sim is a function that measures the similarity between two sentence
embeddings, and 7 is a temperature parameter that scales the similarity measure. This objective
function encourages the model to distinguish the anchor sentence from a batch of other sentences
by bringing the embeddings of similar sentences closer together while pushing dissimilar sentences
apart in the embedding space.

In our implementation, we also used Supervised Contrastive Learning as a pretraining method for our
MinBERT model. To do so, we modified the Quora dataset by first filtering for neutral and positive
pairs and then adding a third column with shuffled sentences from the positive pairs, ensuring that
no sentence ends up in the same position. We computed the loss via the aforementioned objective
function and saved the weights of our pre-trained models, which are then loaded in for the official
trained phrase.

4 Experiments

4.1 Data, Evaluation Methods, and Experimental Details

This project is evaluated on the 3 pre-defined default tasks using the 3 pre-defined default datasets
described in the project handout (i.e., the Stanford Sentiment Treebank, the Quora Question Pairs
dataset, and the STS Benchmark dataset). As for the experimental setup, we tried out various
epoch counts, learning rates, dropout rates, and combinations of pretraining and finetuning methods
described in detail in the following sections.

4.2 Results

We present the summary of the best performance within each extension and the fusion of the
extensions in the following table, and details about each part are in the following subsections.



Task Baseline Multitask UCL  SCL  Ensemble

SST Accuracy 0.526 0.502 0.514 0.487 0.528
Paraphrase Accuracy 0.442 0.625 0.625 0.625 0.627
STS Pearson Correlation -0.041 0.126 0.183 0.196 0.447
Overall Dev Score 0.483 0.571 0.577 0.570 0.626

Table 1: Main Results

4.2.1 Multitask Fine-tuning Extension

The baseline model uses just single-task finetuning so, to improve on that, we implement multitask
finetuning on all three datasets for all three downstream tasks. The results are in the table below.

Task Baseline Sequential Concurrent Gradient Surgery
SST Accuracy 0.526 0.300 0.502 0.493
Paraphrase Accuracy 0.442 0.581 0.625 0.625
STS Pearson Correlation  -0.041 0.172 0.126 0.184
Overall Dev Score 0.483 0.499 0.571 0.570

Table 2: Multitask Finetuning with 3 Datasets

As expected, we see improvements with multitask finetuning because the model now has more data
to learn from and is being molded to our specific tasks. Next, we can observe that concurrent training
performs the best while the gradient surgery harms the performance. One explanation for this dip
in accuracy is that Gradient Surgery works best if optimized for one task in particular because it
computes the projection of the gradient of tasks into the plane of a conflicting task’s gradient. Still,
since we care about all three tasks equally, this context is not a good application of Gradient Surgery.

4.2.2 Unsupervised Contrastive Learning Extension

The first approach uses only the SST dataset, whereas the second uses both the SST and STS datasets
for the Unsupervised Contrastive Learning objectives. (In both cases, contrastive learning is used
first to pretrain the model, and then vanilla single-task training is used to finetune the model.) The
results are as follows:

Task Baseline One Datasets Two Datasets
SST Accuracy 0.526 0.520 0.528
Paraphrase Accuracy 0.442 0.384 0.570
STS Pearson Correlation -0.041 0.068 0.050
Overall Dev Score 0.483 0.479 0.541

Table 3: Unsupervised Contrastive Learning with 2 Datasets

Unsurprisingly, Unsupervised Contrastive Learning done with both datasets yielded the best results.
This may be because our model has developed more complex sentence embeddings through both the
STS and the SST datasets. There are two interesting observations to highlight: 1) Despite pre-training
the model using Unsupervised Contrastive Learning on the SST dataset, both models see decreased
scores in the two models, and 2) Unsupervised Contrastive Learning Pretraining was only conducted
on the SST and STS datasets. However, paraphrase accuracy seemed to go up significantly after
pretraining.

Next, we combined our work from the multitask finetuning with Unsupervised Contrastive Learning.
In the following table, all predictions were created by running contrastive learning and finetuning
the multitask concurrent learning function (on all three downstream tasks) instead of the single-task
learning function. Under this framework, we compare how the model works when Unsupervised
Contrastive Learning is done on two datasets sequentially vs. when Unsupervised Contrastive
Learning is done on three datasets concurrently.



Task Best No Multitask  Two Datasets + Multi  Three Datasets + Multi

SST Accuracy 0.528 0.514 0.488
Paraphrase Accuracy 0.570 0.625 0.625
STS Pearson Correlation 0.050 0.183 0.187
Overall Dev Score 0.541 0.577 0.569

Table 4: Unsupervised Contrastive Learning with Multitask

We are able to achieve a 3.6 percentage point increase (from 54.1 to 57.7) in the overall dev score just
by incorporating multitasking learning techniques into the Unsupervised Contrastive Learning model.
Once again, the improvements mainly go towards the Paraphrase Detection task.

4.2.3 Supervised Contrastive Learning Extension

We evaluate varying degrees of model pretraining in our Supervised Contrastive Learning Extension.
The first setting, Supervised Only, involved pretraining a model with Supervised Contrastive Learning.
The second, Unsupervised First, began with the pretraining of the model entirely Unsupervised
Contrastive Learning, after which the model weights were loaded into the supervised training loop.
The third model, Supervised First, was similarly pretrained with Supervised Contrastive Learning
and then passed into the unsupervised training loop. As a last step, we loaded the weights of all those
pre-trained models in our regular multitask finetune training loop. All unsupervised and supervised
contrastive pretraining were conducted for 3 epochs, while the last multitask training loop was trained
for 10 epochs.

Task Supervised Only  Unsupervised First ~ Supervised First
SST Accuracy 0.481 0.482 0.487
Paraphrase Accuracy 0.625 0.625 0.625
STS Pearson Correlation 0.202 0.155 0.196
Overall Dev Score 0.569 0.562 0.570

Table 5: Unsupervised Contrastive Learning with 3 Datasets

4.3 Model Ensembling Extension

For the ensembling part, we combined the results of different models to ensure our system’s overall
performance on each separate task is maximized. We selected three of the best-performing models:
one trained with Unsupervised Contrastive Learning using two datasets, another trained with Su-
pervised Contrastive Learning that was pre-trained for three epochs, and the third pre-trained with
Supervised Contrastive Learning for ten epochs (without using a prediction head for the similarity
and paraphrase prediction functions; See Section 5.4 for more details). The results are as follows:

Task Unsup. 2 Dataset  Sup. 3 Epoch  Sup. 10 Epoch-No Head Ensemble
SST Acc 0.528 0.480 0.493 0.528
Paraphrase Acc 0.570 0.627 0.434 0.627
STS Pearson Corr 0.050 0.122 0.447 0.447
Overall Dev Score 0.541 0.556 0.550 0.626

Table 6: Model Ensembling for Best Performance on Each Task

4.3.1 Hyperparameter Training

We begin our hyperparameter training by testing out various numbers of epochs used for the pretrain-
ing portion. In the table below, the first two columns from the left represent pretraining that happens
with Unsupervised Contrastive Learning, while the third column represents Supervised Contrastive



Learning. A key finding from this section is that for contrastive learning, the best-performing model
comes from decreasing the number of epochs. This result suggests that it is easy to overfit with
contrastive learning, which bolsters our hypothesis that supervised contrastive learning is not as

beneficial as expected.

Task Two Datasets + Multi  Three Datasets + Multi  Supervised
10 Epochs 0.564 0.564 0.550
2 Epochs 0.577 0.565 0.564
3 Epochs 0.569 0.569 0.569

Table 7: Number of Epochs for Pretraining Affects on Overall Dev Score

Next, we test different learning and dropout rates using the Unsupervised Contrastive Learning model
run on two datasets as pretraining and multitask finetuning. In the table below, the Default represents
the output when the learning rate is le-5, and the dropout rate is 0.3, which are the default values
from MinBert. In each of the other columns, if the learning rate is being changed, then the dropout
rate is the default value, and vice versa. In this set of tests, we find that the default learning rate and

dropout rate work the best.

Task Default Ir=1.5e-5 Ir=2e-5 dr=04
SST Accuracy 0.514 0.472 0.471 0.500
Paraphrase Accuracy 0.625 0.625 0.625 0.625
STS Pearson Correlation  0.183 0.183 0.240 0.137
Overall Dev Score 0.577 0.563 0.572 0.565

Table 8: Different Learning Rates for Pretraining UCL

5 Analysis

5.1 Multitask Fine-tuning Extension
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Figure 2: Accuracy over epochs during
training

We plot the train and dev accuracy over the 10 epochs of
multitask training to analyze how the model is learning.

First, we notice that train accuracy steadily rises
throughout the procedure while the dev accuracy
plateaus a bit in comparison. This difference in im-
provement in the later epochs suggests that the model
might be overfitting as the benefits of the training are
no longer apparent in the new unseen data. Second,
we see that the gradient surgery lines hug the non-
gradient surgery lines, which explains why adding gra-
dient surgery leads to no improvement in the scores.

Another interesting qualitative aspect of the different
methods is the tradeoff between more training
and computational resources required. Sequential
training took well over 5 hours, at over 30 minutes
per epoch, whereas concurrent training took under
1 hour, making concurrent training the preferable
method.



5.2 Unsupervised Contrastive Learning Extension
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Figure 3: Training Accuracy (left) and Dev Accuracy (right) over Epochs for Unsupervised Con-
trastive Learning Pretrained Model and Vanilla Multitask

The above plots show the training and dev accuracy for the baseline vanilla-trained model and an
Unsupervised Contrastive Learning pre-trained model with either 1 or 2 datasets. As one can see,
both 1 and 2 dataset versions improved the dev accuracy of the model, indicating that the model was
adjusting moderately better to the training data. Despite this, it was surprising to observe that the
baseline model performs better than the 1 dataset model. This is interesting, as we had expected
that pretraining on even one dataset would result in deeper embeddings that would help increase
performance across the board.

Using two datasets for analysis yielded the best results for us. The graph shows that this model also
produces the best training and dev accuracies. For both the baseline and the 1 dataset model, we
can see that the dev accuracies reach a peak around the 2nd or 3rd epoch. These dev accuracies
continue to fall as the number of epochs increases, suggesting that overfitting may have occurred.
The 2 dataset model was the only one that yielded high scores across the board.

5.3 Supervised Contrastive Learning Extension
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Figure 4: Performance analysis of supervised models on NLP tasks, contrasting baseline and fine-
tuned models across various metrics.



The main takeaway from the Supervised Contrastive Learning experiments is the subtle improvement
for various tasks. For example, performance on the paraphrase detection task improved slightly,
which validates the assumption that regular exposure to semantically similar and dissimilar sentence
pairs allows the model to make more nuanced distinctions regarding paraphrasing. This might be
explained by the fact that the model learns more nuanced distinctions between sentences that were
judged to be neutral, positive, and negative in our modified Quora Question Pairs dataset.

5.4 Underlying Prediction Functions

During our experimentation, we identified our prediction functions as a potential source of weakness,
so we changed our implementation. To understand how switching from cosine similarity to using
linear layers for our predict similarity and predict paraphrase functions affected performance on each
task, we computed the change in metrics for eight different models. (The eight models are Baseline,
Concurrent, Grad Surgery, One Dataset UCL, Two Datasets UCL, Two datasets UCL + Multitask,
Three datasets UCL + Multitask, and Supervised CL). Then, we take the average change in value for
each metric and plot them on the graph below.

From this graph, we can see that our use
of prediction heads instead of simple co-
sine similarity helped improve the Para-
phrase accuracy but also harmed STS
Pearson Correlation by the same mag-
nitude. This tradeoff we see from our
changes suggests that for the STS task,
it might have been more beneficial to
stick with the cosine similarity method
and only use the linear layers/prediction
heads method on the Paraphrase task.
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This hypothesis turned out to be true.
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We tested a final version of prediction ssT Paraphrase STS overall
functions, where we brought back co-
sine similarity for similarity prediction,
and this yielded our highest-performing
model without model ensembling.

Figure 5: Change in metrics due to prediction functions

Task Two Datasets Unsupervised Unsupervised + Supervised CL
Only Linear Layers 0.577 0.562
Linear Layers and Cosine 0.593 0.588
Difference +0.016 +0.025

Table 9: Different Prediction Functions Affect on Overall Dev Scores

6 Conclusion

In summary, Unsupervised Contrastive Learning (UCL) and Supervised Contrastive Learning (SCL)
improved performance on all three tasks compared to the baseline without extensions. However,
it is surprising that UCL performs better than SCL on its own, and SCL combined with UCL in
multiple forms. We suspect that SCL might be overfitting to the Qurora Dataset, or the learned
embeddings are not helpful to the downstream tasks because the objective of contrastive learning is
not perfectly aligned with the objective of the downstream tasks. Other significant improvements
came from implementing concurrent multitask fine-tuning (without gradient surgery), decreasing the
number of epochs, and utilizing model ensembling. There was also room for improvement in how we
formulated our prediction functions in the downstream tasks. The experimentation between using
cosine similarity and linear layers for the prediction functions highlighted that benefits could also be
achieved by taking a closer look at the foundational aspects of the model rather than only looking
toward new extensions.
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