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Abstract

Large language models (LLMs) have achieved impressive performance gains by
scaling model and dataset sizes, but this data-hungry approach risks hitting bot-
tlenecks from limited availability of high-quality labeled data. We investigate
an alternative approach of self-improving language models using unlabeled data.
Focusing on the challenging task of math problem-solving, we enable Phi-2, Mi-
crosoft’s 2.7B parameter model, to iteratively improve itself on the GSM8K dataset
without access to ground truth solutions. We observe that maintaining solution
diversity during self-improvement is crucial - techniques that cause diversity to
collapse quickly halt further progress. We propose several novel solution sampling
approaches that encourage diverse solutions, including rephrasing problems to cre-
ate linguistic variations and a new filtering method based on selecting for execution
trace diversity. Combining these techniques, Phi-2 achieves a 6% increase in mean
accuracy on GSM8K (66% → 72%), without accuracy drops on out-of-domain tasks.
Moreover, on a difficult subset of problems, where Phi-2 initially averages just
36%, our approach boosts performance to 42% by progressively learning to solve
problems it previously failed on. Through empirical analysis, we highlight how 1.
enhancing diversity through rephrasing and 2. focusing training on a curated set
of high-confidence solutions is key to effective self-improvement, especially on
challenging problems.

1 Key Information to include

• Mentor: Rohan Taori

• Team contributions: Shubhra helped with writing, some code, and created a synthetic
comparison dataset. Artyom helped with model sampling and finetuning code frameworks,
algorithms and running the code on the GPUs, and writing. Roberto helped with the rephrase
phi-model, dataset processing tools and writing.

2 Introduction

In recent years, large language models (LLMs) have shown rapid increase in performance across a
variety of tasks. Prompting techniques such as Chain-of-Thought (CoT) and few-shot prompting have
improved LLM performance margins without the need for additional training (Brown et al., 2020;
Wei et al., 2023). However, significant improvement in LLMs is usually attributed to scaling laws and
the use of pre-existing data (Kaplan et al., 2020; Chowdhery et al., 2022), or the use of high-quality
synthetic data (Gunasekar et al., 2023). Another significant direction in the study of LLMs has been
the creation of Small Language Models (SLMs) that boast LLM-like capabilities at a fraction of their
size (Javaheripi and Bubeck, 2023; Liu et al., 2023; Eldan and Li, 2023; Pichai, 2023).
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Because creating training datasets is difficult, and because of work towards a generalized agent
that learns without additional data, research in self-improving language models has grown. Huang
et al. (2023) use self-improvement techniques that incorporate self-consistency (a process that
involves sampling multiple reasoning paths, and selecting the most consistent answer) to finetune a
540B-parameter language model. Because math problem-solving has proven to be an exceptionally
challenging test for language models, Ni et al. (2023) use self-sampled fully- and partially-correct
solutions to finetune GPT-Neo models for math-reasoning tasks. Drawing inspiration from both
Huang et al. (2023) and Ni et al. (2023), we devise an approach to finetune a small language model
from an unlabeled dataset. Concretely, we propose a simple training framework using different
solution-sampling techniques that allow the model to self-improve during training. We implement
our approach using Microsoft’s Phi-2 as our SLM and unlabeled data from the GSM8K dataset.

Our contributions are summarized as follows:

1. We demonstrate the ability of SLMs to self-improve. We obtain a 6% increase in mean
accuracy (66% → 72%) on the GSM8K benchmark, without the use of ground truth answers
and without loss of accuracy on out-of-domain tasks.

2. We separately analyze a subset of hard problems, where the model has low confidence
and accuracy. Self-improving on this subset by selecting self-consistent solutions wasn’t
effective, but we devise a method that encourages the model to generate diverse solutions
and use an advanced solution filtering technique that is superior to self consistency. Using
this technique, SLMs self-improve on hard problems, without any form of supervision. We
achieve a 6% increase in mean accuracy (36% → 42%) on the hard problems.

3. We highlight the importance of diversity in self-sampled data for improving a language
model’s capabilities. We also propose methods for obtaining diverse and high-confidence
solutions from self-sampled solutions.

4. We open-source our code and models on GitHub and HuggingFace.

3 Related Work

Huang et al. (2023) show that a large language model can self-improve using unlabeled data: they
use data without ground-truth solutions and leverage CoT reasoning and self-consistency to achieve
state-of-the-art results on the ARC, GSM8K, OpenBookQA, and ANLI-A3 benchmarks. The model
they use has 540B parameters, making it computationally hard to self-improve with more than one
iteration of finetuning. Additionally, their evaluation framework uses 32 output paths for sampling
and evaluation with self-consistency, while we use only 10. In our work, we use a 2.7B parameter
model and train for multiple iterations. Using a model that is 1/200th the size of theirs, 1/3 as
many output paths, and a very small fraction of GPU resources, we achieve a similar increase in
performance on the GSM8K dataset.

Ni et al. (2023) finetune the GPT-Neo models using self-sampled partially- and fully-correct solutions.
The paper uses the PASS@k evaluation technique, letting the language model generate k different
solutions, and marking something as correct if any one of the k generations yields the correct answer.
Their evaluations are also based on the 5.5K problems that they self-improve on, as opposed to
evaluating on the unseen test set. In our work, we leverage self-consistency and evaluate on the test
set, which our model does not observe during training. Additionally, their model uses ground-truth
labels from the GSM8K dataset, which we do not.

4 Approach

In our research, we finetune Microsoft’s Phi-2 via a self-improvement process that uses the training
split of the GSM8K dataset (Cobbe et al., 2021). Our study focuses on enabling Phi-2 to iteratively
self-improve, without access to ground truth labels, on math problem solving. Concretely, we propose
a simple training framework together with 3 solution-sampling techniques, which allow Phi-2 create
it’s own training set to further improve on it.

The input to the sampling step is a dataset consisting of problems, a set of prompts, and a model.
These sampling techniques output a training dataset consisting of multiple (prompt, problem, solution)
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Figure 1: Cross Prompt Sampling

triplets, where the solution is self-sampled from the model we are improving. Using any of these
sampling techniques in the training framework results in a self-improvement procedure, where
sampling and training are done iteratively until convergence.

4.1 Training framework

Throughout this work, we used the same training framework for self-improvement while only varying
the sampling stage of it. Our training framework is shown in Figure 4 and described as follows:

1. Let D′
train represent the training split of our data without labels, and P be the set of 10

prompts shown in Appendix E. We then take a subset of D′
train and all prompts from P

and generate triplets of (prompt, problem, solution) for every problem in the subset. These
triplets are generated using one of the sampling and filtering approaches described in Section
4.2. This yields a new dataset Dtrain, consisting of (prompt, problem, solution) triplets.

2. Then, we take the obtained Dtrain and train the current model in a supervised fashion (using
the self-generated solutions) using Low-Rank Adaptation (LoRA) from Hu et al. (2021).

3. Finally, we repeat steps 1 and 2 for multiple iterations.

4.2 Solution sampling techniques

4.2.1 Cross-prompt sampling

Cross-prompt sampling, as shown in Figure 1, consists of creating multiple inputs for each math
problem. Each input is created by concatenatenating a math problem with each of the 10 prompts
shown in Appendix E. Then, for each of these 10 inputs, we use the model to generate a code solution,
which we run through a code interpreter to generate a final numerical answer. We use self-consistency
(Wang et al., 2023) to calculate the most common numerical answer among the 10 outputs. Then,
we randomly choose a prompt that resulted in a non-self-consistent answer, and a solution that
generates a self-consistent answer. We concatenate these, generating a new training sample in the
format (problem, prompt, solution). This is repeated for every problem to create the training dataset.
Intuitively, curating our dataset this way allows for prompts that result in bad solutions to catch up to
the prompts that result in good solutions, effectively teaching the model to correct its mistakes.

Concretely, let D be the given dataset consisting of different problems, P be the given set of prompts
and M be the given model. Then, cross-prompt sampling works as follows:

1. For each prompt in P and for each problem in D, we sample 1 solution using model M
with temperature = 0.3 and topp = 0.3. This yields |P | solutions for every problem, each
generated by one prompt.

3



Figure 2: Single-prompt Sampling

2. Then, for a given problem, we randomly select a non-consistent prompt pnc from the subset
of prompts that resulted in a non-self-consistent solution for the problem at hand. Further,
we pick a self-consistent solution ssc from the subset of self-consistent solutions obtained
by all prompts. We then build a triplet (problem, pnc, ssc).

3. After doing step 2 for all problems, we end up with a dataset consisting of |D| triplets, which
are further used for training.

Notably, when using this sampling approach in our training framework in Figure 4, we observed an
increase in the average accuracy of the model. However, after 2 iterations of training, it also resulted
in a diversity collapse in solutions (as observed in Table 1’s PASS@10 column) which quickly halted
improvement.

4.2.2 Single-prompt temperature sampling

To address the shortcomings of cross-prompt sampling causing a diversity collapse in solutions, we
devised the single-prompt temperature sampling approach (Figure 2). Simply put, single-prompt
temperature sampling builds (problem, prompt, solution) triplets by pairing a prompt only with a
self-consistent solution generated by itself, as opposed to a self-consistent solution generated by any
other prompt.

The intuition behind this approach is that, since cross-prompt sampling has a diversity collapse given
all prompts yield very similar solutions, it is critical to maintain the diversity of solutions provided by
different prompts. It follows that training a prompt only on good solutions generated by itself would
not affect the diversity of solutions obtained by using different prompts.

Concretely, let D be the given dataset consisting of different problems, P be the given set of prompts
and M be the given model. Then single-prompt sampling works as follows:

1. For each prompt in P and for each problem in D, we sample 5 solutions using model M at
5 temperatures (0.3, 0.4, 0.5, 0.6 and 0.7). This yields 5 · |P | solutions for every problem.

2. Then, we determine the self-consistent solution using self-consistency across all 5 · |P |
solutions.

3. For a given problem, we randomly select a prompt that results in the self-consistent answer,
and any one of the prompt’s self-consistent solutions. This results in the triplet (problem,
psc, ssc).

4. After doing step 3 for all problems, we end up with a dataset consisting of |D| triplets, which
are further used for training.

In this approach, the diversity of samples was largely maintained. However, the model hit a ceiling in
accuracy. We observed that for a subset of hard problems, the model would only generate incorrect
solutions, even at high temperatures.
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Figure 3: Execution Trace Sampling

4.2.3 Single-prompt sampling with rephrases and advanced filtering

To address the lack of improvement on hard problems discussed above, we created a sampling
approach consisting of a combination of rephrase sampling and temperature sampling followed by
a confidence filtering stage. This solution sampling method follows a similar principle to the one
that Phi-1.5 used to curate its synthetic training dataset (Gunasekar et al., 2023). The goal of this
approach is to generate higher quality training samples for our unlabeled training set, where we are
more certain that the solution provided by the model to the problem is correct.

To achieve higher quality solutions, we compute an Execution Trace (ET), as illustrated in Figure 6.
An ET is a list of intermediate results of the Python code that solves the problem. We found that if
the model can arrive at the same answer by generating code with several distinct ETs, the answer is
more likely to be correct. Using ETs, we split our training set into high confidence (HC) and low
confidence (LC) datasets. A problem belongs to the HC set if the number of solutions resulting in a
self-consistent answer exceeds the number of solutions resulting in any other answer by a margin of
2, and if the number of distinct ETs for the self consistent solution exceeds the number of distinct
ETs for the next most self consistent solution by a margin of 2. Subsequently, we refer to this process
of filtering using ETs as advanced filtering.

Further, we slightly tweak the training procedure. At every iteration we only train on the HC set.
However, note that as training progresses, the model becomes more confident and accurate about
problems from the original LC set. Hence, at every iteration, the HC set grows as the model arrives at
high-confidence solutions to problems from the LC set. i.e. at every training iteration, as the model
self-improves, the HC set grows and the LC set shrinks.

This approach is illustrated in Figure 3. Concretely, let D be the given dataset consisting of different
problems, P be the given set of prompts and M be the given model. Then the single-prompt sampling
with rephrases and filtering works as follows:

1. We obtain 5 low-temperature rephrases for the problems in D using a separate fine-
tuned rephrase-model, described in Section 4.3. Additionally, we obtain another 5 high-
temperature rephrases for the problems in D using the rephrase-model.

2. We then sample 15 solutions for every (problem, prompt) tuple using model M. 5 of those
solutions are obtained by solving a low-temperature rephrase of the problem and 5 of them
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solving a high-temperature rephrase of the problem. The remaining 5 are obtained by solving
the original problem with with varying temperatures like we did in Section 4.2.2.

3. We now have 15 · |P | solutions at hand for every problem (15 solutions per prompt and
|P | prompts per problem). With them, we compute the ETs of each solution and the self-
consistent solution for every problem. Then, using the procedure described above, we filter
out our dataset D to the high confidence (HC) dataset.

4. Then, for every (problem, prompt) in the HC dataset, we randomly sample one of the
solutions ssc out of the self-consistent solutions obtained by that prompt (which is a subset
of the 15 solutions it originally obtained). This yields at most one single triplet (problem,
psc, ssc) for any given (problem, prompt), and up to |P | triplets (problem, psc, ssc) for any
problem in |D|.

5. Doing step 4 for all the problems in the HC dataset results in a dataset consisting of multiple
high-confidence (problem, prompt, solution) triplets, which are then used for training.

4.3 Rephrase-model

To increase the diversity of the answers provided by our model during the solution sampling stage,
we augment problems by rephrasing them. In our case, we rephrase problems by prompting the
model with “Rephrase the following problem:” followed by the problem. Unfortunately, Phi-2 fails
at rephrasing problems. We observed that this model commonly just proceeds to solve the problems
instead of providing a rephrase. To solve this, we finetune a separate version of the model, which we
refer to as rephrase-model, for the rephrasing of problems. Due to the lack of rephrasing datasets of
GSM8K, we create our own dataset, consisting of 3, 000 GSM8K problems, each with 3 highly-diverse
rephrases. We generated the rephrasing dataset by sampling rephrases from gpt3.5-turbo from the
OpenAI API (Brown et al., 2020).

5 Experiments

5.1 Data

The primary dataset we use is GSM8K. This is used for the baseline evaluation of our primary task,
math problem solving. In addition, we use problems from the GSM8K train split (without ground truth
solutions or answers) for self-improvement. We also use the datasets HellaSwag, Piqa, Boolq, and
Winogrande for evaluation to ensure that training does not degrade performance on out-of-domain
tasks (Zellers et al., 2019; Bisk et al., 2019; Clark et al., 2019; Sakaguchi et al., 2019).

5.2 Evaluation method

We evaluate our model based on the accuracy obtained at the task at hand. For the GSM8K dataset, we
compare the final numerical answer obtained by our model with the original label (note, evaluation is
the only stage where we access ground-truth labels). Concretely, we measure 3 types of accuracy to
assess our model’s performance with respect to the GSM8K dataset.

1. Mean PASS@1 accuracy: the average accuracy of solutions generated across all prompts for
all problems in the dataset.

2. Self-consistency accuracy (SC Acc.): we select the self-consistent answer (the numerical
answer that is produced most often) as the only answer to a problem, and calculate accuracy
across all problems in the dataset based on that.

3. PASS@10: the fraction of problems with at least one correct solution out of 10 solutions
provided for that problem

In addition, we used 2 more measurements to evaluate the single-prompt sampling with rephrases
and advanced filtering method. Namely, we use the advanced filtering accuracy (Adv Filter Acc.),
which refers to the accuracy obtained by the model on the HC filtered training dataset. We also
report the number of problems solved with high confidence. Finally, we also provide the accuracy
on HellaSwag, Piqa, Boolq, and Winogrande. We leverage lm-evaluation-harness to run the
evaluation for these datasets (Gao et al., 2023).
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5.3 Experimental details

To test our methods, we train Microsoft’s Phi-2 using Low-Rank Adaptation (LoRA) with the
supervised finetuning trainer from HuggingFace. Namely, at each training iteration, the model was
trained for 1 epoch with batch size of 1, gradient accumulation steps 8, learning rate 2× 10−4 using
the Adamw optimizer. We found that increasing the dropout from 0.05 to 0.1 results in a better
generalization.

For the solution sampling procedure, we use VLLM (Kwon et al., 2023) , which permits us to sample
approximately 400 problem solutions per minute on a single A5000 GPU. As mentioned in Section
4.2, we make use of a varied set of prompts during the sampling and training stages. Prompts are
shown in Appendix E. Each prompt inserts the problem as a doc string into a header of a Python
function, then the model generates the solution. We then run the solution through our multiprocessing
python code interpreter with execution traces to obtain the final numerical answer.

5.4 Results

Table 1 shows results of training Phi-2 using each of the 3 sampling techniques and the GSM8K
dataset. In addition, we show the accuracy on the low confidence LC set (consisting of hard problems)
obtained by these approaches in Table 2. We further analyze our results in Section 6.

Mean PASS@1 SC Acc. PASS@10
Base Model Phi-2 66% 76% 88%

Cross-prompt training 72% 75% 82%
Single-prompt training 71% 78% 88%

Advanced filtering with rephrases 72% 78% 88%
Table 1: Results on GSM8K’s test set

Mean PASS@1 SC Acc. PASS@10
Base Model Phi-2 36.0% 47.4% 76.2%

Cross-prompt training 40.9% 44.4% 61.3%
Single-prompt training 38.2% 43.4% 67.2%

Advanced filtering with rephrases 41.7% 50.6% 74.6%
Table 2: Results on the initial LC set, containing problems Phi-2 finds hard to solve.

Mean PASS@1 SC Acc. PASS@150 Adv Filter Acc. Num probs solved with HC
Iter1 36% 47% 75% 77% 438
Iter2 41% 50% 75% 78% 538
Iter3 42% 51% 75% 79% 589

Table 3: Self improvement on the LC set using single-prompt sampling with rephrases and filtering

5.4.1 Rephrase-Phi

Finetuning Rephrase-Phi resulted in a network which was able to correctly provide diverse rephrases
of problems, while preserving their meaning. We leave examples of rephrases of both Rephrase-Phi
and Phi-2 for the same problem in D.1. Notably, while building the dataset using OpenAI’s API, we
qualitatively noticed a lack of diversity in rephrases using the default parameters of the API. Hence,
the key to building a diverse rephrasing dataset was to add a penalization term to tokens that had
occurred in previous rephrases. This penalization significantly minimized repetition and yielded a set
of highly diverse rephrases for each of the problems, which we further trained Rephrase-Phi on.

6 Analysis

In this work, we explored the capabilities of self-improvement in SLMs. Concretely, we experimented
with Phi-2 and the GSM8K dataset. We carried out our experiments by executing our self-learning
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framework (shown in Section 4.1) using different solution sampling techniques, which are key to
guiding the self-learning process of the model.

Cross-prompt sampling: We first noticed that using cross-prompt sampling limited self-improvement
to 1-2 self iterations of training. This was caused by a diversity collapse in the solutions provided
by the model, as can be observed in Table 1, where the PASS@10 accuracy plummeted in just 2
iterations. Having a low PASS@10 accuracy meant the model was generating very similar solutions
for all prompts, which halted learning as the model got stuck at predicting the same wrong solutions
for the problems it failed at.

Single-prompt sampling: We then observed that solution diversity was preserved if we used single-
prompt sampling during training. Looking at Table 1, we can notice that the PASS@10 accuracy is
preserved even after 3 iterations. We think this is the case since diversity is preserved across prompts
when doing single-prompt sampling, as prompts are not capable of observing solutions other prompts
came up with. However, this solution sampling approach had limited performance growth as, after 3
iterations, it stopped improving in accuracy, effectively getting stuck at hard problems.

Single-prompt sampling with rephrases and filtering: We noticed that enhanced diversity through
rephrasing problems combined with filtering out low-confidence solutions allowed our model to
progressively improve on the hard-to-solve problems. In Table 3, we observe how the self-consistent
solution accuracy on the hard problems remains close to 50% throughout training. This indicates
that matching the hard problems with solutions obtained through simple self-consistency provides
a poor training signal to the model on what constitutes a correct solution. However, after applying
our advanced filtering technique to the hard problems, the accuracy on the obtained high confidence
solution set is close to 79%. Evidently, training on this filtered, high-quality solution set provides
much richer information to the model about correct solutions, which in turn allows it to self-improve
on the hard problems.

Notably, we trained using single-prompt sampling with rephrases and filtering for only 3 iterations
(due to the lack of resources and time) but didn’t observe convergence during training. This approach
also demonstrated to be the best for training the model to solve the hard problems that the base Phi-2
model initially struggled with, as seen in Table 2. We attribute this to the capacity of this technique to
produce very diverse solutions and to progressively increase the difficulty of the problems the model
learned from. The substantial diversity of solutions prevented the model from becoming fixated on
inferior solutions when tackling difficult problems. The filtering stage enabled the model to train
only on a progressively growing and more accurate set of high-confidence solutions. This set of high
confidence solutions grew as the model self-improved and became capable of confidently solving
problems it previously failed at.

7 Conclusion

We achieve a 6% mean increase in the performance of the Phi-2 model on the GSM8K dataset
using unlabeled-data and self-improvement. For harder problems, we also found that the margin
of self-improvement depended on the diversity of the data the model self-improved on. To aid this,
we created an advanced filtering technique that let us select diverse, high-quality solutions for the
model to self-improve on. Additionally, we finetuned Phi-2 to create Rephrase-Phi, a model that
generated linguistically-diverse rephrasings for problems that we used in training.

In our work, we often randomly selected a solution given multiple self-consistent ones. In the future,
we plan to utilize the model itself to pairwise evaluate solutions to select higher quality samples for
training. Additionally, a limitation of our work has been our suspicion that Phi-2 was exposed to the
GSM8K dataset during training. While we were able to show a significant self-improvement despite
this suspicion, in the future, we will be testing our methods on other SLMs. Additionally, we had to
curtail training for the single-prompt sampling with rephrases and filtering method due to resource
constraints. We did not notice convergence in training, and believe the model will continue to improve
over the next few iterations. We plan on continuing to train using this method as well. Given our
findings about the importance of diversity in self-improvement, and the potential of multiple iterations
of self-improvement, we would recommend research into more ways of diversifying self-sampled
data, and more experiments into the self-improvement of small language models.
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A Figures

Figure 4 shows our training framework.

Figure 4: Self Improvement Process

B Result Tables

HellaSwag Piqa Boolq Winogrande
Base Model Phi-2 47.7% 78.8% 82.6% 75.4%

Cross-prompt sampling 47.7% 79.1% 82.4% 76.1%
Single-prompt sampling 47.8% 79.1% 82.6% 76.5%

Table 4: Results on Out-of-Domain Tasks

Mean Acc. Maj. Voting Acc. PASS@10 ET Acc. N LC Solved
Iter1 32% 37% 61% 81% 435
Iter2 33% 40% 61% 80% 475
Iter3 34% 40% 62% 83% 525

Table 5: Self improvement on LC problem set for rephrase sampling

Mean Acc. Maj. Voting Acc. PASS@10 ET Acc. N LC Solved
Iter1 26% 32% 54% 74% 327
Iter2 28% 33% 52% 77% 395
Iter3 28% 34% 53% 75% 420

Table 6: Self improvement on LC problem set for high-temperature rephrase sampling

C Models

Our self-improved models are available on Hugging Face under the MIT license:

1. Model trained using Cross-prompt sampling, 2 iterations:
https://huggingface.co/deepbrain/phi2-gsm8k-cross-prompt-training

2. Model trained using Single-prompt sampling, 3 iterations:
https://huggingface.co/deepbrain/phi2-gsm8k-single-prompt-temperature-training

3. Model trained using Single-prompt sampling with rephrase and filtering, 3 iterations:
https://huggingface.co/deepbrain/phi2-gsm8k-rephrase-high-confidence-training
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D Examples

D.1 Rephrase-Phi v.s. Phi2

In Figure 5, we see how Phi2’s and Rephrase-Phi’s performances compare on the problem rephras-
ing task.

Example problem:
During the holiday season, Rebecca purchased two pies, with each pie being divided
into eight equal parts. After consuming one slice from each pie herself, Rebecca and her
guests consumed 50% of the leftover portions over the weekend. Subsequently, on Sunday
evening, Rebecca and her spouse indulged in one more slice each. What is the total count
of slices that are still available?

Rephrase-Phi’s rephrase:
Rebecca bought 2 pies for the holiday weekend. Each pie was sliced into 8 slices. Rebecca
ate 1 slice of each pie. Her family and friends ate 50% of the remaining pies over the
weekend. On Sunday evening Rebecca and her husband each had another slice of pie. How
many slices are remaining?

Phi2’s rephrase:
Solution: First, we need to calculate the total number of slices of pie Rebecca bought.
Since each pie was sliced into 8 slices and she bought 2 pies, she bought a total of 8 * 2 =
«8*2=16»16 slices.
Next, we need . . . Therefore, there are 5 slices of pie remaining.

Figure 5: Example of a GSM8k problem, the rephrase given by Phi-Rephrase and the "rephrase"
given by Phi-2, which is wrong as it’s a solution instead of a rephrase. Note that both networks were
prompted with "Rephrase the following problem:" followed by the problem.

D.2 Execution Traces

In Figure 6, we see an example of three execution traces. We consider two execution traces to be
identical if they have the same number of lines of code, and if the resulting value on each line is the
same between them.

Figure 6: Example of an Execution Trace
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E Prompts

Below, we have listed the ten prompts we used throughout our training and evaluation process. %s
represents where the problem is inserted.

def problem() -> int:
"""%s

Elaborate your thinking step by step in comments before each code
line below

"""
def problem() -> int:

"""%s
Add comments before each line

"""
def problem() -> int:

"""%s
Be accurate and think step by step in comments before each code
line below

"""
def problem() -> int:

"""%s
Find unusual solution and comment before each of your line of
code

"""
def problem() -> int:

"""%s
In your comments write an algebraic formula based on the problem,
solve it algebraically, then write code to calculate the result

"""
def problem() -> int:

"""%s
Find the most elegant and correct solution

"""
def problem() -> int:

"""%s
Think step by step in comments before each code line below

"""
def problem() -> int:

"""%s
You must elaborate your thinking in comments below

"""

def problem() -> int:
"""%s

Is this a simple math or algebra problem? For algebra problems, you
must elaborate and solve it algebraically in the comments first,
then write code to calculate the result. For simple math problems,
you can write code to calculate the result directly

"""
def problem() -> int:

"""%s
First, let’s solve this problem using pure symbolic expressions.
laborate with your algebraic skills below. Use x,y,z...to denote
unknown variables. Use a,b,c... to denote given constants. Then
write a python code to compute the result

"""
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