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In this work, we explore the usage of dense layers post-BERT for multitask learning. Instead of
convolutional and recurrent models, we experimented with faster, lighter and linear networks, to
achieve near-perfect results. The model fine-tunes BERT for three tasks, using CLS token embeddings
that are fed into task-specific networks. The model achieves an overall score of 0.76.

1 Personal Contribution

Maxime dedicated his time to refining the algorithm’s structure and optimizing it’s performance,
while Augustin focused on finding alternative data sources, means of computing, and explored ways
to incorporate new features into the project.

2 Introduction

Natural Language Processing tasks like sentiment analysis, paraphrase detection, and similarity
analysis present challenges due to the complexity of human language. These tasks are crucial for
understanding text data across various domains, from social media sentiment analysis to information
retrieval.

Current methods often rely on task-specific models, leading to complexities in architecture and
limited generalization. In this work, we explore an approach based on multi-task learning, that
leverages post-BERT dense layers for multiple NLP tasks. We focused on feed-forward linear
networks, fine-tuning BERT for each task, and integrating task-specific features and information
through additional layers.

We address the challenge of imbalanced datasets, particularly in paraphrase detection, by carefully
limiting dataset sizes during training. Our key approach involves feeding CLS token embeddings
from BERT into task-specific networks, leveraging BERT’s contextual understanding while tailoring
subsequent layers to each task. Through experiments, we compare sequential training of task-specific
networks with parallelization for optimizing gradients across all tasks simultaneously. Method 2
achieves an overall score of 0.75 compared to Method 1’s 0.718, showcasing the effectiveness of our
approach.

In the following sections, we delve into related work, detail our approach, experiments, results, and
analysis. This work aims to provide insights into a promising avenue for multi-task NLP models,
enhancing performance and generalization across diverse textual datasets.

3 Related Work

Our work builds upon recent advancements in pre-trained language models (PLMs) like BERT Devlin
et al.| (2019) and dense layers for downstream tasks. [He and Zhang|(2019) explore similar post-
BERT dense layers for text classification, achieving promising results. Yu et al. yu2019bert utilize
convolutional layers after BERT for question answering tasks. While recurrent models have been
successful for various NLP tasks (e.g.,/[Hochreiter and Schmidhuber| (1997)), we focus on feed-forward
networks for efficiency.

4 Approach

There are three steps to our approach. Firstly, we develop a minBERT implementation, starting with
the skeleton code that provide the embedding of the initial token in our input. Secondly, we construct
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a framework to tackle the three NLP tasks: sentiment analysis, paraphrase detection, and similarity
analysis. Lastly, we refine our framework, optimizing all hyperparameters to enhance accuracy on
the dev set.

Due to Colab’s standby after 1-2 hours, we were unable to train our algorithm on it, so instead relied
on our local machines. We invested a significant amount of time and effort working on our Mac to
devise a method for parallelizing our gradient descent and forward loop operations. To achieve this,
we use Metal Performance Shaders (MPS), a GPU-facilitaded acceleration backend compatible
with our chips. This approach resulted in a threefold increase in performance.

S Experiments

5.1 Data

5.1.1 Original Dataset

In the study, three specialized datasets were used for different NLP tasks. The sentiment analysis
task utilizes the Stanford Sentiment Treebank (SST), featuring 8,000 movie reviews rated on a
5-point scale. The QUORA dataset, comprising 141,000 instances, is used for paraphrase detection,
with binary labels indicating paraphrastic similarity. For semantic textual similarity, the STS dataset
offers 6,000 sentence pairs rated from 0 to 5 based on semantic relatedness. However, there’s a
significant imbalance as the paraphrase dataset outnumbers the examples for similarity and sentiment
analysis by 18-fold, necessitating the reduction of the paraphrase dataset’s training size to mitigate
bias in the model training process.

5.1.2 Increasing the dataset size

Owing to the success of the paper Halevy et al.| (2009), we realizing adding to our dataset would
help the model performance. Because we didn’t want to distort the results too much, we slightly
augmented our dataset size (see Table[I)).

Table 1: Training Set sizes

Task Paraphrase Detection Semantic Textual Analysis Sentiment Analysis
141,506 8,544 6,041
(Quora) (8ST) (SemEval)
N/A N/A 1,498
(N/A) (N/8) (SemEval-STS - 2016 - headlines)
N/A N/A 500
(N/A) (N/A) (SemEval-STS - 2015 - images)
Total 141,506 8,544 8,039

The size of the dataset for the sentiment analysis task is now 8,039, up from 6,041. We noticed
that sourcing data from various entries in the SemEval dataset drastically improved the model
performance compared to using identical entries, and noticeably improved the model’s capacity to
generalize.

5.2 Evaluation method

For evaluating our model on the development set, we adopted the metric utilized on the data board,
defined as:

1
f(y) = g QCCsentiment + ACCparaphrase

COTT similarity +1
2

Our approach involves training the model solely on the training set and then validating it on the
development set to select the best-performing model. We acknowledge that repeatedly using this



metric across numerous models may introduce bias toward the development set, as we iteratively
test and assess results. However, we have not discovered a more suitable alternative that does not
introduce additional data.

5.3 Experiment details & results
5.4 Learning rate and number of epochs

We found that a relatively low number of epochs sufficed for our model to converge—just 10 epochs
were enough. We experimented with pretraining our model followed by fine-tuning, comparing it
against a model without pretraining. Surprisingly, the results were identical, leading us to skip the
pretraining step.

In terms of learning rate, we tested three configurations: 1073, 1074, 105, determining that the
most effective was 10~° based on overall metrics. Therefore, we will continue with this learning rate
for subsequent sections.

For our final model, we chose to use a learning rate of 107> for 10 epochs during the fine-tuning
stage. Following this, we performed an additional 2 epochs of refinetuning with a learning rate of
1075 to further optimize the weights for both the BERT model and the various neural networks.

5.5 Dropout

We experimented with three different minBert dropout configurations: 10%, 20%, and 30%, discov-
ering that the optimal choice in terms of overall metrics was minBert dropout set at 10%. Thus, for
the subsequent sections, we will consistently use a dropout configuration of 10% between layers.

5.6 Loss functions

For our task, which involves three distinct objectives with varying output dimensions and characteris-
tics, we employed three different loss functions:

* Sentiment Analysis: Cross Entropy given by Lsentiment (¥, 9) = — >, ¥i log(:)

 Paraphrase Analysis: Binary Cross Entropy (with logits) given by
Lparaphrase (Y, §) = —[y - log(a(9)) + (1 —y) - log(1 — o(9))], where g is the predicted logit
(output of the model before applying sigmoid)

* Similarity Analysis: Mean Squared Error (MSE) Lsimitarity (¥, §) = 717 Z,?:l (yi — 9:)?
These loss functions were chosen as the standard metrics for each respective task. We opted not to
experiment with alternative loss functions, as it is widely acknowledged in the literature that these
metrics are commonly used for tasks of this nature.

5.7 Architecture

Our strategy involved creating dense layers following the BERT model for each task. We experimented
with three types of neural networks: convolutional, feed-forward, and recurrent. Ultimately, we opted
to proceed solely with the feed-forward linear neural network, as the convolutional and recurrent
networks did not yield satisfactory results.

5.7.1 Method 1 (M1) - Sequentially

In this initial phase, we opted to select the first 6040 data points from all three datasets. This
methodology ensures equal emphasis on each task during our model training. The approach involved
training three distinct neural networks that directly utilize embeddings from the minBert model, with
parameters optimized for each of the three tasks. Training proceeded sequentially, where for each
epoch, we iterated through the first dataset, performed backpropagation on the 6k examples, and then
repeated this process for the subsequent task.

However, as we progressed through our training, we observed that the gradient descent for one
task could conflict with that of another. Therefore, it became necessary to enhance this process by



executing gradient descent in a "favorable" direction for every task concurrently, rather than one after
the other.

This procedure is depicted in the figure below (refer to Figure [I)).
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Figure 1: First Training methodology

Sentiment Analysis: 2 layers Neural Network of size (768+4,64)—(64,5) with ReL.U activation
functions between layers ?

Paraphrase Analysis: 2 layers Neural Network of size (2x768+3,64)—(64,1) with ReLU activation
functions between layers

Similarity Analysis: No layers, we only take 5 x cosin(y1, y2)

We initialize the weights of all our layers using a Xavier uniform distribution, while setting the bias
to 0.

Our primary focus was on crafting compelling features for the input of our neural network. To achieve
this, we devised the following metrics:

* euclidean norm: ||z — y|| = />, (@i — ¥i)?
* average value of the difference

* standard deviation of the difference

* min, max value of the absolute difference

* sentence length (via mask embedding)

* average token embedding

* max token embedding

* std token embedding

5.7.2 Method 2 (M2) - Parallelization of the tasks

In this section, we address a challenge encountered in the first architecture: the gradients of the three
tasks may not necessarily be orthogonal to each other, resulting in an inefficient model optimization
process. To overcome this issue, we developed a cycling dataset approach. Given that the QUORA
dataset is the largest, we created cycles of the STS and SST datasets to iterate over 141k examples for
all three tasks. Even though we replicated the STS dataset 17 times, the optimization process became
significantly more efficient.

With our newly formed cycled-3-dimension dataset, the next step was to formulate a new loss
function that considers each task without overly emphasizing any specific one. The approach was
rather straightforward:

L(y1,y2,y3) = a1 * L1(y1) + a2 * La(y2) + as * L3(y3)
where index 1 corresponds to SST, 2 to QUORA, and 3 to STS.

However, determining the optimal parameters posed a challenge as the losses did not evolve at the
same rate. Initially, our strategy was to set a;; = m, aiming to balance the magnitudes of all



three losses. Yet, we realized the need for an improved strategy. Our final, highly effective approach
involved adjusting these weights every 5 epochs by taking the inverses of the last 5 losses for each
individual loss.

This procedure is depicted in the figure below (refer to Figure [2)
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Figure 2: Second Training methodology

6 Resuts & Analysis

As expected our 2nd algorithm converges much faster then the first one, which is completely normal
since we make sure to do the gradient descent in the "favorable" direction for the 3 tasks together
instead of doing it one task at the time. Our results are as follows:

Table 2: Performance Metrics

Method Overall score  Sentiment acc  Paraphrase acc ~ Similarity corr
Sequential - 2 layers similarity 0.718 0.446 0.848 0.72
Sequential - co similarity layer 0.75 0.523 0.853 0.75
Parallelization 0.763 0.515 0.869 0.807

Our highest score was achieved using the parallelization method, which involved adjusting the
learning rate, loss coefficient, and introducing complex features. However, we observed a crucial
trade-off between the complexity of individual task layers and the overall score.

Interestingly, we found that while it is possible to significantly enhance one metric, such as the
paraphrase or similarity task, doing so often resulted in poorer tuning of the BERT model for the
remaining tasks. This led us to the realization that for optimal performance, it was more effective to
limit the layers to two with a hidden size of 64 for the first two tasks. For the third task, we utilized
the cosine similarity output. This approach ensured that our fine-tuning of BERT was well-optimized
for all three tasks simultaneously.

7 Conclusion

This project highlights the constant trade-off between overly complex models and the limited avail-
ability of data. It became evident that no matter how much we attempted to increase the complexity
of our models, there was a ceiling to the development accuracy we could achieve. This limitation is
constant across algorithms and models we built, which reflects Pengcheng Yin’s lecture. With more
intricate models, the biggest bottleneck now appears to be the amount of data available to train the
attention matrices. By exploring even smaller BERT models with fewer layers, we encountered the
fundamental challenges inherent in highly complex models like ChatGPT.

Ultimately, we explored various methods of regularization, training optimization, structural adjust-
ments, and feature engineering. These techniques all targeted specific aspects of the models, which
illustrated the potential improvements that lay ahead for our model.
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