SMARTCS: Additional Pretraining and Robust
Finetuning on BERT

Stanford CS224N Default Project

Yasmine Mabene Ayesha Khawaja
Department of Computer Science Department of Computer Science
Stanford University Stanford University
ymabene@stanford.edu akhawaja@stanford.edu
Rachel Clinton

Department of Computer Science
Stanford University
rclinton@stanford.edu

Abstract

We aim to enhance the capabilities of the BERT architecture for natural language
processing tasks. Motivated by the need for models that better capture domain-
specific nuances, we propose three strategic modifications to the original BERT
framework. These are (1) additional pretraining on domain-relevant data, (2) the
incorporation of cosine similarity metrics during finetuning, and (3) the application
of the SMART regularization to mitigate overfitting. We assess the efficacy of
these enhancements in improving model performance across three tasks: sentiment
analysis, paraphrase detection, and semantic textual similarity. We found that incor-
porating cosine similarity reduces the total execution time for finetuning our model
but does not improve prediction accuracy. Additionally, we found that pretraining
with SMART loss and Bregman Optimization produces the highest semantic analy-
sis accuracies across all of our models. Finally, our best overall test score (0.770)
is produced by finetuning with SMART loss and Bregman Optimization, without
performing additional pretraining or utilizing cosine similarity.

1 Key Information

CS224N Default Project Mentor. Timothy Dai (timdai @stanford.edu)

Team Contributions. Yasmine constructed the baseline BERT model and the SMART implemen-
tations. Rachel designed the model classification heads and implemented the cosine-similarity
finetuning technique. Ayesha implemented an adapted masked language modeling objective and
conducted additional pretraining on domain-specific data. We all assisted with model experimentation,
analysis, and manuscript preparation.

2 Introduction

Bidirectional Encoder Representations from Transformers (BERT) is a transformer-based language
model that uses bidirectional context to better understand language patterns. Its approach to pretrain-
ing allows it to employ transfer learning to achieve state-of-the-art results on several NLP benchmarks
(Devlin et al.| 2018)). Risks of overfitting to training data, lengthy training periods, and optimizing
performance on multiple tasks with different requirements make improving the model difficult, but
multitask learning helps the model learn a generalizable shared representation for all tasks.

Stanford CS224N Natural Language Processing with Deep Learning

We implement and improve upon a baseline BERT model to enhance model performance on three
tasks: sentiment classification with the Stanford Sentiment Treebank (SST), paraphrase detection
with Quora’s Question Pairs (QQP), and semantic similarity assessment with the Semantic Textual
Similarity Benchmark (STS). We extend the model in three ways to respond to three different problems
associated with the baseline. First, we conduct additional pretraining with the target datasets (SST,
QQP, and STS-B) using an original implementation of the masked language modeling objective.
Second, we implement adversarial (SMART) regularization and Bergman optimization to prevent
aggressive updating and overfitting, a problem especially salient with our additional pretraining using
the training data (Jiang et al., 2019). Third, we implement cosine-similarity finetuning to ensure
that the model preserves what it learns during each round of finetuning and calculates loss more
efficiently (Reimers and Gurevych}[2019). We call our framework SMARTCS: SMoothness-inducing
Adversarial Regularization and BRegman pRoximal poinT opTimization, preTraining, and Cosine
Similarity finetuning.

Our findings suggest that the SMART loss and Bregman methods improve model performance, while
additional pretraining and cosine similarity fine-tuning lead to individual improvements on the SST
accuracy and total execution time, but decrease model performance overall.

3 Related Work

A common way to improve artificial intelligence models is pretraining on unlabeled data. Letting
a model explore unlabeled data and detect patterns allows the model to learn useful language
representations that it can apply to downstream tasks (Han et al.| 2021). A variety of pretraining
objectives have been explored to optimize natural language models, such as masked language
modeling (MLM), next sentence prediction, generalized autoregressive methods, and sentence-order
prediction (Devlin et al.| (2018)), |Arocha-Ouellette and Rudzicz] (2020), |Yang et al.[(2019)). When
developing the original BERT model, Devlin et al.| (2018) found that pretraining on the MLM
objective achieved high performance on a large set of tasks for evaluating natural language models
that includes the SST, QQP, and STS-B tasks. Consequently, we seek to improve our minBERT
model by pretraining on this objective.

Pretraining is an aspect of transfer learning, a common technique used in natural language processing
in which models are trained on a large amount of data from particular domains and then are used for
other tasks in a target domain (Pan and Yang| |2009). While transfer learning has many advantages,
this method often results in models that generalize poorly to new data due to over-fitting during
fine tuning. In (Jiang et all 2019), the authors propose a SMART framework to prevent model
over-fitting. SMART relies on the introduction of a smoothness-inducing adversarial regularizer,
which has been explored in applications such as semi-supervised learning, unsupervised domain
adaptation, and image classification (Miyato et al.| (2018)), Zhang et al.|(2019), and Shu et al.| (2018)).
Additionally, SMART draws on the existing work on Bregman proximal point optimization to propose
a new optimization method that prevents aggressive parameter updating. By leveraging innovative
regularization techniques as described in these works, we seek to improve the adaptability and
generalization of our baseline BERT model.

A groundbreaking work in the cosine similarity realm is (Reimers and Gurevych, 2019), which
introduces Sentence-BERT (SBERT), a modification of the pre-trained BERT network, to derive
semantically meaningful sentence embeddings for the STS task. SBERT uses siamese and triplet
network structures to enable the computation of semantically meaningful sentence embeddings
that can be effectively compared using cosine similarity. This approach significantly reduces the
computational overhead associated with the STS task, reducing the runtime from 65 hours with BERT
to approximately 5 seconds with SBERT, while maintaining BERT’s accuracy levels.

4 Approach

Our research extends the BERT Large Language model (Devlin et al.L[2018)). We begin by constructing
MINBERT, a minimal BERT implementation that consists of 12 encoder transformer layers, Multi-
Head Self attention, a feed-forward layer, and layer normalizations.

For our multitask model baseline, we design three classification heads for our transfer learning tasks:
sentiment analysis, paraphrase detection, and semantic textual similarity. The sentiment analysis head

consists of a linear layer followed by a RELU activation layer. For the semantic analysis task, we pass
our embeddings through the BERT model directly to receive pooled outputs for the linear layer. For
the paraphrase and semantic textual similarity tasks, we pass the concatenated embeddings of the two
sentence inputs to the BERT model. We then input the pooled outputs from BERT through a shared
layer between the two tasks and then through individual RELU and linear layers. The combination of
individual and shared layers allows for the model to utilize patterns to generalize across similar tasks
while maintaining specialization. Figure 1 depicts how these layers are implemented in our model.

’ Linear Paraphrase Layer }—»’ Uparaphrase

’ Shared Linear Layer }—>’ RELU Layer

’ Linear Similarity Layer H 9sTs ‘

’ RELU Layer }—»’ Linear Sentiment Layer }—»’ 9ssT ‘

Figure 1: BERT multitask classifier architecture.

We utilize a "Round-Robin" multitask learning framework in our finetuning approach. In each epoch,
we cycle through batches from all three datasets from each task. We use Cross Entropy Loss for
semantic analysis, Mean Squared Error loss for semantic textual similarity, and Binary Cross Entropy
Loss for paraphrase detection. Because the QQP dataset is substantially larger than the STS and
SST datasets, we use a larger batch size for the paraphrase detection task. This prevents us from
exhausting the smaller datasets, which could lead to poor generalization or overfitting on those tasks.

Principled Regularized Optimization. To address potential overfitting within our model, we adopt
the SMART method detailed in Jiang et al.|(2019). This method has been found to improve model
generalization and performance across a variety of tasks including semantic textual similarity and
semantic analysis. This approach consists of two main components: Smoothness Inducing Adversarial
Regularization and Bregman Proximal Point Optimization.

In the first component of the model, we mitigate overfitting by applying regularization to control the
model complexity. For n data points, (x;)!_, represents the first-layer embeddings of input sentence 4
in the model while (y;)?_; is the label for input sentence 7. F'(f) is defined as a function taking in the
first-layer embeddings and outputting either a probability or scalar for classification and regression
respectively. The following equation is solved during fine tuning:

1 n
ingF(0) = — > 1(0) + As(Rs(0)), 1
ming F'(6) n;()+ (Rs(0)) (1)
where [(0) is the loss function, A is a positive smoothing parameter, and R (6) is the smoothness-

inducing adversarial regularizer. (We use KL-Divergence as the loss function for our classification
tasks and Mean Squared Error as the loss function for our regression task.)

R, (0) is defined as the following:

Rs(0) = — Z max(ls(f(Z5;0), f(x:);6)). @)

i=1|||@s —a4||p<e
Here, ¢ > 0 constrains the perturbation size.

By adding the regularizer to the loss function, we can ensure that the outputs of f do not change
substantially as a result of small perturbations in the input. (These perturbations are represented
by ||Z; — z;||, in Equation 2.) This property of f maintains its smoothness around neighbors of z;
which can prevent overfitting and lead to better generalization.

The second component of the SMART method is the Bregman Proximal Point Optimization. This
optimization is used to solve Equation 1 during fine tuning and is characterized by the following
equation:

0141 = argmingF(0) + pDyreq(0, 0:), 3)

where Dy,.c4 is the Bregman Divergence and i is a tuning parameter. Bregman Divergence is defined
as the following:
1 n
Direg(0,00) = — > _1s(f(wi56), f(2:364), €
i=1
where [, is the symmetrized KL-Divergence.

The Bregman Divergence term inhibits large changes in parameters between iterations which helps
prevent overfitting.

We construct our own classes from scratch to implement the SMART method. While we follow the
general structure outlined in the original paper, we modify the approach to allow for layer specific
regularization. To do so, we only perturb the embeddings of a selected task and incorporate the
regularization loss for this task only. Details on our algorithm can be found in Appendix Figure 5.

Pretraining. We implement an adapted version of masked language modeling (MLM) pretraining
objective described in (Devlin et al., 2018) from scratch on portions of the SST, QQP, and STS
datasets. To make use of our existing model architecture, we mask one random token in the input
sequence and construct an MLM head consisting of a linear layer to project the model output onto the
vocabulary. In line with the original BERT model’s implementation, to reduce the mismatch between
pretraining and finetuning we mask the token 80% of the time, replace it with a random token from
the vocabulary 10% of the time, and leave it unchanged 10% of the time. We pass the model outputs
through the log softmax function and measure model performance using cross entropy loss against
one-hot vectors that encode the values of the replaced tokens.

Cosine Similarity. We implement cosine similarity finetuning to improve the performance and
efficiency of the STS task. The process of using cosine similarity to improve STS classification is
described in the study conducted by (Reimers and Gurevych, |[2019). In this work, Reimers et. al.
discuss the development of SBERT, a modification of the traditional BERT model that uses cosine
similarity, as well as siamese and triple network structures, to improve the efficiency of the existing
BERT model, all while preserving accuracy. To integrate cosine similarity into our BERT model,
we generate embeddings for each sentence pair and then compute the cosine similarity between
each pair. Separately, the concatenated embeddings of the sentence pairs are passed through the
shared linear layer shown in Figure 1. The scaled cosine similarity scores are then concatenated with
the outputs from this layer. This concatenated output merges the information provided by cosine
similarity with the information already derived from BERT embeddings. This combined output is
then passed through an additional linear layer to make the final STS predictions.

S Experiments

5.1 Data

For the sentiment analysis task, we use the Stanford Sentiment Treebank, consisting of 9,645 sentences
extracted from movie reviews. For the paraphrase detection task, we use the Quora Dataset, which
was designed to reduce the amount of duplicate questions on Quora and currently has over 400,000
lines of potential duplicate pairs. Finally, for the semantic textual similarity task, we use the SemEval
2016 Shared Task Semantic Textual Similarity (STS) dataset.

5.2 Experimental Details

Layers. We update the mulitask classifier to contain separate layers for each task. This allows
for task-specific optimizations in the model architecture, enabling each task to have its dedicated
processing layers tailored to its unique requirements and complexity.

Hyperparameter Tuning. We experiment with five learning rate values (see Appendix Figure 6)
drawn from (Devlin et al.,[2018). We perform this initial hyperparameter-tuning step using just the
SST and STS datasets in order to expedite experimentation while still yielding insightful findings on
effective hyperparameter settings. After selecting the optimal learning value, we ran our baseline
model on all three datasets with a variety of batch size configurations. All of these experiments were
conducting using 10 epochs. The optimal learning rate (3e — 5) and batch sizes (6 for SST, 40 for
QQP, and 4 for STS) were then used for all subsequent model approaches.

https://nlp.stanford.edu/sentiment/treebank.html
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://github.com/brmson/dataset-sts/tree/master/data/sts/semeval-sts/2016
https://github.com/brmson/dataset-sts/tree/master/data/sts/semeval-sts/2016

SMART. We conduct our initial experiments with just the adversarial regularizer and afterwards
incorporate Bregman optimization. We begin by assigning the hyperparameters as the following:
A=1,0=1le—5,e=1e—5,a=1e—3,and T = 1. We then experiment with three values for
A: 1,2 and 5. We select A = 2 for our experiments. Finally, to improve generalization of the SST
task, we assess the performance of the regularization when applied solely on layers for semantic
analysis. To evaluate the performance of our SMART implementation, we construct regularization
baselines in addition to our baseline model. The first regularization baseline introduces a dropout
layer with dropout rate of 0.15 in each classification head. Our second regularization baseline
modifies our multitask finetuning approach and is inspired by the annealed sampling framework
detailed in (Stickland and Murray}, [2019). Rather than equally cycling through each dataset as done
in our baseline, we deterministically cycle through the largest dataset (Quora) for a given number of
training steps before incorporating the other two datasets. We utilize this method as a regularization
baseline to account for overfitting that may occur as a result of our Round-Robin finetuning strategy
on unbalanced datasets.

Pretraining. To determine the best approach for pretraining, we experiment with two masking
strategies: masking the token 100% of the time, or masking the token 80% of the time and replacing
it with a random token in the vocabulary 10% of the time and leaving it unchanged 10% of the
time. We experiment with pretraining on solely the SST dataset versus all three datasets, since
model performance on the SST task was much lower than performance on the other two tasks. We
also experiment with including a dropout layer during pretraining to reduce overfitting. Finally, we
experiment with different hyperparameters: we pretrain for 3, 5 and 10 epochs, and experiment with
learning rates of le — 5,2e — 5, and 3e — 5. Ultimately, the best model performance arises from
masking the token 80% of the time, pretraining on all datasets, forgoing the dropout layer, and using
a learning rate of 1e-05 for five epochs. We use batch sizes of 6, 4, and 40 for the SST, STS, and
QQP data sets, respectively, to keep the pretraining as similar to our finetuning procedure as possible.
Pretraining for five epochs takes 3924 seconds total, or a little over an hour.

Cosine Similarity. Initial experiments for this technique involved calculating the cosine similarity
between the embeddings of two sentences and using these values directly as STS predictions. We
scaled the embeddings and labels to be within the same range and computed Mean Square Error
between the cosine similarity scores and the scaled target labels. We found that while this approach
had moderate performance on the SST task, it performed significantly worse on the STS task, even
dropping to a correlation score as low as —0.190. To address this, we instead integrate the cosine
similarity scores with the concatenated embeddings as described in Section 4. We maintain the same
hyperparameter configurations as our baseline model.

5.3 [Evaluation method

To evaluate model performance on the SST and QQP tasks, we utilize prediction accuracy. For the
STS task we use the Pearson Correlation Coefficient.

5.4 Results

Hyperparameter Tuning. After initial hyperparameter tuning, we selected 3e — 5 as our optimal
learning rate for finetuning (see Appendix Figure 6). We then ran our baseline model on all three
training and dev sets on several different batch sizes, producing the results in Appendix Figure 7.

In our finetuning approach, we cycle through each dataset for a fixed number of iterations. Thus, the
batch size determines how much of the training data is used per epoch. With the QQP dataset being
16 times that size of the smallest dataset, the batch sizes are crucial in ensuring model generalization
across all tasks. Initially, we hypothesized that batch sizes that are proportional to the size of the
datasets would produce the most optimal results. However, we found that the best dev score came
from a combination of larger batch sizes for larger datasets while also disproportionately enlarging
the batch size for SST. We believe this is because the model struggled to generalize well to the SST
task, so it benefitted from increased SST data. These insights confirm the necessity of additional
modifications to our model to address overfitting.

SMART Results. The results of our initial SMART experimentation can be found in Appendix
Figure 8. While our baseline model performed well on the SST and STS tasks, it struggled to attain
similar performance on the sentiment analysis task. Even with the addition of dropout layers, our

model performance did not increase for sentiment analysis and even decreased for the other tasks.
On the other hand, our default implementation of SMART led to a 7% increase in the QQP dev
accuracy. After applying the SMART loss only on the sentiment analysis task, we saw a modest
increase in the overall dev score compared to both the baseline (0.769 vs 0.764) and the default
SMART implementation (0.769 vs 0.759). Interestingly, we obtained the same dev score from our
modified SMART approach as that of our modified multitask learning (Stickland) baseline (0.769),
while using only half the run-time. This highlights the ability of our SMART implementation to
efficiently mitigate overfitting that arises as a result of multitask learning on unbalanced data.

5.5 Combined Results.

Model Type SST | QQP | STS | Dev Score | Total Execution Time (hrs)
Baseline 0.480 | 0.887 | 0.882 0.764 4.500
Pretrain 0.485 | 0.859 | 0.870 0.760 3.934
Cosine Similarity 0.478 | 0.866 | 0.879 0.761 4.010
SMART Loss 0.509 | 0.864 | 0.866 0.769 5.000
SMART Loss, Bregman Only 0.494 | 0.879 | 0.876 0.770 5.389
Pretrain, SMART Loss, Bregman 0.512 | 0.859 | 0.858 0.767 4.572
Pretrain, Cosine Similarity 0.472 | 0.856 | 0.864 0.753 4.384
SMART Loss, Bregman, Cosine Similarity 0.487 | 0.863 | 0.872 0.762 4.932
Pretrain, SMART Loss, Bregman, Cosine Similarity | 0.478 | 0.862 | 0.867 0.758 5.034

Figure 2: Development set performance for all model approaches. Note: "SMART Loss" refers to the
SMART implementation on the SST task only. "Pretrain” contains the results after finetuning using
our additionally pretrained model.

Our best model was the combination of the layer-specific SMART approach and Bregman optimiza-
tion which obtained test set performances of 0.493 (SST), 0.878 (QQP), 0.878 (STS), and 0.770
(Test Score). Although this approach caused modest decreases in the QQP and STS scores compared
to the baseline, it increased the SST score by nearly 3%, improving the overall test score (Figure 3).
Generally, across modifications to our baseline model, we found that increases in the SST scores
were associated with decreases in the QQP and STS scores (Figure 2). Both of our SMART models
along with our pretrained model improved performance on the SST task. However, our pretrained
model struggled to balance performance across all three tasks. When we combined SMART loss and
Bregman optimization with our pretrained model, we obtained a 6% increase in the SST accuracy,
the highest SST accuracy of all our combined approaches. This indicates the overall benefit of both
approaches for improved generalization of our model for semantic analysis. We found that our cosine
similarity modification when implemented alone, produced a dev score commensurate with that our
baseline. However, its combination with other approaches hindered the performance of these models.
Further, parameter tuning may be needed to combine cosine similarity with our other modifications.

Model Type SST QQp STS Test Score
SMART Loss 0.501 0.862 0.863 0.765
SMART Loss, Bregman 0.493 0.878 0.878 0.770
Pretrain, SMART Loss, Bregman 0.511 0.855 0.858 0.765

Figure 3: Test set performance for our best three model approaches. Note: "SMART Loss" refers
to the SMART implementation on the SST task only. "Pretrain" contains the results after finetuning
using our additionally pretrained model.

6 Analysis

When training our models we generally found that the performance of the semantic analysis task was
inversely related to the performance of the semantic textual similarity and paraphrase detection tasks.
We originally hypothesized that the latter two tasks would be similar and constructed our baseline
architecture to include a shared layer between the two tasks to exploit this. However, this relationship
presented a challenge in terms of optimizing performance for all three tasks. The introduction of

SMART made our model more robust to changes within the inputs as well as less prone to aggressive
updates that contribute to overfitting. Enriched embeddings following additional pretraining was
also found to be useful for improving semantic analysis performance. However, this occurred at the
expense of the performance of the STS and QQP tasks.

Additional Pretraining Effects. Pretraining on all three datasets yielded slightly lower results than
the baseline—while the pretraining improved the SST dev score, it decreased performance on the
QQP task and STS tasks. When paired with SMART regularization and Bregman optimization, we
achieved our highest SST accuracy. However, when additional pretraining was paired with cosine
similarity finetuning, and when the model included additional pretraining, SMART and Bregman,
and cosine similarity, model performance dropped (Figure 3). Altogether, additional pretraining was
most successful with SMART loss and Bregman optimization.

The mixed success of the added pretraining contradicts the findings for Devlin et al.’s implementation.
We suspect this is due to two reasons. First, the adapted MLM objective that we implemented was
a minimal implementation of Devlin et al.’s—namely, Devlin et al. masked 15% of tokens instead
of one token, so it’s possible that the model did not learn as much from the additional pretraining
as it would have had more tokens been masked per sentence. Second, the pretraining pushed the
model to overfit significantly on the training data, and our regularization and Bregman optimization
implementations helped a little, but may not have been strong enough to combat that overfitting.

SMART and Bregman Effects. The incorporation of SMART into our model was effective for
reducing overfitting. When comparing SMART implementations, we found a minor increase in the
dev score when incorporating Bregman optimization to the SST SMART Loss approach. Thus, we
believe that the perturbations we introduce when incorporating the adversarial loss are nearly enough
to mitigate overfitting that is addressed by Bregman optimization in our model.

Out of all our SMART implementations, using the default parameters produced the highest SST
accuracy (7% increase from the baseline). After modifying SMART to apply regularization on only
the SST task, we improved the overall dev score (Figure 2). This improvement was primarily driven
by a 4% increase in the QQP accuracy. As a result, we believe that the noise introduced into the
QQP embeddings in our default SMART implementation may have been too large and negatively
affected this task. In all, we have shown that layer-specific SMART can improve overall model
performance. Additionally, our results open the door to the potential of task-based variation of other
SMART parameters (eg. noise) for improving model performance.

Cosine Similarity Effects. Contrary to the findings of (Reimers and Gurevych,2019), the integration
of cosine similarity into our model did not produce significant improvements on the STS task.
Specifically, our baseline model produced an STS score of 0.882, whereas the cosine similarity
incorporated with our baseline produced a lower STS score of 0.879. Furthermore, pretraining alone
produced an STS score of 0.870, whereas pretraining with cosine similarity decreased the STS score
to 0.864. This may be because the addition of cosine similarity requires alternative hyperparameter
configurations than our baseline model. For example, the noise introduced into the embeddings in
SMART may not be at an appropriate scale for computing cosine similarity. Further hyperparameter
tuning may be needed to fully harness the benefits of cosine similarity finetuning.

Cosine similarity did, however, result in time improvements, with the cosine similarity and baseline
performing 10.9% faster than the baseline alone, and the pretrain and cosine similarity performing
4.1% faster than the pretrain with SMART loss and Bregman. This improvement in time is consistent
with the findings of (Reimers and Gurevych, [2019).

Overall Observations.

For the QQP task, the recall and precision are very similar (see Appendix Figure 9). This means that
the proportion of paraphrase (positive) and non-paraphrase (negative) inputs that our model correctly
classifies are nearly equal. However, the positive predictions for our model are nearly 10% more
accurate than the negative predictions. This may be a result of imbalanced classes during training as
only 37% of our training data belonged to the true paraphrase class. To improve QQP accuracy, our
next step would be to reduce the number of false negatives, potentially through the introduction of
more data from the positive class.

After computing the recall and precision for all five classes in our semantic analysis task, we find the
our model obtains the most accurate predictions when classifying sentences as positive (see Appendix

Paraphrase Detection Confusion Matrix

Actual
0 1
o
k-]
2
2
o
g
o
DETAILS
Neg Pred Value Specificity Precision Recall F1
0.824 0.862 0.915 0.889 0.902
Accuracy
0.879

Figure 4: Confusion matrix for paraphrase detection using SST SMART + Bregman model on
development set.

Figure 9). Interestingly, our model is better at correctly classifying inputs as somewhat negative than
those that are negative. This is non-intuitive as "somewhat negative" would appear to be a more
ambiguous description than "negative". Upon further analysis, we found that across all classes, 70%
to 93% of falsely classified inputs were predicted as being in an "adjacent” class. For example, 87%
of the wrongly classified inputs that were actually from the "somewhat negative" class were predicted
to be either "negative" or "neutral". This means our model can identify general sentiments of inputs
but may struggle in distinguishing between similar labels.

The distribution of the predicted STS labels and the true labels are fairly similar (Appendix Figure
10). However, the true label distribution is clearly multimodal, with evident peaks at the integer
values,while the distribution for our predicted values is more smooth. In the future, we can experiment
with an additional layer to round outputs that are within a certain range of the integer values. This
would mimic the natural approach humans have for labeling data.

7 Conclusion

We explore the effects of additional pretraining on the MLM objective, SMART loss and Bregman
optimization, and cosine similarity finetuning on BERT’s performance on three natural language
benchmarks: the Stanford Sentiment Treebank, Quora Question Pairs, and Semantic Textual Similarity
Benchmark. Among these extensions, we found that our model performed best when finetuned with
SMART loss and Bregman optimization. Additional pretraining improves performance on the SST
task but decreases performance on the other two benchmarks. Finally, cosine similarity finetuning
reduces the total execution time but does not improve model accuracy.

The primary limitations of our work include the data used for pretraining and finetuning, limited
hyperparameter tuning, and the compute power available. We only worked with the SST, QQP, and
STS datasets, so our findings may not be generalizable to other datasets and limited data made our
model prone to overfitting, particulary during pretraining. Due to GPU memory constraints, we could
only explore some modifications. In the future, we may try to pretrain on other objectives, incorporate
additional datasets, or explore ensembling our different models together to improve performance.

References

Stéphane Arocha-Ouellette and Frank Rudzicz. 2020. On losses for modern language models. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805.

Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong Qiu, Yuan Yao,
Ao Zhang, Liang Zhang, Wentao Han, Minlie Huang, Qin Jin, Yanyan Lan, Yang Liu, Zhiyuan
Liu, Zhiwu Lu, Xipeng Qiu, Ruihua Song, Jie Tang, Ji-Rong Wen, Jinhui Yuan, Wayn Xin Zhao,
and Jun Zhu. 2021. Pre-trained models: Past, present and future. Al Open.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. 2019.
Smart: Robust and efficient fine-tuning for pre-trained natural language models through principled
regularized optimization. arXiv preprint arXiv:1911.03437.

Takeru Miyato, Shin-Ichi Maeda, Masanori Koyama, and Shin Ishii. 2018. Virtual adversarial training:
a regularization method for supervised and semi-supervised learning. /[EEFE transactions on pattern
analysis and machine intelligence, 41:1979—1993.

Sinno Jialin Pan and Qiang Yang. 2009. A survey on transfer learning. IEEE transactions on
knowledge and data engineering 22 (10), 1345.

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 3982-3992, Hong Kong, China. Association for Computational Linguistics.

Rui Shu, Hung H Bui, Hirokazu Narui, and Stefano Ermon. 2018. A dirt-t approach to unsupervised
domain adaptation. arXiv preprint arXiv:1802.08735.

Asa Cooper Stickland and Iain Murray. 2019. Bert and pals: Projected attention layers for efficient
adaptation in multi-task learning. In International Conference on Machine Learning, pages
5986-5995. "PMLR".

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and Quoc V. Le.
2019. Xlnet: Generalized autoregressive pretraining for language understanding. 33rd Conference
on Neural Information Processing Systems.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan. 2019.
Theoretically principled trade-off between robustness and accuracy. In International Conference
on Machine Learning.

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410

A Appendix

Notation: j: index representing the current training step. Note, j € [1,]]
and 80 is the parameter from the pretrained model. gf(x_:_, 8}_) the gradient of
the loss function wrt. the noise v, AdanpdateB is the Adam Rule for optimizing
Equation 3.
E}j = 8}__1
For batch B from x:

v~ N(O, 02)

Eordt: = 1, .t = iF:

For X, in f3:

x, = X, + v,
9,= g,x,0)
v, —|—E‘_(a)

v,

T Te@oll

<
Il

x = x.+ v
1 4 1

o AdamUpdateB(Bj)

J+

Figure 5: SMART method algorithm based on method from original paper Jiang et al.|(2019).

Learning Rate | SST Dev Accuracy | STS Dev Correlation
le-5 0.474 0.868
2e-5 0.459 0.879
3e-5 0.498 0.877
4e-5 0.489 0.871
Se-5 0.486 0.874

Figure 6: Model performance on SST and STS tasks after ten epochs with varying learning rates.
The learning rate of 3e-5 performed best across both tasks; although the model performed slightly
better on the STS dev set with a rate of 2e-5, the difference in correlation was small enough (0.879
vs. 0.877) to motivate using 3e-5 instead. Additionally, we determined the loss converged with this
learning rate.

10

Batch Sizes | QQP Dev Acc | SST Dev Acc | STS Dev Corr | Dev Score
32,4,3 0.625 0.262 0314 0.514
40,4, 3 0.833 0.443 0.854 0.734
45,4,3 0.842 0.478 0.853 0.724
40, 6, 4 0.848 0.487 0.866 0.756
40,8, 6 0.873 0.438 0.871 0.749

Figure 7: Model performance on SST, QQP, and STS tasks after ten epochs. Batch sizes are reported
for QQP, SST, and STS data respectively.

Model Type SST Dev Acc | QQP Dev Acc | STS Dev Corr | Dev Score | Run Time (sec)
Baseline 0.480 0.887 0.882 0.764 1620
Dropout Baseline 0.480 0.861 0.867 0.758 1620
Stickland Baseline 0.494 0.883 0.861 0.769 3200
SMART Loss Default 0.515 0.828 0.867 0.759 1800
SMART-SST Loss 0.509 0.864 0.866 0.769 1800
SMART-SST Loss + Bregman 0.494 0.879 0.876 0.770 1940

Figure 8: SMART method performance and epoch run time. Note, the Stickland Baseline refers to
our modified multitask learning approach described in section 5.2.

Frequency

o
=

Class Recall | Precision
negative 0.324 0.474
somewhat negative | 0.512 0.548
neutral 0.489 0.397
somewhat positive | 0.487 0.548
positive 0.624 0.500

Figure 9: Recall and Precision values for semantic analysis using Dev set.

Histogram of STS True Labels

-
[=1
[=]

Label

Histogram of STS Predictions

=
M2
=]

w
[=]

Frequency

[3%)
=1

=

2
Prediction

Figure 10: Histogram comparison of true and predicted STS labels for SST SMART + Bregman
Model on development set.

11

	Key Information
	Introduction
	Related Work
	Approach
	Experiments
	Data
	Experimental Details
	Evaluation method
	Results
	Combined Results.

	Analysis
	Conclusion
	Appendix

