
Enhancing BERT for Advanced Language
Understanding: A Multitask Learning Approach with

Task-Specific Tuning
Stanford CS224N Default Project

Anusha Kuppahally, Malavi Ravindran, Ziyue (Julia) Wang
Department of Statistics

Stanford University
akupp@stanford.edu, mr328@stanford.edu, wangzyue@stanford.edu

Abstract

This paper presents an implementation of the BERT model for the tasks of sentiment
analysis, paraphrase detection, and semantic textual similarity (STS), focusing on
the transformer encoder block with multi-head self attention. Experimentation
revealed that hyperparameter tuning, cosine similarity loss for STS, incorporation
of additional task-specific data, multitask learning, and annealed sampling boosted
performance on unseen data. The best performing model achieved a sentiment
classification accuracy of 0.501, paraphrase detection accuracy of 0.781, and
STS correlation of 0.546 on the test data. Future work includes more thorough
hyperparameter tuning and the inclusion of additional data to improve results for
the STS task.

1 Introduction

Natural Language Processing (NLP) tasks involve understanding and analyzing human language
using computational methods. Among these tasks, sentiment analysis, paraphrase detection, and
semantic textual similarity (STS) play pivotal roles in extracting meaningful insights from textual data.
Sentiment analysis is the task of determining the sentiment expressed in text, and can be particularly
challenging due to the nuanced nature of emotion. Paraphrase detection requires models to identify
whether two sentences convey the same meaning, despite differences in wording or structure, and is
crucial for applications such as plagiarism detection and QA systems. STS aims to quantify the degree
of relatedness between two texts, and can be used in information retrieval and text summarization.

While recent advancements in transformer-based models, such as BERT, have shown promising
results across various NLP tasks, there is still room for improvement, particularly in task-specific
contexts. Existing methods often rely on generic pre-trained models, limiting their effectiveness
in real-world applications. Furthermore, it may be desirable and more efficient to train models
capable of handling multiple tasks at once. Our research built upon the BERT model architecture by
leveraging multitask learning and incorporating additional task-specific data for sentiment analysis,
paraphrase detection, and STS.

2 Related Work

In "How to Fine-Tune BERT for Text Classification?", Sun et al. (2019) tested the following fine-
tuning methods for BERT text classification models: altering fine-tuning strategies (choosing which
layer is best for the target task, the optimization algorithm, and the learning rate), further pre-
training (within-task, in-domain, and cross-domain), and multitask fine-tuning. The tasks included
sentiment analysis, question classification, topic classification, and data-preprocessing. This paper
tried multiple fine-tuning methods and achieved improved results on 8 datasets. It was found that

Stanford CS224N Natural Language Processing with Deep Learning



generally, further pre-training performed better than no pre-training. In-domain pre-training brought
better performance compared to within-task pre-training, but both methods improve performance.
Also, it was determined that a preceding multitask fine-tuning could be helpful for single-task fine-
tuning, but improves performance to a lesser degree compared to further pre-training. However, this
paper has a limitation, as when implementing task-specific pre-training for sentiment classification,
this paper used data with significantly different domains, which led to a lack of improvement in this
area. Our work attempts to rectify this limitation by incorporating additional task-specific data that is
similar in distribution to the original datasets used for training.

"BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multitask Learning"
described how multitask learning can be used to share information and parameters among many
related NLP tasks (Stickland and Murray, 2019). The paper explored hard-parameter sharing, in
which tasks share hidden layers while retaining specific output layers. The authors described that one
of the most effective approaches to augment the base BERT model with multitask capabilities was
to simply add parameters to the “top” of the model prior to classification. Our application adopted
this approach by adding a handful of task-specific layers to the top of base BERT. The authors also
noted several strategies for training with disparately sized multitask data. The most straightforward
approach, round-robin sampling, selects a batch of training examples from each task and cycles
through them in a fixed order. However, one drawback to this standard approach is that by the time
we exhaust the examples from one task, we may have already cycled through a smaller task’s training
data several times over, leading to overfitting. To combat this, the authors introduced a novel strategy,
annealed sampling, which samples tasks proportionally to their representation in the training data
with a more equal representation of tasks towards the end of training. The paper found annealed
sampling to perform best on a variety of GLUE tasks. We decided to implement both of these
sampling approaches in order to tackle the disproportionately sized task data, with the hypothesis that
annealed sampling would yield the most desirable results.

3 Approach

Our approach implemented three key aspects of the original BERT model: 1) the baseline BERT class,
including the multi-head self-attention mechanism, 2) the pipelines for performing sentiment analysis,
paraphrase detection, and STS and 3) the Adam Optimizer for efficient stochastic optimization.

Baseline BERT: The baseline BERT architecture consists of an embedding layer followed by 12
transformer blocks. We first used WordPiece to tokenize and pad sentences to length 512. The [CLS]
token was also placed at the beginning of each sentence to facilitate the various classification tasks.
Following this was the embedding layer, where input embeddings of dimension 768 were formed for
each token id by summing token, segmentation, and positional embeddings. Next, we included 12
encoder blocks, each beginning with a multi-head self-attention layer. This layer applied the scaled
dot product to 12 distinct attention heads to obtain the attention weights. Letting Q, K, and V denote
matrices of queries, keys, and values respectively, we have:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

To realize multi-head attention, we concatenated the multi-heads to recover the original shape Vaswani
et al. (2017). The rest of the BERT encoder block simply added the transformed attention output
(with dropout) to the hidden states, normalized the result, moved this output through a linear layer
with GELU activation, added the transformed (linear) feed forward output (with dropout) to the
intermediate output, and normalized again. After 12 transformer blocks, we concluded with a linear
transformation for the [CLS] token, and this output was passed through the tanh activation function.

Baseline BERT training: We explored two options for training our models. One method was to use
the pretrained BERT model, where most parameters in the model were frozen (i.e. no gradient updates)
and only parameters of the task-specific layers were updated. In contrast, fine-tuning initialized the
model with weights from pretrained BERT but allowed all model parameters to be updated. Within
the training loop, we used the base BERT model to obtain the embedding corresponding to the hidden
state of the [CLS] token. Depending on the downstream task, we employed different strategies for
handling the [CLS] token.

Sentiment Classification: For the sentiment classification task, we passed the [CLS] token through a
dropout layer, and passed the result through a linear layer to obtain logits representing the sentiment

2



classes. We computed the cross-entropy loss between the predicted logits and the ground truth
sentiment labels, and then performed backpropagation to update the model parameters using the
Adam optimizer, exact details of which can be found in the handout ProjectHandout (2024).

Paraphrase Detection: As paraphrase detection handles pairs of sentences, we obtained the [CLS]
embedding associated with each input sentence in the pair. We applied dropout to each of these
embeddings, concatenated the outputs, and passed this concatenated tensor through a linear layer to
obtain a single logit for predicting whether or not the two sentences were paraphrased. We passed
this logit through the sigmoid function to obtain probabilities and then computed binary cross entropy
loss with the ground truth label. We performed backpropagation using the Adam optimizer.

STS: The STS task also handles pairs of sentences. For this reason, we again obtained the [CLS]
embedding associated with each input sentence in the pair and applied dropout to each embedding. We
then explored two different options. In the first option, we concatenated the two dropout-transformed
embeddings and passed the result through a linear layer to produce a single logit representing how
similar the sentences were. We then passed this logit through the sigmoid function and rescaled the
resulting value to be between 0 and 5. For the second option, we computed the cosine similarity
between the dropout-transformed embeddings, passed the resulting tensor through a ReLU layer
to incorporate non-linearity, and again rescaled the result to be between 0 and 5. We explored this
option because the research of Reimers and Gurevych (2019) showed that cosine similarity is more
suited for the STS task. We then computed the mean-squared error loss between the predicted and
ground truth similarities, and performed backpropagation using the Adam optimizer.

Sequential vs. multitask Learning: Another consideration was that of sequential vs. multitask
learning. In sequential training, we processed all of the batches of one task before moving on to the
next task. In contrast, the standard (round robin) multitask approach involved processing batches of
the three tasks simultaneously before taking an update step. In addition to the round robin approach,
we also explored a second flavor of multitask learning through annealed sampling. Here, instead of
processing one batch of each task within each iteration, we selected a batch of examples from each
task with probability pi such that pi ∝ Nα

i , with α initialized to 1. We updated α after each epoch
such that α = 1− 0.8 e−1

E−1 , where e is the current epoch and E is the total number of epochs. This
ensured task sampling probabilities became more equal as training proceeded (Stickland and Murray,
2019).

The prediction pipeline for each of these tasks utilized the exact same process as training, where final
predictions were made based on the highest probability class (sentiment classification, paraphrase
detection) or the rescaled output (STS).

4 Experiments

4.1 Data

We utilized the three default datasets provided by CS 224N. For sentiment analysis, we used the
Stanford Sentiment Treebank (SST) dataset, consisting of 11,855 single sentences taken from movie
reviews, labeled with their sentiment polarity (0 = negative, somewhat negative, neutral, somewhat
positive, or 4 = positive) (Socher et al., 2013). For paraphrase detection, we used the Quora dataset 1,
consisting of 400,000 pairs of questions labeled with whether they are paraphrases of each other. For
STS, we used the SemEval STS Benchmark dataset, consisting of 8,628 sentence pairs labeled with a
similarity score from 0 to 5 (Agirre et al., 2013). All three datasets were split into train (70%), dev
(10%), and test (20%) sets (ProjectHandout, 2024).

To deal with the imbalanced size across the default datasets, we secured two additional datasets for
the underrepresented tasks. For sentiment analysis, we used a subset of the Amazon Products Review
Dataset crawled from Amazon in 2014 by UCSD (Ni et al., 2019). In particular, this subset contains
982,619 Kindle book reviews where each textual review is accompanied by a rating from 1 to 5. This
rating could be interpreted as a sentiment score of the review where 5 corresponds to positive and 1
corresponds to negative. To match the provided SST dataset, we subtracted 1 from all ratings so that
the new ratings had range 0 to 4. When sampling from this Amazon dataset, we made sure to sample
with equal balance from each of the possible rating classes (Appendix A Figure 5).

1https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

3

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs


For STS analysis, we supplemented with the Sentences Involving Compositional Knowledge dataset
for Relatedness and Entailment (SICK). The SICK dataset was generated by Marelli et al. (2014)
from the 8K ImageFlickr data set and the SemEval 2012 STS MSR-Video Description data set. It
contains about 9,840 pairs of sentences, each labeled with a sentence relatedness score (from 1 to 5)
annotated through crowdsourcing (Appendix A Figure 6).

Using the five datasets described above, we produced three versions of data to conduct our experiments.
First, we trimmed the default training sets to the size of the smallest training set (i.e., the STS training
set): 6,040 rows. When sampling down, we made sure to maintain an equal balance amongst each
class as the data allowed. This version of the data was referred to as "trimmed". Then, we padded the
STS data with the SICK data, resulting in a dataframe with 15,880 rows. We trimmed the default
training sets for sentiment analysis and paraphrase detection to 15,880. This version of the data
was referred to as "padded". The third version was "full", consisting of the 15,880 rows of STS +
SICK data, all 141,506 rows of the Quora data, and the SST data padded up with the Amazon data to
141,506 rows (Appendix B Table 6). We were unfortunately unable to find more data for STS. We
considered using bootstrap to upsample existing data, but replicating the data to 10 times its current
size would likely deteriorate our training performance. All modifications only pertained to training
data.

4.2 Evaluation method

For evaluating sentiment classification and paraphrase detection, we used accuracy: the proportion of
labels correctly predicted. For evaluating STS, we used correlation: the Pearson’s correlation score
between the predicted similarity scores and the true similarity scores.

4.3 Experimental details

We set the default learning rate for the Adam Optimizer to be 1E-03 with β1 = 0.9, β2 = 0.999, ϵ =
1E-06, and an initial weight of decay being 0. After tuning pdropout and the fine-tuning learning rate
on the complete SST dataset, we proceeded with pdropout = 0.5 and a learning rate of 1E-05 for all
subsequent experimentation. After testing on the entire STS data, we validated that adding cosine
similarity improved STS correlation. With the padded data, we tested sequential and round-robin
multitask learning, and found that round-robin performed better. We also pursued annealed sampling
to further test multitask learning, and found that it outperformed the standard round-robin. Our
training process spanned 10 epochs and took approximately 1 hour on the trimmed data, 2 hours
on the padded data, and 10 hours on the full data using modern V100 GPU. We evaluated the
performance of the models using the dev sets for all 3 tasks. For reproducibility, we used seed 11711
for everything.

4.4 Results

Our first experiment was tuning the dropout rate. For computational efficiency, we only used the SST
dataset for dropout tuning and extrapolated to apply results to the other tasks in our model (Table 1).
We achieved the highest accuracy when fine-tuning on the SST dataset with pdropout = 0.5.

From these results, we also confirmed that fine-tuning had better performance than pre-training, and
thus only fine-tuned our subsequent models (Appendix C Figure 7).

After experimenting with various fine-tuning learning rates, we validated that the default rate of 1E-5
was the best learning rate to use (Table 2). We continued to use this rate for the rest of our models.

Next, using the STS data, we found that cosine similarity improved the performance of the STS task
and used this method for our future models. Initially, we aimed to use results from the trimmed data
to see if sequential learning or round-robin multitask learning performed better, but we noticed that
there was large variability in results, for instance, when implementing cosine similarity for the same
learning method (Table 3). Thus, we decided to test on the padded data to determine which learning
method we should pursue and concluded that round-robin multitask learning should be used (Table
4). Then, we experimented with annealed sampling to further explore other methods of multitask
learning.

Working with the full data, we compared performance of annealed sampling against round-robin
multitask learning and found that annealed sampling out-performed round-robin (Table 5). For

4



Dropout Probability Dev Accuracy for
Pretraining

Dev Accuracy for
fine-tuning

0.1 0.418 0.519

0.2 0.408 0.526

0.25 0.402 0.521

0.3 (default) 0.399 0.520

0.4 0.394 0.526

0.5 0.401 0.528

Table 1: Results from Dropout Probability Tuning on SST

Fine-tuning Learning Rate Dev Accuracy

1E-4 0.262

1E-5 (default) 0.520

5E-6 0.516

1E-6 0.514

Table 2: Results from Fine-tuning Learning Rate Tuning on SST

Model Sentiment Accuracy Paraphrase
Accuracy

STS Correlation

Sequential learning 0.514 0.701 0.361

Sequential learning,
cosine similarity

0.480 0.590 0.435

Round-robin 0.484 0.685 0.332

Round-robin, cosine
similarity

0.497 0.658 0.361

Table 3: Results from Cosine Similarity

Model Sentiment Accuracy Paraphrase
Accuracy

STS Correlation

Sequential 0.466 0.662 0.502

Round-Robin 0.491 0.699 0.475

Table 4: Results for Sequential vs. Round-Robin Multitask Learning

annealed sampling, we observed steady improvement across epochs and confirmed that for the last
epoch, the weights were equal across tasks as intended (Figure 1).

We achieved the following test leaderboard results using annealed sampling: 0.501 for sentiment
accuracy, 0.781 for paraphrase accuracy, and 0.546 for STS correlation, with an overall score of 0.685.
Based on our results, it was not surprising that a higher pdropout, implementing cosine similarity
for STS, adding task-specific data, and utilizing multitask learning (both round-robin and annealed

5



Model Sentiment Accuracy Paraphrase
Accuracy

STS Correlation

Round-Robin 0.463 0.747 0.436

Annealed Sampling 0.499 0.776 0.562

Table 5: Results for Round-Robin vs. Annealed Sampling Multitask Learning

Figure 1: Dev Accuracy by Epoch for Annealed Sampling

sampling) improved performance, as these techniques were recommended in related work. It was
unexpected to see round-robin multitask learning perform worse for sentiment accuracy compared
to previous models on the full data, as additional data for the sentiment task should have improved
performance and prevented overfitting. It also was expected that the model would overfit on the STS
data, as this dataset was the smallest in comparison, but this performance was not significantly worse
compared to smaller models. It was surprising that only paraphrase accuracy improved.

5 Analysis

Ablation Study:

As our process demonstrates, we conducted an ablation study in order to dissect and analyze different
elements of the model and training process to understand their contributions to performance metrics
across sentiment classification, paraphrase detection, and STS tasks. The first component of our
study was to understand the impact of the pdropout, where we kept the dataset (SST), learning rate,
training strategy (pretrain vs. finetune) and task fixed and varied pdropout according to these values:
0.1, 0.2, 0.25, 0.4, 0.5. As seen in Table 1, we achieved the highest accuracy for fine-tuning when
pdropout = 0.5. The next component of our ablation study was to alter the fine-tune learning rate,
holding the dataset (SST), training strategy (fine-tune), and pdropout fixed. After experimenting
with learning rates of 1E-4, 5E-6, and 1E-6, the best performance was achieved using the default
rate of 1E-5 (Table 2). We next experimented with cosine similarity in the STS task, and found
that when holding dataset (STS), pdropout, learning rate, and training strategy (fine-tune) fixed, our
dev correlation was higher when incorporating cosine similarity into the loss calculation (Table

6



3). Next, we wanted to examine the efficacy of sequential vs. multitask (round-robin) training,
and discovered that multitask learning achieved improved overall performance after holding dataset
(padded), pdropout, and learning rate fixed (Table 4). The final step in our ablation study was
comparing basic round-robin with annealed sampling, where we held dataset (full), pdropout, and
learning rate fixed, and achieved our best performance when using annealed sampling (Table 5).

Error Analysis:

Figure 2: Error Analysis for Paraphrase Detection

Our model performed better in recognizing class 0 (i.e., non-duplicates) in paraphrase detection,
which aligns with the fact that the number of examples in class 0 is approximately 1.7 times greater
than that in class 1 in the training data. To increase the accuracy of predicting for class 1, we should
augment class 1 in the training data through either upsampling or acquiring more data.

Figure 3: Error Analysis for Sentiment Analysis

For sentiment analysis, our model had the highest accuracy in recognizing class 1 and 3 (somewhat
negative and somewhat positive) and the worst in predicting class 2 (neutral). This performance
cannot be attributed to imbalance in the training data, as the representation of all five classes are quite
equal. Class 2 was the hardest to recognize because a neutral sentiment is inherently more subjective
or harder to define clearly compared to more polarized sentiments. For example, one review labeled
“neutral” in the SST dev set is “a beautifully made piece of unwatchable drivel”. Even for humans, it
is hard to tell whether this comment is toasting the movie using sarcasm or saying that the content

7



of the movie is bad but the scenes are beautiful. It can only be harder for the model to discern the
sentiment embedded in this review which has both positive words like “beautifully” and negative
words like “unwatchable” and “drivel” and potentially means the opposite of its literal sense. We
were surprised to see that our model struggled to predict the two extreme cases (0 and 4) as they often
exhibit clear, unambiguous sentiment expressions. However, as is evident from the confusion matrix,
predictions for class 0 and 4 were split between them and their adjacent classes (1 and 3). Hence,
it is reasonable to speculate that class separability between negative versus somewhat negative and
positive versus somewhat positive is difficult for the model to determine (Figure 3).

Figure 4: Error Analysis for Textual Similarity Detection

For the STS task, we binned the similarity scores into five buckets to better analyze exactly how
our model is erroring out. We found that our model performed better (precision and recall-wise)
for larger and smaller similarity scores (Figure 4). This makes sense as the more extreme the cases
are, the more distinctive they tend to be. The neutral cases can suffer from lexical ambiguity, class
separability issues, and potential mis-labelling during crowdsourcing.

6 Conclusion

Overall, our project identified that the following extensions to the BERT model improved performance:
hyperparameter tuning (dropout rate, fine-tuning learning rate), cosine similarity for the STS task,
additional task-specific data, multitask learning, and annealed sampling. Over the course of the
project, we learned how to implement each extension and understand how to build upon models
iteratively to obtain the best results. One limitation of our work may be the addition of the Amazon
dataset for sentiment analysis. While product reviews may be used as proxies for sentiment, these
may not align exactly with the original data and could contain inconsistencies. Future work may
include further hyperparameter tuning and the inclusion of additional data for STS, as this may
improve results for multitask learning and prevent overfitting when training on uneven data.

7 Contributions

Coding, debugging, and report writing was split quite evenly for proposal, milestone, and final report.
Specializations for each team member were: Anusha performed the GCP setup and was responsible
for running all of the experiments and creating plots and tables found in the report, Malavi wrote
the code for round-robin and annealed sampling, and Julia found and cleaned additional datasets,
implemented cosine similarity, and performed error analysis. Our mentor is Andrew Lee.

References
Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo. 2013. sem 2013

shared task: Semantic textual similarity. Second joint conference on lexical and computational

8



semantics (*SEM), volume 1: proceedings of the Main conference and the shared task: semantic
textual similarity, page 32–43.

M. Marelli, S. Menini, M. Baroni, L. Bentivogli, R. Bernardi, and R. Zemparelli. 2014. A sick
cure for the evaluation of compositional distributional semantic models. Proceedings of the 2014
International Conference on Language Resources and Evaluation.

Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying recommendations using distantly-
labeled reviews and fined-grained aspects. Empirical Methods in Natural Language Processing
(EMNLP).

Stanford Univeristy CS 224N ProjectHandout. 2024. Cs 224n default final project: minbert and
downstream tasks. Stanford University.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-
networks. Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), page 3982–3992.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment
treebank. Proceedings of the 2013 conference on empirical methods in natural language processing,
pages 1631–1642.

Asa Cooper Stickland and Iain Murray. 2019. Bert and pals: Projected attention layers for efficient
adaptation in multi-task learning. In International Conference on Machine Learning, pages
5986–5995. PMLR.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2019. How to fine-tune bert for text classi-
fication? In Chinese Computational Linguistics: 18th China National Conference, CCL 2019,
Kunming, China, October 18–20, 2019, Proceedings 18, pages 194–206, Online. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
Processing Systems, pages 5998–6008.

Appendix A EDA on Additional Datasets

Amazon Review Data Note that the Amazon Review Data (Ni et al., 2019) is highly imbalanced
(see Figure 5). Nonetheless, the imbalance between classes does not affect our model because we are
only using a small subset of this data which does not require the overflowing portion of the larger
classes. To be exact, we used 1,467 rows of the dataset with sentiment score 0, 1, 2, and 3 respectively,
as well as 1,468 rows of the dataset with sentiment score 4. These numbers were selected so that the
resulting "full" sentiment analysis dataset would have exactly 141,506 rows, matching the size of the
full Quora dataset.

SICK Data Note that the distribution of the similarity scores of the SICK data (Marelli et al., 2014)
is slightly different from that of the training set of STS: the former has more pairs with similarity
scores above 3 and relatively fewer pairs with similarity scores between 1.5 and 2.5 whereas the
latter has a relatively uniform distribution (see Figure 6). This would result in a rather unbalanced
representation of examples with different similarity scores and could potentially cause affect our
model. We attempted to find more datasets on textual similarity detection with similarity scores as
result but without much success. This would be one direction of possible future work.

Appendix B Three versions of Data

Please find the number of samples in each version of the data below in Table 6.

Appendix C Tuning Dropout Probability

Please find the accuracy by dropout rate plot below (Figure 7).

9

https://zenodo.org/records/2787612
https://zenodo.org/records/2787612
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2
https://arxiv.org/pdf/1908.10084.pdf
https://arxiv.org/pdf/1908.10084.pdf
https://doi.org/10.48550/arXiv.1905.05583
https://doi.org/10.48550/arXiv.1905.05583


Figure 5: Distribution of the sentiment scores of the SST training set (left) and the full Kindle review
dataset before sampling (right)

Figure 6: Distribution of the similarity scores of the STS training set (left) and the SICK dataset
(right)

Data Version Sentiment Analysis Paraphrase
Detection

Textual Similarity
Detection

Trimmed 6,040 6,040 6,040

Padded 15,880 15,880 15,880

Full 141,506 141,506 15,880

Table 6: Size of the Three Versions of Datasets Used

10



Figure 7: Accuracy by Dropout Rate

11


	Introduction
	Related Work
	Approach
	Experiments
	Data
	Evaluation method
	Experimental details
	Results

	Analysis
	Conclusion
	Contributions
	EDA on Additional Datasets
	Three versions of Data
	Tuning Dropout Probability

