
minBERT Multi-Task Fine-Tuning
Stanford CS224N Default Project

Antonio Davi Macedo Coelho de Castro
Department of Computer Science

Stanford University
adavimcc@stanford.edu

Abstract

This project developed a multi-task fine-tuning method for a pre-trained minBERT
model to perform sentiment analysis, paraphrase detection, and semantic textual
similarity tasks simultaneously. Our intuitive hypothesis believed that combining
shared and task-specific parameters should result in a smaller model and superior
performance compared to a set of 3 individually fine-tuned models. We propose a
model architecture that combines a shared minBERT model with extra dedicated
transformer layers for each task and a unified multi-task training approach that
optimizes a single loss. Our results show that it is possible to achieve the same
levels of accuracy as individual fine-tuned models but storing less than one-third
and training less than 15% of the parameters.

1 Key Information

• Mentor: Josh Singh

• External collaborators: N/A

• Sharing project: N/A

2 Introduction

Transformer-based pre-trained language models (PLMs) such as BERT (Devlin et al., 2019), and
particularly the large language models (LLMs), have demonstrated remarkable success in performing
many natural language processing (NLP) tasks. However, given these models’ extremely high
number of parameters, fully fine-tuning them to specific downstream tasks is challenging and
computationally expensive. These challenges led to a surge in the development of Parameter Efficient
Fine-Tuning (PEFT) methods, which aim to reduce the number of fine-tuning parameters and memory
usage while achieving comparable or superior performance to full fine-tuning. Xu et al. (2023)
present a comprehensive and structured study of PEFT algorithms for PLMs. They list and classify
different very successful techniques and bring the comparative results of performance experiments
on benchmark datasets. We also found a promising alternative from Fu et al. (2022), in which they
determined the tunable parameters using a second-order approximation method (SAM).

Despite the fast progress in developing PEFT methods, most are design-specific to fine-tune one
downstream task at a time. It made us wonder: Can we fine-tune a single unified multi-task model to
deliver superior performance on NLP tasks with fewer parameters? Aiming to answer this question,
during this project, we developed a multi-task fine-tuning method for a pre-trained minBERT model
to simultaneously perform sentiment analysis, paraphrase detection, and semantic textual similarity
tasks. Our intuitive hypothesis believed that combining shared and task-specific parameters should
result in a smaller model and superior performance compared to a set of 3 individually fine-tuned
models. Doing this over a pre-trained minBERT model led to exciting results that we can generalize
to other PLMs and LLMs. The results are auspicious, as we know that we need more effective
methods to fine-tune large models to downstream tasks, given the high number of parameters.

Stanford CS224N Natural Language Processing with Deep Learning



3 Related Work

Xu et al. (2023) classify the PEFT methods for transformer-based PLMs into five different families:

• Additive Fine-Tuning: These methods introduce new trainable parameters for task-specific
fine-tuning. This family has three groups. Adapter-Based, such as Pfeiffer et al. (2021),
incorporates an adapter module into the transformer without modifying the pre-trained
parameters. Soft Prompt-Based, such as Wang et al. (2023), appends soft prompts or
prefix vectors to the input embeddings or hidden states. Others include various methods to
introduce task-specific supplementary parameters during fine-tuning.

• Partial Fine-Tuning: These methods reduce the number of fine-tuned parameters by selecting
critical ones and discarding unimportant ones. This family has three groups. Bias Update,
such as Zaken et al. (2022), only updates the bias terms in the transformer’s attention, feed-
forward, and normalization layers. Pretrained Weight Masking masks pre-trained weights
using different pruning criteria. Delta Weight Masking, such as Fu et al. (2022), masks via
optimization approximation.

• Reparameterized Fine-Tuning: These methods utilize low-rank transformation to reduce the
number of trainable parameters while allowing operation with high-dimensional matrices.
This family has two groups. Low-Rank Decomposition comprehends various techniques to
reparameterize the updated matrix. LoRA Derivatives are a series of methods based on Hu
et al. (2021).

• Hybrid Fine-Tuning: These methods combine various approaches, such as adapter, prefix-
tuning, and LoRA, to leverage the strengths of each method and mitigate their weaknesses.
This family has the Manual Combination group, which combines the methods using sophis-
ticated design, and the Automatic Combination group, which automatically incorporates the
methods via structure search.

• Unified Fine-Tuning: These methods, such as Zeng et al. (2023), streamline the incorporation
of many of the other fine-tuning techniques, but unlike Hybrid Fine-Tuning, they typically
utilize a single method rather than a combination.

In terms of efficiency, Xu et al. (2023) present the results of extensive experiments to evaluate the
effectiveness of several of these methods. Using encoder-only models RoBERTa-base (125M) and
RoBERTa-large (355M) (Liu et al., 2019), which are similar to minBERT, to evaluate the GLUE
benchmark (Wang et al., 2018), all PEFT methods reduce the number of trainable parameters, and
most achieve performance matching or even better than full fine-tuning. The best performance was
achieved with ProPELT (Zeng et al., 2023), a unified fine-tuning method, employing AdapterFusion
(Pfeiffer et al., 2021) as the backbone, despite using more memory than full fine-tuning because
of the extra parameters it carries on. Using encoder-decoder models T5-base (220M) and T5-large
(770M) (Raffel et al., 2020) to evaluate the WMT16 En-Ro dataset (Bojar et al., 2016), LoRA (Hu
et al., 2021) significantly reduces the number of trainable parameters compared to full fine-tuning
while maintaining comparable performance on T5-large and superior performance on T5-base. Using
decoder-only models LLaMA-7B and LLaMA-12B (Touvron et al., 2023) fine-tuned with the Alpaca
dataset (Taori et al., 2023) to evaluate the MMLU benchmark (Hendrycks et al., 2021), all methods
reduce the number of parameters but have an inferior performance compared to full fine-tuning.

In addition to the methods benchmarked by Xu et al. (2023), SAM is a very effective algorithm. Fu
et al. (2022) propose a Second-Order Approximation Method (SAM) to better choose the tunable
parameters by approximating the original problem with an analytically solvable optimization function.
It is a straightforward process for selecting a small subset of the LLM parameters for fine-tuning. First,
we iterate over the training dataset and calculate the initial loss gradient ∇θiℓ(θ

0) for each parameter
θi. Then, we calculate |∇θiℓ(θ

0)|2 and select the top k parameters. Despite its easy implementation,
extensive experimental results show that this model outperforms many strong baseline models. In
fact, during this project, we could also observe how effective this method is, and we will demonstrate
that ahead.

2



4 Approach

Our model architecture comprises a single pre-trained minBERT model shared by the three different
tasks, followed by an extra sequence of transformer layer, feed-forward, dropout, and projection
dedicated to each task. For sentiment analysis, we tokenize the sentence and input it into minBERT,
which outputs the pooler and the last hidden state. The last hidden state goes through one additional
transformer layer dedicated to the sentiment analysis task. We then average all position encodings
and concatenate the result of the extra transformer layer with the minBERT pooler output, passing it
through another task-exclusive feed-forward layer. This layer comprises a dropout, linear, and GELU
activation function sequence. The result then passes through a final dropout and projection layer
dedicated to the sentiment analysis task, which outputs the logits for the five classes. Finally, we
use the softmax function to estimate the class probabilities and the cross-entropy loss function for
optimization. For the paraphrase detection task, we concatenate, tokenize, and input the sentence pair
into minBERT, followed by a similar sequence of extra task-dedicated layers. The only differences
are the projection layer, which outputs a single unnormalized scalar number, the use of the sigmoid
function to calculate the paraphrase probability and the binary cross entropy loss for optimization.
For the semantic textual similarity task, we input the sentence pair in the same way as the paraphrase
detection task, and it follows the same process, outputting a single scalar number in the dedicated
projection layer. We then clamp the output between 0 and 5 to calculate the similarity score and use
the mean squared error loss for optimization.

Figure 1: Model Architecture

In our methodology, we fine-tune the entire model to optimize a unified multi-task loss function
ℓmultitask =

ℓsentiment+ℓparaphrase+ℓsimilarity

3 . We mix the three tasks’ datasets and shuffle them. In
each batch, we train over a training sample that combines data from the three tasks. Since the datasets
have different total sizes and we randomly select a batch, each batch can have more data from one
task than another. However, we average the loss per task and finally average the three tasks’ losses to
calculate the final unified multi-task loss. We also make sure that, at each epoch, we go through each
dataset entirely. In the first epoch, we do not optimize the model but only calculate the gradients to
use the SAM method and select a k number of tunable parameters. We use the Adam optimizer based
on decoupled weight decay regularization for the following iterations. It is essential to mention that

3



Adam does not directly apply gradients. Instead, we calculate each task’s gradients separately and
use the PCGrad Update Rule (Yu et al., 2020) to resolve conflicting gradients before using Adam.

5 Experiments

5.1 Data

We performed all experiments with the same training datasets. For the paraphrase detection task,
we used the Quora dataset. For the semantic textual similarity task, we used the SemEval STS
Benchmark dataset (Agirre et al., 2013). We used the Stanford Sentiment Treebank (SST) dataset
(Socher et al., 2013) as the primary training and evaluation data for the sentiment analysis task.
However, we must note that we used only a fraction of the official datasets, which made the training
process harder, especially for the sentiment analysis task. We augmented the dataset we used to train
for the sentiment analysis task as a solution. First, we also included the CFIMDB dataset for training.
Since this dataset only contains two labels (positive and negative), different from SST, which contains
five labels, during training, we transformed the five classes’ logits into two class logits by doing
logits

(0)
cfimdb = logits

(0)
sst+logits

(1)
sst+logits

(2)
sst and logits

(1)
cfimdb = logits

(4)
sst+logits

(3)
sst+logits

(2)
sst.

We then used the cross-entropy loss function to calculate the loss over this dataset. We also included
Quora and STS for training the sentiment analysis task. For these two datasets, we assumed that if
two sentences are duplicated or very similar, they must have the same sentiments. So, we isolated all
sentence pairs from Quora with labels 1 (duplicated) and STS with scores over 4.5 (very similar).
During training, we evaluated the sentiment probabilities for each sentence of these pair of sentences
and calculated a loss using the Kullback-Leibler divergence loss function. We finally weight-averaged
the loss of the four different datasets to calculate the sentiment average loss during each training
batch using ℓsentiment =

1
2ℓsst +

1
6ℓcfimdb +

1
6ℓquora +

1
6ℓsts.

5.2 Evaluation method

We first performed a full vanilla fine-tuning, individually training the model for each task to evaluate
our proposed methodology. Then, we performed a second fine-tuning for each task individually using
the SAM method. We used these results as our benchmarks. We finally ran our multi-task fine-tuning
methodology on our unified model and compared its accuracies and number of parameters to the
benchmarks.

5.3 Experimental details

Regarding hyperparameters, we used minBERT with default parameters setup, thus, a 768 hidden
size and 10% dropout probability. Talking about the dedicated layers, we used the same minBERT
setup for the extra transformer layer and a 1,536 hidden size for the following layers (because we
concatenate the pooler with the last hidden state output average), with a 30% dropout probability. We
used a 1e-5 learning rate for full fine-tuning, a 1e-4 learning rate for SAM individual fine-tuning, and
our multi-task training. We fixed the weight decay at 1e-2 and used the default Adam parameters
during all training. In each training, we ran the process for up to 30 epochs and selected the epoch with
higher accuracy over the development dataset. We used 16 batch sizes for individual fine-tunings and
512 batch sizes for our multi-task training. We set SAM to select around 10% of the total minBERT
parameters for individual training and 30% for multi-task training. After multi-task training, we
performed one additional training session for each task, fixing minBERT and other task parameters
and optimizing only the parameters of one task at a time. We used the previous parameters for this
last training but with a 1e-5 learning rate and 16 batch size. During this final training, we did not use
data augmentation and used a surprising 5e-8 learning rate for the sentiment analysis task.

5.4 Results

For our benchmarks on the development datasets, we achieved 88% accuracy on vanilla full fine-
tuning for the similarity task, 89.3% for paraphrase detection, and 53.9% for sentiment analysis.
These models carry together a total of 4.28e+8 tunable parameters. Using the SAM method to
fine-tune each task individually, we achieved 89% for similarity, 88.3% for paraphrase, and 52.3%
for sentiment, only tuning about 10% of the minBERT parameters for each task, which shows the

4

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs


excellent efficiency of this algorithm. The three tasks then carry together the same 4.28e+8 parameters
but only tune 1.32e+8, representing 30.89% of the total.

After applying our multi-task training approach, we evaluated our trained model over the same
development datasets. We achieved an 89.6% accuracy for the similarity task, 88.7% for paraphrase
detection, and 51.8% for sentiment analysis. Our unified model has 1.38e+8 parameters (32.24%
of the individual models), among which only 6.12e+7 are tunable (14.3% of the vanilla fine-tune
models and 46.36% of the SAM individual models). After the last round of individual training, we
maintained the same number of total and trainable parameters. We could improve the accuracies
even further, achieving 90.2% for the similarity task, 88.9% for paraphrase detection, and 52.1% for
sentiment analysis.

Individual Vanilla Individual SAM Unified Multi-Task
Sentiment Analysis Accuracy 53.9% 52.3% 52.1%
Paraphrase Detection Accuracy 89.3% 88.3% 88.9%
Textual Similarity Correlation 88% 89% 90.2%
Number of Stored Parameters 4.28e+8 4.28e+8 1.38e+8
Number of Tunable Parameters 4.28e+8 1.32e+8 6.12e+7

Table 1: Benchmarks and model performance

We finally evaluated the test dataset using our best model and achieved 89.5% accuracy for the
similarity task, 88.5% for the paraphrase task, and 52.4% for the sentiment task.

6 Analysis

The results indicate that our unified model and multi-task fine-tuning achieve accuracy that is very
close to individual full vanilla and SAM fine-tuning on paraphrase detection and sentiment analysis
tasks and is superior for the similarity task. More importantly, it achieves high gains in parameter
efficiency since these accuracies only required storing less than one-third of the benchmark parameters
and training less than 15

The SAM method is the main factor in achieving benchmark accuracy with fewer parameters.
However, making it work was complicated since this algorithm is not designed for multi-task setup.
The extra dedicated layers and the PCGrad Update Rule were crucial elements that enabled each task
to perform well without interfering too much with the parameters shared with the other tasks.

Only analyzing the results achieved for the sentiment analysis task makes us believe that the effort
spent on training data augmentation was in vain. Although they did not significantly increase the
model accuracy on that task, after several tests, we noticed that it helped stabilize not only this task’s
accuracy but also the accuracy of the other tasks during training. Intuitively, since we shared training
data among the three different tasks, the multi-task model was able to resolve gradient conflicts better.

7 Conclusion

We can summarize the main contributions of this project as follows:

• We designed an architecture with a shared minBERT model and additional task-specific
transformer layers to perform multiple tasks simultaneously.

• We proposed a training process combining SAM and PCGrad to perform multi-task training
efficiently.

• We implemented dataset augmentation methods to adapt CFIMDB, Quora, and STS datasets
to train a five-class sentiment analysis task.

Achieving accuracies comparable to the benchmarks while only storing less than one-third and
training less than 15% of the parameters proves it is possible to fine-tune a multi-task model sharing
parameters to improve efficiency and performance. The results achieved here are fascinating and
extendable to other contexts.

5



For future work, we want to explore how the results achieved by one task can help with the others.
For example, since the similarity task achieved 90.2% over the development dataset, the knowledge
acquired could be helpful for the sentiment analysis task. One possible way could be comparing the
input sentence to standard negative and positive sentences.

References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. *SEM 2013

shared task: Semantic textual similarity. In Second Joint Conference on Lexical and Computational
Semantics (*SEM), Volume 1: Proceedings of the Main Conference and the Shared Task: Semantic
Textual Similarity, pages 32–43, Atlanta, Georgia, USA. Association for Computational Linguistics.

Ond rej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias
Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri,
Aurelie Neveol, Mariana Neves, Martin Popel, Matt Post, Raphael Rubino, Carolina Scarton,
Lucia Specia, Marco Turchi, Karin Verspoor, and Marcos Zampieri. 2016. Findings of the 2016
conference on machine translation. In Proceedings of the First Conference on Machine Translation,
pages 131–198, Berlin, Germany. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language understanding.

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam, Lidong Bing, and Nigel Collier. 2022. On
the effectiveness of parameter-efficient fine-tuning.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. 2021. Measuring massive multitask language understanding. Proceedings of the
International Conference on Learning Representations (ICLR).

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adaptation of large language models.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining
approach.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. 2021.
Adapterfusion: Non-destructive task composition for transfer learning.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1631–1642, Seattle, Washington, USA. Association for Computational Linguistics.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2023. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. 2023. Llama: Open and efficient foundation
language models.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 353–355, Brussels, Belgium. Association for Computational Linguistics.

6

https://aclanthology.org/S13-1004
https://aclanthology.org/S13-1004
http://www.aclweb.org/anthology/W/W16/W16-2301
http://www.aclweb.org/anthology/W/W16/W16-2301
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2211.15583
http://arxiv.org/abs/2211.15583
http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2005.00247
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.18653/v1/W18-5446


Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogerio Feris, Huan Sun, and Yoon Kim. 2023.
Multitask prompt tuning enables parameter-efficient transfer learning.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang. 2023. Parameter-efficient
fine-tuning methods for pretrained language models: A critical review and assessment.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
2020. Gradient surgery for multi-task learning. In Advances in Neural Information Processing
Systems, volume 33, pages 5824–5836. Curran Associates, Inc.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. 2022. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-models.

Guangtao Zeng, Peiyuan Zhang, and Wei Lu. 2023. One network, many masks: Towards more
parameter-efficient transfer learning.

7

http://arxiv.org/abs/2303.02861
http://arxiv.org/abs/2312.12148
http://arxiv.org/abs/2312.12148
https://proceedings.neurips.cc/paper_files/paper/2020/file/3fe78a8acf5fda99de95303940a2420c-Paper.pdf
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/2305.17682
http://arxiv.org/abs/2305.17682

	Key Information
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion

