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Abstract

Given the large size of modern LLMs, researchers have focused on creating
parameter-efficient fine-tuning (PEFT) techniques that allow models to perform
specific tasks at a much lower compute and time cost. Low-rank adaptation (LoRA)
has been a widely popular PEFT technique. However, a recently released method,
Robust Adaptation (RoSA) promises better performance on complex tasks relative
to LoRA in resource-contained conditions. This study analyzes the performance of
these PEFT techniques on a difficult task, text style transfer (TST) from modern
English to Shakespearean style, by finetuning a Google Multilingual T5 (mT5)
base model using fine-tuning methods like RoSA and LoRA, as well as zero-shot
and few-shot prompting. Our studies demonstrate the efficacy of the RoSA method
on the Shakespearean TST task when compared to other model adaptation methods.

1 Key Information to include

Our mentor is Yuhui Zhang. We have no external collaborators and are not project-sharing.

Team Contributions:

• Ayaan: Devised & implemented evaluation pipeline & fine-tuned and ran experiments on
all LoRA & RoSA models for Shakespearean TST. Completed sections of report.

• Arnav: Created and trained TST classifier, debugged model code. Completed sections of
report. Created poster and ethics statement.

• MacVincent: Implemented evaluation pipeline for model output. Trained Quantized LoRA.
Assisted with the training of models for fine-tuning tasks. Completed sections of the report.

2 Introduction

Text-style transfer (TST), is a family of problems focused on transforming the style or appearance of
text while preserving its content (Shen et al., 2017). Examples of TST problems include sentiment
transfer (translating a positive sentence to a negative one) or deciphering text. LLMs have shown
impressive performance on TST tasks: but modern LLMs like GPT-4 are incredibly large, making full
finetuning (FFT) prohibitively time and cost-intensive, necessitating the use of parameter-efficient
finetuning methods (PEFT), like Low-Rank Adaptation (LoRA). While LoRA is many times faster
than FFT, it generally fails to achieve similar performance on more complex tasks (Hu et al.,
2021). RoSA is a recently-released PEFT method that has shown much-improved performance over
techniques like LoRA in complex generation tasks while still remaining efficient (Nikdan et al., 2024).
However, RoSA has not been tested outside of the original paper and its downsides are not apparent,
so RoSA’s performance on many tasks is still unclear. In an attempt to answer this question, our
project evaluates RoSA’s performance on the task of TST and compares it to LoRA.

Furthermore, evaluating TST is itself an area of research – recent work Ostheimer et al. (2023) shows
that LLMs may be an effective evaluation method. We explored this idea in this paper and proposed
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a novel technique utilizing LLM evaluation intertwined with generic metrics and trained classifier
models.

3 Related Work

Existing research on TST shows a wide range of neural models have been deployed on these
problems: one early paper, Jhamtani et al. (2017) used a bidrectional LSTM to translate modern
English sentences into Shakespearian English (a task that we tested our model on as well). LLMs
have, of course, been used for this task as well, but much of the existing work like Reif et al. (2022)
and Pan et al. (2024) focuses on prompt-based approaches (few and zero-shot learning) and do not
use any form of finetuning for this task.

There are also a diversity of methods used to evaluate TST. Semantic evaluation metrics
like BLEU and BERTScore are inexpensive, but focus purely on semantic meaning (Zhang et al.,
2020). Transfer strength, developed by Fu et al. in 2018 specifically for TST is based on training a
classifier model to evaluate what proportion of sentences were of the desired style. Recent research
has shown that LLMs with few-shot learning are also highly accurate at evaluating text style transfer
(Ostheimer et al., 2023). In our experiments, we deployed a number of these metrics.

4 Approach

As explained previously, training large language models (LLMs) is memory and computationally
expensive. Improving their performance for particular tasks can be done by training on the pre-trained
model weight through full finetuning (FFT). However, this is memory and computationally just as
prohibitive. In this section, we describe two major parameter-efficient fine-tuning (PEFT) methods we
deployed to the style transfer task to approximate FFT updates even when training with limited data.
Specifically, we discuss Low-Rank Adaptation (LoRA) and Robust Adaptation (RoSA). We describe
the strengths and drawbacks of each of these approaches as well as prompting and quantization
approaches to style transfer.

Low-Rank Adaptation (LoRA): LoRA is based on the idea that a model’s learnings can be
expressed on a low intrinsic dimension. The changes in a model’s weights during finetuning can
also be encapsulated in such a low-rank dimension. In LoRA, dense layers are frozen and the model
is adapted by optimizing the rank-decomposition matrices associated with each dense layer. For
a frozen dense layer W0 ∈ Rd×k we can represent its updates as W0 + ∆ = W0 + AB where
A ∈ Rd×r, B ∈ Rr×k, and rank r ≪ min(d, k). B is initialized using Gaussian initialization while
A is initialized to zero. This ensures that the initial value of the adaptation is zero. For an input matrix
X the output of the dense layer after adaptation becomes:

O = W0X +∆X = W0X +A(BX) (1)

LoRA modules can also be merged with the original model’s weight. This reduces the need for extra
steps during inference. While LoRA-style methods work well in practice, they fail to achieve the
accuracy levels of FFT on tasks with complex targets like code generation or mathematical reasoning,
and we expected that trend to hold for TST (Hu et al., 2021).

Robust Adaptation (RoSA): RoSA (Nikdan et al., 2024) fixes the complex task performance
problem by proposing a method that combines low-rank approximations, sparse matrices, and
quantization to match or surpass the performance of FFT methods on complex tasks while maintaining
the computational efficiency of LoRA-based approaches. The RoSA system, depicted in Figure 1
consists of a sparse adapter and a low-rank adapter. Typical LoRA approaches apply the low-rank
adapter when approximating FFT updates. The issue with the low-rank adapter is that it fails to
adequately represent the outlier components needed by the LLMs to support complex task targets.
To fix this, RoSA utilizes sparse matrixes to obtain this representation. For a frozen dense layer
W0 ∈ Rd×k we can represent its updates as:

W0 +∆S +∆L = W0 +∆S +AB (2)

Where A ∈ Rd×r, B ∈ Rr×k, ∆S ∈ Rd×k, and rank r ≪ min(d, k).
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Figure 1: Applying RoSA to a Fully Connected Layer (Nikdan et al., 2024)

For an input matrix X the output of the dense layer after adaptation becomes:

O = (W0 +∆S)X +∆LX = (W0 +∆S)X +AL(BLX) (3)

The sparse matrix adapter is based on the intuition that the sum of all FFT gradient updates can be
viewed as a robust PCA problem. The RoSA method identifies a highly performant sparsity mask,
provides GPU kernels to support efficient sparse backward pass, and a mechanism that guarantees the
parallel training and convergence of both the sparse and low-rank adapters. Finally, they demonstrate
that RoSA closes the accuracy gap between full finetuning and adaptation methods on complex tasks.

Quantized Low-Rank Adaptation (QLoRA): A major drawback of the LoRA and particularly
the RoSA method discussed above is that they still require significant compute power to hold the
adaptation modules and this increases linearly with the number of layers adapted. QLoRA introduced
in Dettmers et al. (2023) utilized page optimizers, quantizing of quantization constants to reduce
overall memory footprint, and a new datatype they found to be optimal for representing normally
distributed weights. The end result was a method that approached the performance of full-finetuning
for a fraction of the memory costs. We will be applying these quantization techniques in our paper.

Zero Shot Prompting: In zero-shot prompting, we adopt a language model to make predictions
using input data for which the model was not explicitly trained. When applying this method to the
style transfer task, we design prompts that instruct the model to modify an input sentence in a way
most similar to the new prompt. An example of a sample prompt is:

This is an input text in modern English: Loving yourself, my king, isn’t as
bad as neglecting yourself. Modify this to sound Shakespearean:

The advantage of this method is that the model can be generalized in resource-constrained situations
where we lack the data or compute needed to finetune the model. We can also apply the same model
to a variety of tasks by updating the input prompt. The drawback, however, is that performance may
be limited since output is heavily influenced by the biases of the pre-trained model and as such would
not approach of the performance of models fine-tuned on task-specific data.

Few Shot Prompting: Few-shot prompting offers more of a middle ground. In this method, we
still adopt a language model to make predictions using input data for which the model was not
explicitly trained. However, rather than designing a prompt that contains only transfer instructions,
we also include a few examples of input sentences and the equivalent output with style transferred.
An example of a few-shot prompt is:

incorrect: talk tuoba listening to the elpoep
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correct: talk about listening to the
correct: horrible
incorrect: unfortunately that ’s tuoba erehw things went

With more guidance, the model can improve its performance relative to the zero-shot prompting.
However, we still retain the generalizable ability of zero-shot in resource-constrained situations where
we lack the data or compute needed to finetune the full model. Regardless, performance may still be
limited when compared to a fully finetuned model. We verify this claim through experiments.

5 Experiments

5.1 Data

We used a dataset of plain English sentences translated into Shakespearean-styled text curated in
Jhamtani et al. (2017) for our experiments. The train set consisted of 18395 sentence pairs, the
validation set consisted of 1218 sentence pairs, and the test set consisted of 1462 sentence pairs.
Examples of sentence pairs in our dataset include:

Modern English Shakespearean Style
Oh , poor Romeo ! Alas , poor Romeo !
A jumbled confession can only receive a jum-
bled absolution .

Riddling confession finds but riddling shrift .

There’s still a stain on your cheek from an old
tear that hasn’t been washed off yet .

Lo , here upon thy cheek the stain doth sit Of
an old tear that is not washed off yet .

5.2 Evaluation method

A core challenge in the field of text style transfer lies in establishing robust evaluation methods.
Traditional metrics such as BLEU, ROUGE, and METEOR are often inadequate for this domain.
Style encompasses a range of linguistic elements beyond semantic meaning, including formality,
sentiment, lexical choice, and syntactic complexity. Therefore, our approach is to divide the
evaluation task into smaller, focused evaluation tasks. We will be evaluating the following tasks:

Style Classifier Accuracy: We evaluated the output of each model against a finetuned Dis-
tilBERT Sanh et al. (2020) classifier hosted on the HuggingFace transformers library Wolf et al.
(2020) and trained to produce classification scores indicating whether a sentence follows the
Shakespeare style or modern English. The scores from this classifier are in the range [0, 1]. The
higher the score, the more likely our sentence is Shakespearean.

Semantic Preservation: For semantic preservation, we utilize Word Mover’s Distance
(WMD). Unlike traditional similarity measures, WMD utilizes word embeddings to capture nuanced
relationships between words by mapping them into a continuous vector space where semantically
similar words are in closer proximity. WMD considers the semantic meaning encoded within word
embeddings, allowing it to detect similarity even when synonyms or different word forms are used.
Unlike metrics that rely on strict word order, WMD is less sensitive to changes in word sequence.
This is valuable in style transfer, where the goal is often to alter stylistic elements while preserving
sentiment.

Let two text documents be represented as:

Document A: {wa1 , wa2 , ..., wan} ; Document B: {wb1 , wb2 , ..., wbm}

WMD conceptualizes this as an optimization problem derived from the Earth Mover’s Distance.

1. Word Embeddings: Each word wi is mapped to its corresponding word embedding vector xi.

2. Transportation Matrix: We define a transportation matrix T ∈ Rn×m, where Tij represents the
amount of "word mass" transported from word wai

in document A to word wbj in document B.

3. Distance Calculation: WMD formulates the distance as:
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WMD(A,B) = min
T≥0

n∑
i=1

m∑
j=1

Tij∥xai
− xbj∥2

where ∥ · ∥2 denotes the Euclidean distance.

For our implementation, we employed the pre-trained ‘google.bin.gz‘ word2vec model, providing
rich word vector representations. It includes word vectors for a vocabulary of 3 million words, phrases
that they trained on 100 billion words from a Google News dataset, and has a vector length of 300
features. Texts were then tokenized using NLTK’s ‘word_tokenize‘ function. Lastly, we removed
common stop words as well as a custom list of Shakespearean-era stop words to focus on semantically
meaningful terms. (This step increased accuracy by 73% against human evaluation for a small test
dataset.)

Secondly, we utilize BERTScore. BERTScore quantifies the degree of semantic similarity between
a reference BERT sentence embedding (x) and a candidate sentence embedding (x̂) by generating
contextual word embeddings for both the reference and candidate sentences. These high-dimensional
embeddings encapsulate a word’s meaning informed by its surrounding context within the sentence.
BERTScore then computes the cosine similarity between the embeddings of words in the reference
sentence and the candidate sentence. The cosine similarity CosSimBERT between the two BERT
sentence embeddings x̂ and x, which we report in our evaluation is given by:

CosSimBERT (x, x̂) =
x·x̂

||x||||x̂||

BERTScore consists of three metrics: Recall, Precision, and F1 Score. Recall measures the extent to
which words in the reference sentence have a strong semantic match in the output sentence. Precision
indicates the proportion of words in the output sentence that have synonyms in the reference sentence.
F1 Score provides a balanced overall similarity metric by computing the harmonic mean of recall and
precision. We report the F1 scores in our experiments:

RBERT = 1
|x|

∑
xi∈x maxx̂j∈x̂ x

T
i x̂j ; PBERT = 1

|x̂|
∑

x̂j∈x̂ maxxi∈x x
T
i x̂j

F1BERT = 2·(RBERT ·PBERT )
RBERT+PBERT

Holistic Evaluation: To address the limitations of individual metrics, we developed a holistic
evaluation framework inspired by the principles of Retrieval-Augmented Generation (RAG) models.
RAG models combine the strengths of information retrieval and generative language modeling. RAG
retrieves relevant documents to the prompt and conditions the generation process on this retrieved-
context, providing a richer informational basis for their outputs. We adapt this concept by providing
LLMs with:

1. Contextualization: A detailed prompt establishes the task of text style transfer, the criteria
for evaluation (style transfer accuracy, semantic preservation, fluency, etc.), and explicitly
emphasizes the potential limitations of individual metrics.
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2. Diverse Metrics: Computed metric values for WMD, BERTSCORE, Perplexity and Style
Classification on the input-output pairs which LLM’s cannot compute.

The LLM is tasked with interpreting these metrics in light of the provided context and generating a
holistic score on a scale of 0-100. By employing multiple LLM models, we mitigate potential training
biases and obtain a more nuanced evaluation. Particularly, we utilize Mixtral-8x7B, LLaMA-2-7b,
and Gemma-7b, and average the three evaluations.

Figure 2: Evaluation Pipeline

Before running our experiments, we ran an evaluation
on our proposed holistic evaluation pipeline. To do
so, we developed a list of 100 normal texts and their
style-transferred Shakespearean version. These 100
data points contained a range of style transfers to do
a thorough evaluation. Examples include:

1. Poor (0 - 30): Reflects significant devia-
tions from the intended style or substantial
alterations in the text’s original sentiment.

2. Medium (30 - 70): Demonstrates an at-
tempt at stylistic change and maintains sen-
timent, but exhibits grammatical flaws.

3. Good (70 - 100): Exhibits successful stylis-
tic transformation while preserving senti-
ment and maintaining grammatical struc-
ture.

We ranked each text of a dataset of 100 sentence pairs
on a scale from 0 to 100, reflecting the categories you
outlined. We then averaged the score for each sen-
tence pair. To compare the outputs of your automated
pipeline with the established human perception, you employed the Mean Squared Error (MSE) metric.
The MSE for each input-output pair was calculated as follows:

MSE =
1

n

n∑
i=1

(human_scorei − model_scorei)2 (4)

Our evaluation pipeline provides an MSE score of 7.3444, which is competitive to state-of-the-art.
It typically fails on very low evaluation scores (1̃5), where it overestimates evaluation scores by an
average of 6.3 points.

Figure 3: Evaluation Pipeline Results
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5.3 Experimental details

Our experiments were run on a variant Google Multilingual T5 (mT5) based model Muennighoff et al.
(2022), which is a 580M parameter text-to-text transformer model fine-tuned for following human
instructions. We finetuned our RoSA models on a single A100 and fine-tuned our QLoRA and LoRA
models on a single V100. We utilized a learning rate of 5e−3 and a single epoch over all experiments.
We varied the rank LoRA rank r for each method and Sparse density d during our experiments to
understand their impact on the quality of our fine-tuned output. We also performed experiments on
an 8-bit quantized version of our LoRA model to understand the impact of quantization on fine-tuned
model output and report those results as well.

5.4 Results

Method WMD ↓ ↓ F1 CosSim ↑ Classifier ↑ LLM ↑
Zero-Shot Learning 0.7939 0.8802 0.5097 0.1299 39.8
Few-Shot Learning 1.2627 0.8227 0.2081 0.0494 43.2

QLoRA r = 16 1.0827 0.8505 0.4690 0.0726 78.4
LoRA r = 16 0.9973 0.8547 0.4299 0.2191 83.3
LoRA r = 8 0.9967 0.8548 0.4303 0.2190 76.5
LoRA r = 4 0.9332 0.8703 0.5344 0.1811 79.8

RoSA r = 16, d = 0.6% 1.0248 0.8512 0.4112 0.2239 85.1
RoSA r = 8, d = 0.3% 0.9332 0.8512 0.4112 0.2239 79.3
RoSA r = 4, d = 0.15% 0.9329 0.8696 0.5348 0.2005 81.1

Table 1: Evaluation Scores on the Shakespeare Text Style Transfer (TST) task

We initially set out to perform our experiments using the LLaMA-2-7b model. However, due to
budget and compute constraints, we ended up using a much smaller 500M parameter model, Google
Multilingual T5 (mT5). This explains our less-than-impressive raw scores. Regardless, this does
not hamper our ability to understand the extent to which the various model adaptation methods help
improve the performance of a base model on the TST task. Our experimental results in Table 2 above
demonstrate the efficacy of the RoSA method on the Shakespearean TST.

Classifier Metric: Relative to the other methods RoSA r = 16 and RoSA r = 8 had the highest
classifier scores. A high classifier score indicates that these ROSA models are able were able to
effectively translate modern English text to its Shakespearean equivalent. However, it says nothing
about whether the translated sentence still retains its meaning between styles.

F1 and WMD: Both WMD and F1 are measures of semantic preservation – the similarity of the
inputted sentence to the model’s output. Unsurprisingly, the zero-shot model performed the best
in both these metrics. We suspect that this was because the model did not see any examples of
Shakespearan vocabulary, so it did not attempt to "force" those words where they did not belong and
thus made less semantic errors. The LoRA and RoSA models performed similarly on these metrics,
with both beating out the Few-Shot model.

CosSim Cosine similarity on BERT embeddings on the other hand helps us determine the extent
to which semantic meaning is maintained across styles. On this metric another RoSA variant,
RoSA r = 16, RoSA r = 16 performed best. This once again proves RoSA’s capabilities. Zero-
shot learning, however, was the second best. This indicates that Zero-Shot Learning produced
results extremely similar to the modern English text in terms of semantic meaning but not similar
to the expected output in terms of Shakespearean style. Our RoSA scores, however, maintained
high semantic meaning across styles which still translated to the expected style as demonstrated by
relatively high CosSimBERT and classifier scores.

Quantization: We also explored the degree to which quantization would affect performance. Our
results indicate that quantizing our fine-tuning from LoRA r = 16 in 32-bit down to its 8-bit
equivalent in QLoRA r = 16, there was significant degradation in performance across most metrics.
It remains to be seen how much of this degradation would also be observed in a larger model. In a
much larger model, the gains in compute and training time may be worth the performance decrease.

LLM Evaluation: Despite wavering performance across our quantitative metrics, RoSA performs the
highest amongst all other TST approaches. We see that zero-shot and few-shot learning do poorly on
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this. This is likely due to cluttered outputs. The model did not learn to output just the style-transferred
text, but had other text before and after, reducing evaluation accuracy. Our holistic LLM evaluation
showcases that RoSA TST not only maintains sentiment, but is also stylistically and grammatically
correct.

6 Analysis

In specific instances, our models displayed an impressive understanding of Shakespearean vocabulary.
However, there were lots of very obvious translation fails. We include some examples of failed
translations in the sentence pairs shown in the Table below:

Modern English Expected Output Model Output
I love rich Capulet’s daughter Then plainly know my heart’s

dear love is set On the fair daugh-
ter of rich Capulet.

I love rich Capulet’s daughter. Or
Shakespeare would write.

Have you given up so quickly on
Rosaline , whom you loved so
much ?

Is Rosaline , whom thou didst love
so dear , So soon forsaken ?

Madam, he’s well. And friends
with Caesar. You are an honest
man.

The cat chased the mouse around
the garden.

Thine cat didst pursue the mouse
’round yon garden.

The feline, in its wild pursuit,
didst chase the mouse around the
garden’s greenery.

The first example, for instance, the fine-tuned model rather than learning to perform the translation,
simply repeats its input prompt. This clearly shows that the model at times lacks an understanding of
the training task for which it is being trained for. A longer training epoch and a more diverse dataset
would have helped the model improve its performance. The second failure case, as demonstrated in
the second example, indicates that the models simply hallucinated a possible output with very little
relationship with the prompt except sounding Shakespearean. While the generated output is in the
correct style, it does not capture the semantic meaning of its input.

The model also struggled with handling modern concepts and figurative language. This highlights
several key findings. Firstly, lack of context. Word-for-word substitution often fails as the system
needs a deeper grasp of how meaning is conveyed within Shakespearean style. Our training dataset
was sentence pairings, and had no context which is crucial in these tasks. Secondly, the model’s
output is fundamentally limited by the vocabulary and sentence patterns found in its training data.
Words such as artifical intelligence did not exist in Shakespearean time, so our model would do
word-to-word replacement which is not ideal. Given the budget and space constraints, these results
are very promising, especially the 85.1% LLM Evaluation score. If we run this approach on larger
models such as Claude-3, we are confident in SOTA scores.

In general, the model did show a good command over Shakespearean vocabulary. In the third example,
for instance, the model does word-to-word substitution of cat to feline, and also adds to the context
with "the wild pursuit", a characteristic often found in Shakespearean English.

7 Conclusion

Though far from perfect, the system evaluated represents a promising step in the challenging task
of TST. Our achievements include a novel implementation of RoSA for TST which performs
incrementally better than other approaches. We also propose a novel evaluation metric for TST
tasks. As has been seen in many works relating to TST, we were limited by evaluation metrics.
Automated metrics, designed to capture semantic preservation (ie. BERTScore) were not successful
indicators. Specifically, a translation may flow and be semantically correct but still lacks the prose
of Shakespeare’s writing. Limitations in computing also forced us to use an underperforming
base model, which weakened our results. In general, our findings suggest several paths toward an
improved TST system including training on larger corpora and perhaps incorporating a knowledge
base of Shakespearean concepts. We believe that these steps will help the model’s understanding of
vocabulary and improve accuracy.
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A Appendix (Prompts)

Our prompt is as follows:

You are an LLM evaluator for Text Style Transfer. In specific, the task at hand
is evaluating how well style was transfer from a sentence of normal, modern style
to Shakespearean styled text. In specific, you will evaluate on a metric of 0 -
100, taking into account a few factors: how accurate the style was transferred,
how accurately the content/sentiment was preserved, how fluent the shakespearen
text is, how grammatically correct it is, and general naturalness of the text in
shakespearean style. For example, you should give a 0 if the sentence is exactly
the same, with no attempt of changing it. You should give a score of 90 - 100 if
it is the best possible shakespearean version of saying the input sentence. You
have a few metrics available to you, each on a scale of 0 - 1:

Word Mover Distance: {wmd}
BERTSCORE (F1): {bert}
Perplexity: {pp}
Classifier: {classifier}

It is very much possible that these scores can be high while actually, the actual
transfer is low on human evaluation (the most accurate evaluation. It is also very
much possible that these scores can be low while actually, the actual transfer is
high on human evaluation. You are provided with these metrics to make a thorough,
more informed evaluation. Please output just your evaluation. The sentences are:

Normal Text: {reference}
Shakespearean Text: {generated}
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