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Abstract

Existing tranformer-based models have typically shown poor performance when
applied to named entity recoginition (NER) tasks in materials science due to the
interdisciplinary nature of literature in the field. This project proposes an NER
architecture inspired by the diversity of materials science texts. By ensembling
several BERT models pretrained on texts from neighboring scientific fields (chem-
istry, material physics, biomedicine, and electrical engineering), the proposed
architecture facilitates transfer learning across several disciplines relevant to mate-
rials science while benefitting from the reductions in model variance brought by
ensembled methods. Five variations of ensemble architecture are trialed on the
Matscholar corpus, a dataset of IOB-tagged materials science journal articles. The
ensembled model is found to out-perform the previous benchmark model with a
7.8% improvement in multiclass F1 score on the development set; however, the
ensemble may fail to identify entities in cases where context is domain-specific.
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2 Introduction

Materials science – the study of the physical, chemical, and biological properties of materials to
inform engineering design – produces large volumes of experimental data, yet, until recent digitization
efforts, has lacked the centralization of data present in other scientific fields (Olivetti et al., 2020). In
lieu of central databases for sharing experimental results, the primary mode of communication in
the field has traditionally been publications in academic journals. As such, named entity recognition
(NER) for materials science literature is a key task for advancing informatics in the field. By
identifying entity references in past research studies – such as chemical names, crystal structures,
or experimental conditions – NER models enable the rapid parsing of materials physics data. This,
in turn, can contribute towards advancements in material discovery and synthesis mediated by deep
learning techniques.

Traditional frameworks for NER have, however, had limited success when reapplied within the
materials science domain. Materials science is an inherently interdisciplinary field; accordingly,
writing in materials science literature exhibits syntactic patterns from several related domains such
as chemistry, physics, and biology. Previous attempts (Song et al., 2023) at pretraining transformer-
based models on materials science literature have resulted in poor performance, in part due to the
diversity of texts in the field. Applying models tuned for scientific NER, such as BioBERT and
SciBERT, to the materials science domain has similarly yielded weak performance.

In this work, we draw inspiration from the interdisciplinarity of materials science to propose a
new framework for NER in materials literature. We present an ensemble model that aggregates the
entity predictions generated by several BERT-based sublearner models, each pretrained on texts
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from neighboring scientific fields, to inform a metalearner tuned to the materials science NER task.
The proposed architecture aims to incorporate learned knowledge from several disciplines relevant
to materials science while benefitting from the reductions in model variance brought by ensemble
methods. The resulting metalearner, BondBERT, “bonds" the sublearner predictions together much
like the atomic bonds described by the materials literature it parses.

3 Related Work

NER for materials science. Though still nascent, NLP for materials science has attracted a consider-
able increase in interest in recent years. Song et al. (2023) introduce MatSci-NLP, the first formal
benchmark for evaluating NLP on materials science texts. Weston et al. (2019) perform NER on
a materials science corpus using stacked BiLSTMs with conditional random fields and Word2Vec
embeddings. Trewartha et al. (2022) pretrain a BERT model for materials NER, finding that, although
materials domain-specific pretraining leads to marginal improvement in F1 score over existing frame-
works for general-purpose scientific text processing, the efficacy of pre-training is highly sensitive to
the choice of training corpus. The diversity of subject matters and syntactic patterns across sub-fields
of materials science means that the balance of specificity for particular facets of materials physics
and breadth of disparate sub-fields represented in a corpus steer the transformer’s performance. Our
ensemble approach seeks to target this balance: we achieve specificity by way of pre-training each
sublearner on a corpus with narrow scientific focus, and diversity through transfer learning across
these “domain expert" sublearners in the ensemble.

NER via ensemble learning. Several past efforts have explored the use of ensemble-based methods
for NER. Devlin et al. (2019)’s original BERT paper briefly experiments with ensembling seven
BERT models each initialized from different pre-training checkpoints. Cakaloglu and Xu (2019)
propose an ensemble that constructs multi-resolution embeddings for each word in the original text
through a mixture of token representations by individual sublearners, then passes these ensembled
embeddings into a metalearner neural network. In both studies, the sublearners are general-purpose
BERT models pre-trained on texts broadly representative of typical English language use; in our
work, we aim to use ensembling to facilitate transfer learning between distinct domains.

Copara et al. (2020) and Lin et al. (2022) implement transfer learning across scientific sub-domains by
ensembling transformer-based models each pretrained on texts from different scientific fields. Each
sublearner’s entity tag prediction for a token in the original text is taken as the tag with maximum
softmax probability among all subwords of the token; then, the ensemble’s tag prediction is the
majority vote of sublearners for that token. The simplicity of the ensembling scheme is necessitated
by differences in subword tokenizations across the sublearners, which means that the ensemble cannot
leverage the per-subword embedding representations generated by each sublearner. Our work extends
this approach by re-aligning sublearner tokenizations such that the metalearner can make use of the
information encoded by the hidden layers of each sublearner when making ensemble predictions.

4 Approach

To emulate the interdisciplinary nature of materials literature, we construct an ensemble NER model
of BERT-based sublearners each pretrained via masked language modeling on texts sourced from a
scientific field adjacent to materials science. In doing so, we adopt the ensemble learning paradigm
where the wisdom of a “crowd" of sublearners, each knowledgeable in a different domain, pool their
complementary knowledge for the materials NER task. The sublearners of the ensemble, selected for
their pretraining corpuses’ diversity and relevance to materials science, are listed in Table 1 below.

Sublearner Domain of pretraining corpus Reference
MatBERT Materials science Trewartha et al. (2022)
BioBERT Biomedicine Lee et al. (2019)
SciBERT General science Beltagy et al. (2019)

BatteryBERT Battery physics Huang and Cole (2022)
Chemical-BERT Chemistry Recobo.ai (2023)

Table 1: Sublearners of BondBERT ensemble
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We perform Bayesian hyperparameter optimization to select ideal hyperparmeters for each sublearner,
then finetune the sublearner on a corpus of materials science texts for a small number of epochs
with the AdamW optimizer. The number of finetuning epochs is restricted to limit the variance of
each sublearner model; in particular, this restriction of complexity prevents the case where all five
sublearners converge towards similar outputs and lose the benefit of pre-training on different domains.

4.1 Embedding Alignment

At prediction time, the input text is tokenized according to the tokenization scheme for each sublearner
model, then passed through the finetuned BERT model to generate per-learner token embeddings.
Because each sublearner uses a different tokenization, sequences of characters treated as a single
token in one sublearner may be partitioned into several subword tokens in another. This means that,
since there is no guarantee of cross-correspondence in what subwords are represented by embeddings
at identical positions in different sublearner transformers, the per-learner token embeddings cannot
be directly aggregated across the ensemble.

We implement an algorithm of our own design, AlignEmbeddings, to align embeddings over all
learners in the ensemble. The ensemble-wide alignment algorithm extends spaCy’s implementation
(Explosion Inc, 2023) of Myers’ algorithm for aligning spans across different tokenizations (Myers,
1986), augmenting the sublearner embedding outputs such that they have dimension equal to the
maximal cardinality of any partition of subwords across the ensemble (see Figure 1).

The algorithm post-processes sublearner outputs by duplicating the hidden layer and logit predictions
of each sublearner for as many repetitions as is necessary to adhere to the newly-aligned ensemble
tokenization. In doing so, this alignment enables more sophisticated aggregation schemes (likelihood
maximization, adaptive boosting, and hidden layer pooling) than the simple majority voting previously
reported in the literature for ensembles of several tokenizations. The implementation of the alignment
algorithm is detailed in Algorithm A1.

Figure 1: Illustration of AlignEmbeddings for generating aligned ensemble tokenizations of input
text. Terms of the form ci and bj represent subword embeddings for the ith and jth subword of the
respective sublearner. Note the duplication of sublearner embeddings post-alignment to match the
ensemble-wide tokenization scheme.

4.2 Ensemble Architecture

The aligned sublearners are then ensembled following one of two architectures.

4.2.1 Voting Architecture

In the voting architecture, each sublearner independently generates entity tag predictions for the
input tokens, which are treated as “votes" for the metalearner prediction. Three voting schemes are
implemented.

Majority voting. Each sublearner L votes for the entity tag T with maximum softmax probability,
argmaxT pL(T ). The metalearner outputs the entity tag with the most votes across all sublearners.
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Likelihood Maximization. The joint density of predicted softmax probabilities for tag T across each
of ℓ sublearners L is computed as f(T ) = Πℓ

L=1pL(T ). The metalearner outputs the entity tag with
maximum likelihood, argmaxT f(T )

Boosting. Inspired by multiclass Adaboost (Hastie et al., 2009), predictions made by each sublearner
are weighted by that sublearner’s performance on the training data. This approach is motivated by the
pre-training domains of the five sublearners – a sublearner trained on texts from a particular scientific
field may be more or less suited at identifying particular entity tags. For example, MatBERT may
be more effective at identifying symmetry label tags, a task unique to materials science NLP. Each
sublearner L is assigned an error score (1 - per-class precision) for each entity tag class T ; this score
represents the sublearner’s “confidence" in making predictions for that class. Entity predictions are
made as follows, where Ŷ L

i = argmaxT pL(T )i is the entity prediction made by sublearner L on
training example i across t possible entity tag choices:

errTL = 1− precisionTL

αT
L = log

(
1− errTL

errTL

)
+ log (t− 1)

Metalearner prediction: = argmax
T

ℓ∑
L=1

αT
L1(Ŷ

L
i = T )

4.2.2 Multi-Learner Embedding Architecture

In the multi-learner embedding architecture, the hidden layers of all sublearners are pooled to generate
ensemble embeddings for each aligned token. From a linguistic standpoint, we interpret this method
as learning token embeddings that incorporate domain-dependent word meaning. As an illustrative
example, the word “cell" is used with varied meaning in materials science writing: a biomaterials
journal may refer to biological cells, a crystallography paper may describe the unit cell of a crystal,
while a third text might reference a electrolytic cell in the context of batteries. The multi-layer
embedding architecture draws upon the domain-specific embeddings of each sublearner to aggregate
metalearner embeddings able to capture all three meanings.

We extend the work of Cakaloglu and Xu (2019) by applying a mixture model of two cascaded
operations, fmix and fensemble, to produce ensembled representations of tokens post-alignment. For
each sublearner L, we generate a per-sublearner embedding for token i as the concatenation of
transformer hidden states from the jth hidden layer, eL,j

i , to the kth hidden layer, eL,k
i :

xLi = fmix(eL,j
i , eL,j+1

i , . . . eL,k
i ) =< eL,j

i ⊕ eL,j+1
i ,⊕ . . .⊕ eL,k

i >

Drawing from the recommendations of the original BERT paper (Devlin et al., 2019), we perform
this concatenation over the final four hidden layers of each sublearner (setting j = 8, k = 12). The
resulting ensemble representation is expressed as the set X ′

i = {x1
i , x2i , . . . , xℓi} for an ensemble of ℓ

sublearners. The aggregated embedding for the token is then:

xi = fensemble(X
′
i,w)

where fensemble performs a weighted average over the sublearner representations in the set X ′
i using

learned weights w, with
∑ℓ

L=1 wL = 1, wL ∈ [0, 1].

The metalearner is a neural network that accepts the ensembled embeddings as input and applies
further learned weights to generate a predicted probability distribution over the entity tags; the tag
with highest predicted probability is then outputted as the metalearner prediction. We implement
two metalearner network architectures: a fully-connected feed-forward network of three layers,
and a BiLSTM network with two layers. Both networks are trained with cross-entropy loss as the
minimization objective.

Schematics of the voting and multi-learner embedding architectures are given in Appendix Figures
A1 and A2
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5 Experiments

5.1 Data

We develop the ensemble using data sourced from the MatSci-NLP suite of benchmark datasets (Song
et al., 2023), the current state-of-the-art natural language benchmark for NLP in the materials domain.
We focus our work on the Matscholar NER task outlined by the benchmark, which includes 5,458
training examples of IOB-tagged texts from materials science and battery design. Possible entity
tags are {“material name" (MAT), “symmetry label" (SPL), “sample descriptor" (DSC), “material
property" (PRO), “material application" (APL), “synthesis method" (SMT), “characterization method"
(CMT)}. 1,092 examples (20%) are designated as a held-out test set; the remaining examples are
used for model training and validation.

5.2 Evaluation method

In keeping with the MatSci-NLP benchmark, we evaluate model performance by the F1 score for
entity predictions, defined as the harmonic mean of precision and recall. Scores are reported over five
cross-validation trials on the training data as well as a final score on the held-out test set.

To provide a comparison of performance to the ensemble approach, we reproduce the benchmarks
reported by MatSci-NLP using “vanilla", non-ensembled BERT models. As in the MatSci-NLP
standard, all benchmark trials are finetuned for 20 epochs with early stopping using the AdamW
optimizer, 0.01 weight decay, no warm-up, and a learning rate of 2× 10−5.

5.3 Experimental details

To prepare the sublearners for ensembling, 15 iterations of Bayesian optimization for hyperparameter
selection are performed over 3 finetuning epochs using Optuna. The five sublearners are then
finetuned for 3 epochs using the AdamW optimizer with optimized hyperparameters listed in Table 2
and a dropout rate of 0.1 for all BERT attention layers. Huggingface defaults are used for all other
parameters of the sublearners. Finetuning of each sublearner takes approximately 20 minutes on a
single NVIDIA T4 GPU.

MatBERT BioBERT Chemical-BERT BatteryBERT SciBERT
Learning rate 4.8× 10−5 4.4× 10−5 4.4× 10−5 4.8× 10−5 4.5× 10−5

AdamW warm-up 369 355 263 86 106
AdamW weight decay 0.0973 0.0210 0.0434 0.0992 0.0926

Table 2: Optimized hyperparameters used for finetuning sublearners before ensembling

5.3.1 Voting Architecture

The five sublearners are then ensembled to implement the voting metalearner. To compute boosting
scores αT

L for the boosted voting scheme, we train the ensemble model for one epoch across all
training examples, which runs for 15 minutes on a single NVIDIA T4 GPU.

After running the ensemble of five sublearners, we perform a series of ablation studies that use subsets
of only three or four of the five learners. In doing so, we seek to investigate the contribution of each
sublearner to the overall ensemble.

5.3.2 Multi-Learner Embedding Architecture

For both the feed-forward and BiLSTM metalearners, ensemble weights w are initialized using
the Xavier uniform initialization, while all other layers are initialized using the PyTorch default
Kaiming uniform initialization. The fully-connected network passes ensembled embeddings through
three linear layers with ReLU activation; the BiLSTM passes embeddings through a bidirectional
LSTM followed by a linear layer with ReLU activation to project BiLSTM outputs into the entity tag
dimension. We perform 15 iterations of Bayesian optimization for hyperparameter selection. The met-
alearner networks are trained for 10 epochs with early-stopping using the optimized hyperparameters
given in Table 3.
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Feed-forward network BiLSTM
Layer dimensions {4 · dim(x)× 512, 512× 256, 256× t} {4 ·dim(x)× 512, 512× t}

Learning rate 2.4× 10−5 5.0× 10−5

AdamW warm-up 229 228
AdamW weight decay 0.0001 0.033

Dropout rate 0.0551 0.0567

Table 3: Layer specifications and hyperparameters used for metalearner networks in multi-learner
embedding architecture. dim(x) denotes the dimension of token embeddings before concatenation
over the final four hidden layers of each sublearner (768); t is the number of IOB entity tags (15)

Feed-forward training runs for approximately 4 hours on an NVIDIA T4 GPU; BiLSTM training
runs for approximately 4.5 hours with this same configuration.

5.4 Results

5.4.1 Baselines

To provide a baseline level for performance benchmarking, we report the F1-scores of each individual
sublearner in Table 4 as the mean over five cross-validation trials, ±2σ. We note that MatBERT,
BioBERT, and BatteryBERT have been previously reported to produce state-of-the-art performance
on the MatSci-NLP benchmark (Song et al., 2023); our replication study affirms this finding. The
bolded best-performing model is taken as the “baseline" performance for all subsequent analysis in
this paper.

MatBERT BioBERT Chemical-BERT BatteryBERT SciBERT
Validation F1 0.830±0.0015 0.843±0.0003 0.753±0.0083 0.848 ±0.0118 0.828±0.0010

Table 4: Benchmark development set F1 scores of non-ensembled models for NER on Matscholar
corpus. Results are reported as the mean across 5 trials ±2σ; best-performing benchmark is bolded.

5.4.2 Ensembling

We report the performance of the ensemble variants in Table 5. For the voting architecture, we
additionally perform ablation studies in which all 15 possible subsets of three or four of the five
sublearners are independently ensembled. We present voting results using all five sublearners (“full"),
as well as the best-performing ablation subset (MatBERT, BioBERT, SciBERT; “ablated") in Table 5.
Full results for the ablation study are provided in Appendix Table A1.

Ensemble performance is found to improve significantly after the removal of the Chemical-BERT and
BatteryBERT sublearners during ablation. This observation, as well as CUDA memory constraints
on available GPUs, motivate the decision to build the multi-learner embedding architecture using
only BioBERT, MatBERT, and SciBERT as sublearners. Plots of model loss and F1 scores during
training for the multi-learner embedding models are presented in Appendix Figure A3

Architecture Model variant Validation F1 Test F1
Full majority voting 0.883±0.0054 0.889
Full likelihood maximization 0.884±0.0058 0.890

Voting Full boosting 0.876±0.0085 0.883
Ablated majority voting 0.914 ±0.0057 0.922
Ablated likelihood maximization 0.914 ±0.0060 0.922
Ablated boosting 0.911±0.0054 0.921

Multi-learner embedding Feed-forward 0.854±0.0059 0.904
BiLSTM 0.855 ±0.0110 0.916

Baseline 0.848±0.0118 0.915

Table 5: Performance of ensembled models for NER on Matscholar corpus. Full voting schemes use
all five sublearners, while ablated voting schemes use the top-performing subset of three sublearners:
MatBERT, BioBERT, SciBERT. Validation results are reported as the mean across 5 trials ±2σ.
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We find that all ensemble variants strictly out-perform the baseline model during validation; on the test
set, all ablated voting models and the BiLSTM embedding model exceed the baseline. Intriguingly, it
is the simplest ensembling method – majority voting over the ablated subset of three learners – that
produces the highest validation F1 with least variance across cross-validation trials. This ensemble’s
7.8% improvement in validation set F1 score over the baseline far exceeds expectations.

We draw two conclusions from this result. First, transfer learning between transformers with
complementary knowledge, even when this knowledge is weakly finetuned to the specific NER
task (i.e., constraints on finetuning epochs), can achieve stronger performance than that of a single
specialized learner more extensively tuned to the NER corpus. Second, our initial assumption that
allowing the ensemble to adaptively reweight the contributions of each sublearner would enhance
performance was not validated. The boosted voting and multi-learner embedding architectures –
both of which were constructed to allow the ensemble to account for the domain-specific strengths
or deficiencies of each sublearner when making predictions – exhibited weaker performance than
the simpler majority and likelihood maximization voting schemes. We examine this behavior in the
following section.

6 Analysis

We structure our analysis by examining two themes: 1) the reason for the stronger performance of
“simple" ensemble schemes (majority voting and likelihood maximization) over other architectures
and 2) error analysis for these best-performing models.

At a high level, the boosted voting and multi-learner embedding ensembles operate by learning
weights to best aggregate the predictions of each sublearner: this takes the form of the boosting
weights αT

L for the boosted ensemble and the ensemble weights w for the multi-learner embedding.
We visualize the learned weights for three architectural variants in Figure 2

Figure 2: Learned weights for ensemble aggregation in (a) boosted voting architecture and (b)
feed-forward and BiLSTM multi-learner embedding architectures

For boosting, we observe a surprising result: the boosting weights αT
L for any single entity tag T are

near-identical across all learners L. This suggests that all three sublearners are similarly “confident"
in their predictions for any given tag T ; that is, the domain expertises of the sublearners do not
significantly impact their per-tag error rates. The unintended outcome of this fact is that the boosted
ensemble will disproportionately predict entity tags with high values of αT

L for all three learners.
Inspecting the per-tag predictions of the boosted ensemble supports this interpretation: the ensemble
outputs disproportionately many predictions for the “MAT" and “DSC" entity tags, the two tags with
highest boosting weights.

For multi-learner embedding ensembles, we find that the three sublearners have unequal contributions
to the final token embedding. In both the feed-forward and BiLSTM architecture variations, one
of the three sublearners has disproportionately high weight wL, representing increased contribution
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towards the multi-learning embedding relative to the other learners in the ensemble. This suggests
that the metalearner network may “over-rely" on this single sublearner BERT when generating token
embeddings, losing out on information encoded by the full ensemble.

We also inspect the outputs of the best-performing majority voting and likelihood maximization
ensembles to better understand their errors. Figure 3 plots the ensembles’ differences in entity tag
distribution relative to the true entity labels. Errors predominantly stem from the over-prediction of
outside word “O" tags at the cost of under-predicting the material property (“PRO") and characteriza-
tion method (“CMT") tags. We qualitatively examine several examples where the PRO and CMT tags
are misidentified, finding that the ensemble tends to fail in cases where 1) technical scientific notation
is interspersed with natural language or 2) the entity of a token depends on a broad surrounding
context. Illustrative examples of these cases are given in Table 6.

Figure 3: Ensemble models’ distribution of entity tag predictions relative to true distribution of entity
labels. Both plots share a y-axis representing the difference in predicted to true tag proportion.

Input text Correct tag Predicted tag Commentary

% yield strength Material
property Outside The percentage sign is a piece of technical notation with context-

dependent meaning: while an isolated % represents a scale of mea-
surement, the phrase “% yield strength" refers to a mechanical property
with precise in-domain meaning

difference in atomic size Material
property Outside In this setting, the full phrase “difference in atomic size" is treated as a

property of a material; the model neglects this broader context and tags
“difference" using its single-word definition

Table 6: Qualitative analysis of two common error types for the majority voting and likelihood
maximization ensembles. For each example, we consider the entity tag prediction of the bolded word.

The first of the failures may arise from underexposure of the model to technical notation during
training. This might be addressed by selectively introducing training examples of such notation during
finetuning of sublearners, or by adding a sublearner pre-trained on technical notation standards, such
as ChemBERTa (Chithrananda et al., 2020), to the ensemble. The issue of misidentifying context-
dependent entities suggests that the sublearner token embeddings do not encode long-range contextual
dependencies; this could be addressed by increasing the number of sublearner finetuning epochs
while carefully monitoring the variance of the resulting ensemble metalearner.

7 Conclusion

We propose an ensemble-based method inspired by the interdisciplinarity of materials science litera-
ture for named entity recognition in the domain. We implement a tokenization alignment algorithm
for aligning subword token embeddings across ensemble sublearners with different tokenization
schemes. This facilitates the design of two ensemble architectures – a voting-based architecture with
three voting scheme variants, and a multi-learner embedding architecture with two network variants.

We find that outputting entity tag predictions as the majority vote across an ablated ensemble of
three sublearners achieves a 7.8% improvement in validation multiclass F1 score over the existing
state-of-the-art. We note, however, that the model performs poorly in cases where token entities are
strongly context-dependent; future studies may investigate how tuning the representation ability of
individual sublearners impaxts the overall performance of the ensemble.
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A Appendix

Algorithm A1 AlignEmbeddings

Require: ℓ sublearners to be aligned
nowAligned← Stack(L1)
toAlign← Queue(L2, . . . , Lℓ)
completedAlignments← 0
while toAlign ̸= ∅ do

prevAlign← Peek(nowAligned)
currAlign← Pop(toAlign)
alignments← myerAlign(currAlign, prevAlign)[∗]
for idxToAlign in alignments do

if indices not aligned then
duplicateEmbeddings(currAlign, idxToAlign)

end if
end for
if completedAlignments < ⌊ ℓ2⌋ then

toAlign.Enqueue(Pop(nowAligned))
end if

aligned.Push(currAlign)
completedAlignments← completedAlignments + 1

end while
[*] myerAlign: Returns the indices of tokens in prevAlign that correspond to subword tokenizations
of a single token in currAlign

Figure A1: Architecture of the voting ensemble
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Figure A2: Architecture of the multi-learner embedding ensemble

Sublearners Majority voting
validation F1

Max likelihood
validation F1

Boosting
validation F1

{MatBERT, BioBERT, SciBERT, Chemical-BERT, BatteryBERT} 0.883 0.884 0.876
{MatBERT, BioBERT, SciBERT, BatteryBERT} 0.908 0.913 0.910
{MatBERT, BioBERT, Chemical-BERT, BatteryBERT} 0.890 0.895 0.893
{Chemical-BERT, BioBERT, SciBERT, BatteryBERT} 0.881 0.884 0.881
{MatBERT, BioBERT, SciBERT, Chemical-BERT} 0.875 0.881 0.879
{MatBERT, Chemical-BERT, SciBERT, BatteryBERT} 0.682 0.697 0.699
{MatBERT, SciBERT, BioBERT} 0.914 0.914 0.911
{MatBERT, BioBERT, BatteryBERT} 0.911 0.912 0.910
{BioBERT, SciBERT, BatteryBERT} 0.908 0.909 0.906
{MatBERT, Chemical-BERT, SciBERT} 0.882 0.885 0.881
{BioBERT, Chemical-BERT, BatteryBERT} 0.879 0.884 0.878
{MatBERT, Chemical-BERT, BioBERT} 0.873 0.879 0.871
{MatBERT, Chemical-BERT, SciBERT} 0.839 0.837 0.835
{Chemical-BERT, SciBERT, BatteryBERT} 0.807 0.815 0.807
{MatBERT, SciBERT, BatteryBERT} 0.751 0.754 0.746
{MatBERT, Chemical-BERT, BatteryBERT} 0.720 0.731 0.717

Table A1: Performance of ablated ensemble models with voting architecture; best performance for
each voting scheme is bolded.
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Figure A3: Training curves of feed-forward network and BiLSTM network with ensembled token
embeddings as input. The clear plateau in both training validation loss motivated the choice to train
for only 10 epochs.
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