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Abstract

Virgil’s poetry has an enduring legacy both as a cultural classic and teaching tool.
Furthermore, his works are a gold standard for dactylic hexameter, a complex
meter used in classical poetry. Advances in natural language processing provide
new avenues for engaging with Virgil’s poems. In 2019, Lamar and Chambers
claimed that an encoder-decoder long short-term memory (LSTM) network could
generate Greek poetry in the style of Homer with reasonably accurate meter but
poor semantics after being trained exclusively on Homer. In this paper, we aimed
to replicate and, if possible, improve on Lamar and Chamber’s work by developing
a model that generates Latin poetry in the style of Virgil after having only been
trained on Virgil. Our best model generated 95.24% correct feet and 76.19%
correct lines of dactylic hexameter and demonstrated ability to learn syntactic
relationships—but was not fully semantically coherent across a full line or lines
of text. This outperforms Lamar and Chambers’ model in terms of quantitative
metrics of meter but underperforms in terms of semantics. Our work highlights
the limitations of low-resource models and small data sets for studying classical
literature.

1 Key Information to include

• Mentor: Bessie Zhang

• Team Contributions: Both authors collaborated on all sections of the project. Jonathan led
out on development of the data pipeline while August led out on development of the models.

2 Introduction

For millennia, Virgil’s poems have been regarded as classic texts across a diverse set of cultures. As
works of literature, they hold compelling insights into the human experience. Their cultural value
has prompted rigorous study into how the texts function stylistically. Virgil’s poems are famous for
their disciplined and effective use of dactylic hexameter. Dactylic hexameter is a complex meter
used in classic poetry. A valid line of dactylic hexameter has six feet, where each foot is a dactyl
or a spondee. A dactyl is a long syllable followed by two short syllables, and a spondee is two
long syllables. Defined as such, lines of dactylic hexameter can vary in word and syllable counts.
This high level of variability along with the precise definition of correctness makes this meter more
complex than other traditional poetic meters.

In 2019, Lamar and Chambers claimed that an encoder-decoder long short-term memory (LSTM)
network could generate Greek poetry in the style of Homer with reasonably accurate meter but poor
semantics after being trained exclusively on Homer (Lamar and Chambers, 2019). We attempted the
more challenging, but similar, problem of training an encoder-decoder LSTM network to produce
Latin poetry in the style of Virgil using only Virgil as training data. The added difficulty of our project
comes from the fact that Virgil’s corpus is approximately half the size of Homer’s by line count. For
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our training and testing data, we had access to fewer than thirteen thousand lines. The small data set
along with the complicated task of generating Latin poetry in a difficult meter makes our problem an
interesting litmus test for the power of encoder-decoder LSTM networks.

No other scholarly work has been published directly attempting our task.

To approach our task, we first tokenized Virgil’s corpus: The Aeneid, The Georgics, and The Eclogues.
We created embeddings for each token and then separated the training and testing data. Using the
training data, we trained an encoder-decoder LSTM. With the testing data, we fed the trained model a
line and had it generate output which we evaluated quantitatively for metric accuracy and qualitatively
for syntax and semantics.

Our best model achieved 95.24% correctness in generated feet and 76.19% correctness in generated
lines of dactylic hexameter. Lines were not coherent overall, but within phrases and for some context
clues across lines, our model shows signs of the ability to make use of semantic and syntactic
information. The rest of our models showed clear signs of overfitting and often repeated the same
few lines. This clearly showed that these models could not condition its output on the input line.

This project highlighted the difficulties of developing a proficient low-resource model for tasks with
limited amounts of task-specific data. However, we still demonstrated some success. Finding success
with smaller, more interpretable models is important in order to productively use natural language
processing tools in classical literature analysis.

3 Related Work

Modern poetry generation began with rule-based approaches but has since progressed almost ex-
clusively to neural network approaches (Lamar and Chambers, 2019). Several papers have used
similar modeling approaches to generate styles of poetry other than Virgil. Zhang and Lapata (2014)
implemented character-level recurrent neural networks to generate Chinese poetry. More similarly
to our approach, Wang et al. (2016) generated Chinese poetry using a bidirectional LSTM network.
Lau et al used an LSTM to generate English poetry in iambic meter. All this work was done prior to
2019 when Lamar and Chambers published their paper on the generation of Homeric poetry which
inspired our work. Lamar and Chambers trained a bidirectional encoder-decoder LSTM network on
Homer’s poetry. From thirty model generated lines, 91.3% of feet were properly formed and 43.33%
of lines were correct dactylic hexameter.

Since then, large language models have far surpassed this level of performance. One can prompt
ChatGPT 3.5 to generate poetry in the style of Virgil with impressive results. For our project, we were
explicitly interested in whether an encoder-decoder LSTM network could accomplish this task having
only been trained on Virgil. This was in part because we wanted to test whether Lamar and Chamber’s
approach would carry over to Latin and Virgil and also because we wanted to test the ability of a
low-resource model trained only on task-specific data to accomplish this task. Furthermore, a smaller
model leaves the door open for greater interpretability. Interpretability is particularly desirable for
this task because a large portion of poetry in dactylic hexameter was performed live. Understanding
how the model generates the correct meter may give insight into how humans created valid lines in
live performances.

Our work serves as a rigorous attempt to validate Lamar and Chamber’s results in a novel setting and
an intriguing litmus test of the abilities of encoder-decoder LSTM networks.

4 Approach

We created and tested thirteen different models on this task. The code for each model was adapted
from Assignment 4, but the vast majority of the code was modified or rewritten. Additional code
was written to interface with our custom data processing pipeline. Each of our thirteen models are
variations of our baseline model which was designed to be nearly identical to the model described
by Lamar and Chambers. The thirteen models vary in the number of layers in the LSTM network,
dropout rate, weight decay in the Adam optimizer, and hidden size of the encoder and decoder.
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Figure 1: Baseline Model Architecture

As depicted above, our baseline model is a two-layer bidirectional encoder-decoder LSTM network
with multiplicative attention. While not explicitly mentioned in the Lamar and Chambers paper, our
model also includes a convolutional neural network layer between the embeddings and the encoder
LSTM. Adding this gave improvement in early model attempts, so we kept this for all models. The
hidden size is 100 for the encoder and 500 for the decoder.

Our model is described by equations adapted from Assignment 4.

The encoder hidden and cell states for each layer are defined as follows, where m is the maximum
length of any input sentence:
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The decoder hidden and cell states for each layer are defined as follows:
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The decoder for each layer takes in yt, a concatenation of the combined output vector ot−1

and the predicted word yt, as well as the previous hidden and cell states of the associated layer.
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Multiplicative attention is calculated as follows using the hidden state of the second layer. et is the
attention score, αt is the attention distribution, and at is the attention output.
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at =
∑m

i=1 αt,ih
enc2
i where at ∈ R2h×1

The combined output vector is produced by the second layer of the decoder as follows.

ut =
[
hdec2
t ;at

]
where ut ∈ R7h×1

vt = Wuut where vt ∈ R5h×1,Wu ∈ R5h×7h

ot = dropout (tanh (vt)) where ot ∈ R5h×1

The probability of predicting each token in the vocabulary Vt is computed as follows.

Pt = softmax (Wvocabot) where Pt ∈ RVt×1,Wvocab ∈ RVt×5h

For loss, we calculated the cross entropy accordingly where gt is a one-hot vector repre-
senting the predicted word.

Jt(θ) = CrossEntropy (Pt,gt)

Models were implemented according to this architecture and these equations, where some
models varied in number of layers and hidden sizes.

5 Experiments

We first created a pilot model to test our data pipeline and debug the basic model architecture. This
pilot model differed from following models in that we used word-level tokenization and learned the
embeddings using only Virgil’s corpus. We added functionality to the word-level tokenizer in order
to more correctly tokenize words with clitic particles into separate tokens instead of leaving them as
a single token (Toolkit, 2024). All proceeding models used the following data pipeline from Figure 2.

5.1 Data Pipeline

Figure 2: Data Pipeline

Download Latin Corpus: We downloaded a 51 MB corpus of Latin text from the Tesserae Project
(2019). Included in this corpus are all of Virgil’s works along with several hundred other works
across various time periods.

Tokenize: We trained a byte-pair encoding (BPE) tokenizer using the HuggingFace Tokenizers
library (Moi and Patry, 2023). The training dataset for the tokenizer was the entire Tesserae corpus
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concatenated into a single text file.

Embed with Glove: After tokenizing the Tesserae corpus, we used GloVe to learn embeddings of size
50 for the whole corpus (Pennington et al., 2014).

Convert Virgil to Embedded Form: Using our trained tokenizer, we then tokenized only Virgil’s
corpus and used our learned embeddings to create an embedded version of Virgil’s corpus.

Split into Training and Testing Data Sets: We iterated over the corpus to create input-output pairs.
Each line in the corpus is an input line and the line following a given input line is its output line,
together forming an input-output pair. When training, the model should learn to take in a line and
accurately generate the line that follows it. Thirty of these pairs were randomly selected from the
corpus and saved for the test set. For each test set pair, the pair remaining in the training data that
contains the input line of the test pair as its output line was excluded from the training set such that
the model never sees any part of the test input.

We then trained the model on the training data using teacher forcing. At inference time,
the model was given an input line from the test set. The model generated an output line using beam
search, never having seen the associated output line (i.e. no teacher forcing).

5.2 Evaluation method

To evaluate generated lines, we manually calculated the percentage of correct feet as well as the
percentage of lines in perfect dactylic hexameter across the thirty generated lines produced by each
model. For evaluation of the model’s ability to generate semantically coherent lines, we manually
compared the lines that the model generated with the input line and the correct line that it should have
generated from the corpus to determine if the generated line’s content made sense. The individual
meanings of smaller phrases within the text and overall ability to produce syntactically correct Latin
was also considered. These observations are qualitative in nature and included in the analysis, but do
not have numerical measurements to compare with a baseline.

5.3 Experimental details

We wrote code for and trained thirteen models. All models were trained with an initial learning rate
of 5e-4, much smaller than Lamar and Chamber’s initial rate of 0.01. Without this adjustment, loss
skyrocketed. Each model had either one, two, or three layers. Additionally, across models we varied
the dropout rate of the model and the weight decay of the Adam optimizer. All models were trained
until progress stalled according to the procedure of Assignment 4. The specifications for each of the
thirteen models can be found in Appendix A.

5.4 Results

Many models showed clear signs of overfitting and simply repeated a small set of lines. These lines
technically scored well according to our quantitative metrics, but they were clearly evidence of a
model that couldn’t condition its output well on input lines. Other models were designed to avoid
overfitting (smaller hidden sizes, higher dropout rates, and weight decay), but these failed to learn the
correct meter.

The only model that demonstrated the ability to generate new lines in response to input lines and
performed well by our quantitative metrics was the three layer model with no weight decay, a dropout
rate of 0.3, and hidden sizes of 100 for the encoder and 500 for the decoder. We compare the
performance of this model to our pilot model and the performance of Lamar and Chamber’s model
below:
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Figure 3: Relative Model Performance

Our pilot model had two layers, a dropout rate of 0.3, no weight decay, no convolutional layer,
and word-level tokenization. The modifications we made from our pilot model to our top model
led to significant improvements. Our top model also outperformed Lamar and Chambers in these
quantitative metrics.

6 Analysis

The best model shows the ability to learn metrically convenient chunks of text, understand some
semantic context, and adhere to syntactic rules. In the pair of examples in Figure 4, both input lines
contain quotations of speech by a character in the poem. In the raw text, these lines would contain
punctuation to make this clear, but during tokenization, we removed all punctuation. However, in
both cases, the model predicted the phrase Dixerat et Aenean, “and he said, Aeneas. . . ,” which shows
both the model’s ability to recognize that someone was speaking in the preceding line. In the first
input line, the word inquit is used, which is often used for quotes, meaning “he said/says”. This
model may have learned this semantic cue.

Figure 4: Model recognizes semantic features

The next pair of examples in Figure 5 demonstrates the model’s prioritization of creating metrical
chunks. We see again that the model begins multiple lines with the same phrase Dardanidae. This a
dactyl and a long syllable, allowing for either a dactyl or spondee in the second foot. This may be

6



seen as optimizing for metrical correctness as it gives the model more versatility with the generation
of the next word. The last phrase in each of these lines are both metrically equivalent and quite
typical of endings in dactylic hexameter but display differences in the model’s use of grammar.
Sacerdos must not only agree with the adjective fortem in grammatical gender, but it must also agree
in grammatical case. Therefore, sacerdos should be sacerdotem, but this would not metrically fit into
the foot. It is possible that the model is optimizing for meter over grammatical agreement in this case.
The model does in fact demonstrate the capability for grammatical agreement in the second example.
The preposition de requires a specific form of the adjectives (gente) and noun (Latina) that follow it,
which is correctly generated by the model. Furthermore, Latina correctly agrees in grammatical
gender with the noun it modifies, gente. Therefore, the model appears to have some understanding of
semantics, syntax, and meter but strongly optimizes for meter. While not specifically compared in
these examples, none of the model’s generated sentences fit in with the larger context of the poem
in the position they were intended to fill. While meter was nearly perfect and demonstrated local
syntactic and semantic capabilities, the “big picture” details were missed.

Figure 5: Model optimizes meter

7 Conclusion

Our best encoder-decoder LSTM network was able to consistently generate lines of Latin poetry in
correct dactylic hexameter. The performance of this model in terms of meter outperformed both our
pilot model and Lamar and Chambers’ model. Overall, our model was successful in capturing the
Virgil’s meter and some syntactic information but struggled to generate semantically coherent lines.
The primary limitation on our model’s success was the small training dataset. However, the small
dataset was integral to the task we set out to tackle in the first place. This experience suggests that
large language models are likely necessary for some tasks for which there is little task-specific data.
Use of large language models comes at the cost of interpretability, which places constraints on the
usefulness of natural language processing approaches to studying classical literature.
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A Appendix

A table of the specifications for each model trained is below. An “x” in a cell signifies that that
hyperparameter value was used for training that instance of the model.

Model Training Parameters
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