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Abstract

ICD-10 codes are essential in healthcare for standardizing medical documentation,
streamlining communication among healthcare professionals, ensuring accurate
billing, and enabling downstream clinical prediction. Currently, ICD-10 diagnosis
codes are manually assigned by healthcare administrators which is labour intensive
and error-prone. In this paper, we aim to automate the extraction of ICD-10 diag-
nosis codes from free-text clinical notes, making the coding process more efficient
and accurate. To tackle this task, we extract key sections from the clinical notes
and apply two methodologies: 1) finetuning pre-trained ClinicalBERT with a linear
classification layer and 2) finetuning ClinicalBERT on text similarity between code
definitions and clinical note embeddings. Both models are trained and evaluated
on clinical notes and corresponding ICD-10 codes from MIMIC-IV dataset, a
comprehensive electronic health records database. Our experimentation reveals
that both models significantly beat baselines, with the finetuned ClinicalBERT
+ Linear Layer presenting the best results. These results underscore the efficacy
of our system in automating the extraction of ICD-10 codes from clinical notes,
paving the way for improved efficiency and accuracy in healthcare documentation.

1 Key Information
• External Mentor: Jeff Choi (Stanford General Surgery Resident)
• Team Contributions: Arjun handled all implementation and experimentation for finetuning

ClinicalBERT with the linear classification layer. Rishi handled implementation and experi-
mentation of baselines and text similarity classifer. Devanshu handled all data preprocessing,
sectioning of clinical notes, and ran experiments. All authors contributed to the paper
equally. All code was implemented from scratch.

2 Introduction

The International Classification of Diseases, 10th edition, also known as ICD-10, is a system
for classifying medical procedures and diagnoses. This taxonomy is used internationally and is
maintained by the World Health Organization (WHO). These codes are crucial in healthcare for
a multitude of reasons. Firstly, they enable standardized documentation of medical diagnoses,
ensuring clarity and accuracy in patient records. Secondly, they facilitate streamlined communication
among healthcare professionals, allowing for effective care coordination and treatment planning.
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Additionally, ICD codes play a pivotal role in billing and reimbursement processes, ensuring that
healthcare providers receive appropriate compensation for their services. Moreover, these codes serve
as a foundation for healthcare data analysis, enabling researchers to identify trends, monitor public
health, and drive evidence-based decision-making (Hirsch et al., 2016).

Currently, the task of ICD coding relies on manually trained coders, who spend an average of 34
minutes assigning codes for each patient (Teng et al., 2023). However, the accuracy and efficiency of
this manual process often fall short in real-world applications. It is susceptible to errors stemming
from various uncontrollable factors, including discrepancies in patient discharge summaries and
variations among coders or healthcare facilities. These errors can result in incorrect billing, refusals
of health insurance reimbursements, and inadequate payments (Teng et al., 2023).

Given the significance of ICD coding in healthcare settings and the inefficiency and inaccuracy of
the current manual process, there is a growing interest in automating the extraction of ICD codes
from clinical documentation. Automated extraction utilizes natural language processing and machine
learning algorithms to analyze and interpret clinical notes to identify and assign relevant ICD codes.

3 Related Work

There have been a number of works studying Automated Medical Coding, which have been surveyed
by Ji et al. (2022). This paper highlights that this task is challenging because medical notes often use
a completely different structure and terminology than prototypical examples of English language.
For one, medical texts use abbreviations, acronyms, and jargon that can seem incomprehensible to
those not trained professionally. In addition, medical texts are lengthy, unstructured, noisy, and don’t
correspond one-to-one with ICD codes. We present several key works below.

Choi et al. (2023) develop and validate TraumaICDBERT, a NLP algorithm to predict injury ICD-10
diagnosis codes from trauma tertiary survey notes. This model has two key limitations. Their model
is only trained on clinical notes from trauma settings, and is only trained on a small dataset of 3,478
data points. In contrast, our approach overcomes these limitations by leveraging the MIMIC-IV
dataset, a comprehensive medical dataset that offers a diverse range of clinical notes across various
medical specialties and a substantially larger volume of data.

The authors of "ClinicalBERT: Modeling Clinical Notes and Predicting Hospital Readmission" use
bidirectional encoder representations to predict 30-day hospital readmission at various time points
Huang et al. (2019). They use both discharge summaries and the first few days of notes in the
intensive care unit to train their model . However, they do not use other additional information like
patient’s history and outpatient doctor notes. Our approach uses these additional pieces of information
to predict ICD-10 codes, allowing us to predict ICD-10 codes for non-hospitalized patients which
can be later used in other downstream applications.

Lastly, in "Predicting ICD-9 Codes Using Self-Report of Patients," the authors apply a Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU) to develop a model for predicting ICD-9
codes Singaravelan et al. (2021). Instead of using free text clinical data or lab reports, the paper
only uses self-reported information like signs and symptoms of a patient to predict ICD-9 codes,
which can then be used for applications like self-diagnosis and disease prevention. The authors
only predict ICD-9 codes, which jave been deprecated and replaced by more uniform and more
accurate ICD-10 codes. This approach can also result in incorrect diagnoses, since it only replies
on a patient’s own report. Building on top of this, using free-text clinical notes augmented with
self-reported information, we can allow for a holistic self-diagnosis tool, along with a medical aid for
professionals.

4 Dataset and Preprocessing

4.1 Task Overview and MIMIC-IV Database

Our task is to parse free-text clinical notes and automatically extract ICD-10 codes. This is a multi-
label binary classification problem, as a patient can have multiple diagnoses, and thus be assigned
multiple codes. For this task, we leverage MIMIC-IV, a database of electronic health records collected
over 2009-2019 from the Beth Israel Deaconess Medical Center (Johnson et al., 2023). MIMIC-IV
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contains over 330,000 de-identified, free-text clinical notes and their corresponding ICD-10 diagnosis
codes.

Table 1 below displays an example input and output. Due to restrictions on publicly sharing the
clinical notes in MIMIC-IV, we present an example of a clinical note along with its corresponding
truncated ICD-10 codes (truncated) from Choi et al. (2023) in Table 1. Note that the notes from our
dataset are significantly longer, averaging over 1,000 tokens.

Note ICD-10 Code
1. *** stab wounds to L back with retained stabbing
implement
2. Descending thoracic aortic injury s/p primary repair
3. L hemopneumothorax s/p chest tube x2 to wall suction
4. Small R pneumothorax managed expectantly
5. Grade 2-3 liver lac managed non-op
6. R ***th rib Fx
7. LLL lung contusion
8. L forehead lac

S01.8 : Open wound of other parts of head
S22.3 : Fracture of one rib
S27.2 : Traumatic hemopneumothora x
S27.3 : Other and unspecified injuries of
lung
S36.1 : Injury of liver and gallbladder and
bile duct

Table 1: Example Input and Output. Note that all 8 items in the list are part of a single input, and all
5 codes are part of the observed output. (Choi et al., 2023).

4.2 Code Selection

ICD-10 codes vary in length, with each additional character providing increased specificity. Following
Huang et al. (2019), we truncate each code to the first 4 characters to balance specificity and predictive
ability.

The dataset is highly imbalanced, with a long-tail of over 5,000 ICD-10 codes codes with a frequency
of 1, so we limit the data to the most frequent ICD-10 codes. This is in accordance with Nguyen et al.
(2023).

Specifically, we create two datasets: one with 50 most frequent ICD-10 codes ("top50") and one
with 200 most frequent ICD-10 codes ("top200"). We chose to include top 200 in addition to top 50
because it represents a more challenging task of predicting less frequent codes, while still not being
totally imbalanced.

4.3 Stratified Sampling

For computational reasons, we randomly subsampled 50,000 examples from the dataset. Then, we
used stratified sampling to define train, valid, and test splits. Although the MIMIC-IV dataset has
predefined train, validation, and test splits, Edin et al. (2023) noted that a large percentage of codes in
the training set are completely absent in the test set. In addition, the test set is small, only comprising
of 5% of examples. We define new splits of the dataset to better and more fairly assess our model’s
performance on this unbiased dataset. We use iterative stratified sampling, an algorithm developed
by Sechidis et al. (2011) for stratification of multilabel data, which addresses the issue of random
sampling resulting in sparse examples in test datasets. This algorithm greedily assigns datapoints to
the three datasets to ensure equitable distributions of labels. We apply an approximate 80% train, 10%
validation, and 10% test split, which resulted in 38,730 training examples, 5,565 for validation, and
5,705 held out for testing. These splits were equal for both the top50 and top200 datasets.

4.4 Extracting Key Sections from Clinical Notes

The free-text clinical notes are on average 1,122 tokens long. From our initial experimentation, we
observed that the performance of ClinicalBERT on these notes was limited by its maximum sequence
length of 128 tokens, and simply using the first 128 tokens failed to capture the content of the note
relevant to ICD-10 code classification.
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To address this limitation, we decided to extract three key sections from each clinical note, we take 2
chunks of 128 tokens from each section and concatenate them. MIMIC-IV has multiple sections that
includes patient history, discharge summaries, patients notes, social/family history, test results, etc.
To identify which sections to choose, we ran a logistic regression model on the sections and picked 3
sections with the highest correlation with the ICD-10 diagnoses codes. The 3 sections are: “History
of Present Illness”, “Past Medical History”, and “Physical Exam”.

Extracting these sections from each note proved to be quite difficult because the notes vary signifi-
cantly from patient to patient. There were no consistent delimiters which could be used to break up
these sections, and their lengths varied from 10 tokens to over 1000 tokens. After manual screening
of over a hundred patient records, a hierarchical approach was developed to make these sections.
For example, in the case of physical exam, over seventy-five percent of records were delimited by
“discharge:”. Using this strategy, sectioning of the notes was possible. Due to the inconsistent nature
of the data, this approach was not perfect, resulting in certain sections containing a part of the next
subsection, but was simpler than a segmentation model. However, since we are using a maximum of
256 tokens per section (2 128-token chunks per section), we were able to mitigate this situation.

5 Approach

5.1 Baseline Models

Previous work, such as TraumaICDBERT by Choi et al. (2023), is limited to specific categories of
patients, like trauma patients, and is not generalizable to other medical settings. As we expand the
scope of our models, their results are not a suitable baseline. Instead, we formulate a set of naive
classifiers as baselines. To tackle multi-label classification, we use a technique called binary relevance
(Zhang et al., 2018), which independently trains a binary classifier for each possible label. We first
generate an embedding for each discharge summary using TF-IDF scores, a standard data-mining
approach which treats documents in a Bag-of-Words representation and identifies the distribution of
important words. The resulting vectors are essentially augmented frequency counts for these words.
Then, we apply three standard methods for binary classification: Logistic Regression, Support Vector
Classifiers, and K-Nearest Neighbor Classifiers. Apart from binary relevance, we also tried to apply
LLMs such as Llama and Mistral to extract ICD-10 codes from discharge summaries, However, due
to restrictions on sharing credentialed data with third parties and the inability of the LLMs to reliably
output a consistent format, we were unable to generate this baseline.

5.2 Finetuning ClinicalBERT with Linear Classification Layer

For this approach, we finetuned a pre-trained BERT model called ClinicalBERT (Alsentzer et al.,
2019). The base model of ClinicalBERT is BioBERT, a language model pretrained for biomedical
text mining (Lee et al., 2019). ClinicalBERT finetunes BioBERT on discharge summaries from
MIMIC-III, a smaller dataset similar to MIMIC-IV from the same hospital. We chose ClinicalBERT
because it has a semantic understanding of medical terminology through its base model and it has a
syntactic understanding of clinical notes through its pretraining. The maximum sequence length of
ClinicalBERT is 128 tokens.

To train ClinicalBERT, we first concatenate the preprocessed sections of each clinical note and
tokenize them, and then split this tensor into six chunks of 128 tokens (2 chunks per section). We
process each chunk separately with ClinicalBERT, generating contextualized embeddings. Next, we
combine these embeddings by concatenating them, which ensures that the information of each chunk
is preserved (embedding dimension= 6 · 128 = 768). Finally, we pass these embeddings through a
fully-connected linear classification layer that has input dimension 768 and output dimension equal
to the number of output labels (50 or 200). For the forward and backward passes, we use binary
cross-entropy loss because our task is multi-label classification and binary cross-entropy loss is
well-suited for tasks where each example can belong to multiple classes simultaneously.

5.3 Text Similarity Classifier

A clear limitation of NLP-based classifiers is their dependence on a predetermined set of ICD-10
codes. When we expanded our set of codes considered from the top 50 to top 200 codes, we had to
fine-tune ClinicalBERT from scratch, with a new linear layer for classification (described above) As
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a result, these models cannot generalize to rare codes or if the classification system gets modified.
The ICD-10 codes are updated yearly, and models would require frequent maintenance to handle the
changing label set.

Instead, we note that each ICD-10 code has an official definition, which can aid the model in
information retrieval, rather than learning contextual associations between the textual inputs and
codes from scratch. We propose a novel text similarity classifier embeds each discharge summary
using the ClinicalBERT model and each ICD-10 code using their official definitions. We use cosine
similarity between these embeddings to generate a classification score, under the assumption that the
description of an ICD code and a patient diagnosed with that code will be similar. We thus convert
our classification task into a semantic similarity task.

Our approach is similar to that of Sentence BERT (Reimers and Gurevych, 2019), which is derived
from BERT but generates sentence, rather than token-level embeddings. This approach has noted
state-of-the-art results using cosine similarity between text embeddings for semantic similarity tasks.
In the absence of a Sentence BERT model fine-tuned for clinical texts, we pool over the token
embeddings generated by BERT, as done by Zhang et al. (2019). Because of the limited maximum
sequence length of our base model, we first pool over the token embeddings for each section to
generate section embeddings. We then generate a final embedding for the clinical note by pooling
over all the sections.

6 Experiments

6.1 Evaluation Methods

We use standard metrics for multi-label classification, as there are 5.8 ICD-10 codes on average for
each clinical note. We average AUROC and F1 scores (Grandini et al., 2020) over each class (macro),
over each datapoint (micro), and weighted classes (weighted). We also compute Precision and Recall
@k (k ∈ {5, 10, 20}). These measure precision and recall among the k ICD-10 diagnosis codes with
the highest predicted probabilities.

To compute these metrics, we need to threshold the continuous probability scores produced by
the model to produce binary predictions. Instead of relying on a fixed threshold, which may not
generalize well across different datasets and model architectures, we opt for a dynamic threshold
selection approach. We iterate over a range of thresholds from 0 to 1 with a step size of 0.01 to
explore threshold space. We maximize the weighted F1 score, a metric that balances precision and
recall to trade-off between correctly identifying positive instances and capturing all positive instances.
This adaptive thresholding method calibrates our models, ensuring each model predicts a similar
number of labels for each text example.

6.2 Hyperparameter Tuning

For both approaches, we use the Adam optimizer. To optimize the learning rate for finetuning of
ClinicalBERT, we conducted hyperparameter tuning of the learning rate. On a smaller subset of the
dataset (train: 10k examples, validation: 1k examples, test: 1k examples), we finetuned ClinicalBERT
for 5 epochs and with four different learning rates: 1E − 5, 5E − 5, 7.5E − 5, 1E − 4. For each
learning rate, after ClinicalBERT model was trained, the model was then evaluated on the validation
dataset, optimizing for weighted F1 score. The results of the hyperparameter tuning are presented in
Figure 1.

From the results in Figure 1, we see that the weighted F1 score slightly increases at a learning rate of
5.0E − 5, slightly drops at learning rate of 7.5E − 5, and then significantly drops as the learning rate
increases past that point. We thus choose 5.0E − 5 as our optimal learning rate. We present all the
other parameters of our models below:

6.3 Experiment Details

We first trained and evaluated the baseline, the ClinicalBERT + Linear Layer model, and the Text-
Similarity Classifier, on the "top50" dataset.
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Figure 1: Learning Rate Optimization

Parameters of ClinicalBERT + Linear Layer Model: vocab_size=28996, max_sequence_length=128,
embedding_dimension=768, num_hidden_layers=12, num_parameters=108,387,122, learn_rate=5e-
5, batch_size=20, num_epochs=5, dropout_rate=0.10, train_time=6hrs.

Parameters of Text-Similarity Classifier: vocab_size=28996, max_sequence_length=128, embed-
ding_dimension=768, num_hidden_layers=12, num_parameters=108,348,722, learn_rate=5e-5,
batch_size=12, num_epochs=5, dropout_rate=0.10, train_time=5hrs.

The Text Similarity Classifier required a smaller batch size, due to the increased memory capacity of
having to backpropagate across both the text embeddings and the definition. In addition, due to these
memory limitations, we train the model to maximize cosine similarity with all positive examples
(true codes for the text) and minimize for 10 randomly sampled negative examples.

We then trained and evaluated all models on the "top200" dataset.

Parameters of text similarity classifier model: vocab_size=28996, max_sequence_length=128, em-
bedding_dimension=768, num_hidden_layers=12, num_parameters=108,348,722, learn_rate=5e-5,
batch_size=12, num_epochs=5, dropout_rate=0.10, train_time=5.5hrs.

Parameters of ClinicalBERT + linear layer model: vocab_size=28996, max_sequence_length=128,
embedding_dimension=768, num_hidden_layers=12, num_parameters=108,502,322, learn_rate=5e-
5, batch_size=20, num_epochs=5, dropout_rate=0.10, train_time=7hrs.

AUROC F1
Micro Macro Weighted Micro Macro Weighted

Logistic Regression 77.2 71.2 70.3 37.9 31.2 36.0
KNN Classifier 64.6 58.5 58.4 27.7 23.3 29.3

Support Vector Classifier 77.2 71.2 70.3 37.9 31.7 36.3
Fine-Tuned ClinicalBERT 86.0 82.7 82.4 53.0 46.0 51.5

Text-Similarity ClinicalBERT 82.5 78.7 76.8 44.5 38.7 43.1
Table 2: AUROC and F1 Scores for top50 Dataset

7 Analysis

7.1 Quantitative Results

We presents the results of our experiments on the top50 dataset in Tables 2 and 3, and the results on
the top200 dataset in Tables 4 and 5. The Fine-Tuned ClinicalBERT model refers to the classifier
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Precision Recall
5 Codes 10 Codes 5 Codes 10 Codes

Logistic Regression 37.4 29.2 35.2 53.8
KNN Classifier 26.7 21.5 25.0 39.2

Support Vector Classifier 37.6 29.2 35.3 53.8
Fine-Tuned ClinicalBERT 51.9 37.0 49.9 67.8

Text-Similarity ClinicalBERT 41.6 32.9 40.8 61.9
Table 3: Precision and Recall for top50 Dataset

AUROC F1
Micro Macro Weighted Micro Macro Weighted

Logistic Regression 70.7 63.8 62.0 16.1 15.4 17.8
KNN Classifier 57.2 50.9 50.8 9.1 7.5 10.1

Support Vector Classifier 70.6 63.8 62.0 16.1 15.6 17.9
Fine-Tuned ClinicalBERT 84.5 78.5 78.4 35.2 20.5 30.7
Text-Similarity (50-train) 76.7 72.0 75.5 23.2 17.8 31.4
Text-Similarity (200-train) 79.6 76.8 77.8 25.5 19.8 31.5

Table 4: AUROC and F1 Scores for top200 Dataset

from Section 5.2 and the Text-Similarity Clinical BERT refers to the classifier from Section 5.3. We
detail the difference between the 50-train and 200-train versions of the Text-Similarity models in
Section 7.3.

We note that the Logistic Regression and Support Vector Classifiers have similar results, while the
KNN classifier performs significantly worse. This is unsurprising - we expect significant variation
across the notes, and that the content test notes will not significantly resemble the train or validation
notes. Across almost all metrics and both datasets, the ClinicalBERT + Linear Layer model performs
the best. The Text-Similarity model beats the baselines, and has performance approaching that of the
ClinicalBERT + Linear Layer, but still underperforms. This matches with our expectations comparing
the both models. The ClinicalBERT + Linear Layer only needs to consider the top 50 or 200 codes,
and can thus adapt its embeddings specifically for that set of codes. The Text-Similarity model has a
harder task: it must simultaneously adapt the embeddings for the definitions and the text embeddings,
and must maximize the cosine similarity of same text embedding with a large number of definition
embeddings. We hypothesize that performance will improve using an MLP to generate a score from
the two embeddings, rather than simply cosine similarity.

7.2 Baseline Model Analysis and Discriminative Ability

We notice that the baseline models performed significantly better than we expected. Given that
the baseline models consist of naive classifiers trained on bag of word embeddings for the text, we
expected them perform poorly given the nuanced context behind clinical classification. Investigating
the coefficients of one of the baselines (logistic regression classifier), we notice that they place
weights on a select few vocabulary items. For example, the classifier for J960 (acute respiratory
failure) has weight greater than 1 on the presence of words like “acute,” “breath,” “cough,” “dyspnea”
(meaning labored breathing), and “shortness.”

So, the strong performance of baseline models can be attributed to the diverse nature of the top 50
ICD-10 codes, which cover a wide range of medical conditions. This diversity inadvertently made
the classification task easier for the baselines by providing a broad cross-section of patients. For
example, since few codes directly relate to breathing problems, terms like "dyspnea" can easily lead
to a prediction of acute respiratory failure. Baseline models, with their limited feature set, could
then more easily learn the importance of specific vocabulary items for each classification unlike
BERT-based models, which consider the entire text and use shared embeddings for all ICD codes.

A more clinically relevant metric would be to compare the model’s ability to distinguish similar ICD
codes. So, we reevaluated our models on 4 codes corresponding to variations of "type2 diabetes
mellitus": E112 (with kidney complications), E114 (with neurological complications), E116 (with
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Precision Recall
5 Codes 10 Codes 5 Codes 10 Codes

Logistic Regression 24.3 16.4 22.1 17.7
KNN Classifier 12.6 8.4 12.2 5.9

Support Vector Classifier 24.3 16.4 22.2 17.8
Fine-Tuned ClinicalBERT 41.6 31.4 26.2 37.9
Text-Similarity (50-train) 28.2 22.8 18.4 28.5
Text-Similarity (200-train) 28.7 23.6 19.3 30.4

Table 5: Precision and Recall Scores for top200 Dataset

AUROC F1
Micro Macro Weighted Micro Macro Weighted

Logistic Regression 66.4 63.1 61.9 20.8 19.1 19.9
Fine-Tuned ClinicalBERT 90.4 90.3 89.9 55.4 54.0 55.3

Text-Similarity ClinicalBERT 87.6 87.4 86.6 42.9 42.1 43.5
Table 6: Evaluation of 50-code Models on just codes E112, E114, E116, and E119.

other specified complications), and E119 (without complications).The results of this experiment are
presented in Table 6. Because of the similarity across baselines, we only present logistic regression.
These results show where transformer-based models shine. While the strength of our baselines
comes from key vocabulary elements distinguishing substantially different codes, transformer-based
models have a much stronger discriminative ability to distinguish similar codes.

7.3 Text-Similarity Zero-Shot Learning

As described in approaches, the text-similarity model has the theoretical ability to generalize. Because
there is no additional linear layer, only the weights for the base BERT model are fine-tuned to generate
high-quality embeddings. Thus, if definitions of some ICD-10 codes change, new codes are added, or
even a new standard like ICD-11 is released, the model should be able to understand the modified
codes just from their definition, without any additional training. To assess this, we re-evaluated the
Text-Similarity model trained only on top-50 code dataset ("50-train") on the top-200 code test set,
despite the model never having seen 150 of the 200 classes which it is expected to predict. Incredibly,
the model’s results do not degrade significantly. Though the text-similarity model is still far from the
ClinicalBERT classifier, the 50-train version still significantly beats baselines, and reports scores only
marginally lower than the 200-train version of the model. Our model displays zero-shot learning,
which to the best knowledge of the authors, is a first for Automated Medical Coding. We hypothesize
that the Text-Similarity model will demonstrate better performance when there are much larger
numbers of ICD-10 codes, including rare codes which may be difficult for the ClinicalBERT + Linear
Layer model, such as with extremely rare codes that only appear a single time in the dataset.

8 Conclusion and Future Work

ICD-10 codes are extensively used in healthcare industry from billing, insurance claims to medical
communication. Currently, trained hospital administrators manually assign these codes for each
patient. This process is extremely expensive and requires significant amount of time and labour.
Using free-text clinical notes, we finetuned pre-trained Clinical-BERT with a linear classification
layer. We saw promising results, particularly on hard-to-differentiate codes, validating an NLP
approach to automate ICD-10 coding. In addition, a text-similarity classifier demonstrates zero-shot
learning, a new result in the domain of medical coding. This can result in a step towards a faster,
efficient and a more affordable health care industry.

Further work can be done to use a patient’s self-reported data like signs and symptoms. This additional
detail with the patients history, can allow us to predict future health concerns and can be used for
preventative measures. In addition, we hope to consider larger portions of clinical notes beyond the
three primary sections identified, and to evaluate both models on rarer codes.
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