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Abstract

We optimize the minBERT model for three different downstream tasks - SST-5,
QQP and STS-B. We implement a multi-task training procedure and compare
individual training versus multi-task training to see if we can leverage transfer
learning effects across the tasks. We find that the STS-B results can indeed
improve when trained with the similar QQP task, whereas we get better results with
individual training for the unrelated SST-5 task. We find that mixing batches among
the datasets during training is crucial for a well balanced model, sharing weights
between tasks. When dataset sizes are disproportionate across the tasks, training on
more samples for the smaller tasks towards the end of training may be beneficial.
Finally, for QOP and STS-B involving sentence pairs, we find that concatenating
the sentences before feeding them through the BERT-model is superior, as the
model can leverage BERT’s attention mechanism across the sentence pairs.

1 Introduction

In this project we explore different training techniques and architectures for three downstream tasks
using a BERT-based language model: Sentiment classification, paraphrase detection and scoring of
semantic textual similarity. We compare accuracy from fine-tuning each task separately vs. different
multitask training approaches where all three tasks are trained simultaneously, to see if we can
improve the model’s performance by letting the network generalize across the three tasks.

We establish a baseline by adding task specific layers on top of a pretrained BERT-model - minBERT
Devlin et al. (2018). Going on from there we try to improve results on two fronts:

1. Improving the model architecture to find the individually best performing setup

2. Improving the training procedure to find the approach that yields the best results

We then compare individual task training with multitask training, to see whether sharing parameters
between tasks can yield better results.

The motivation for multitask training is to leverage transfer learning effects, assuming that training
on one task can help learning for the other tasks, thereby improving overall results. By sharing some
weights for all tasks, the model is more space-efficient compared to three individually fine-tuned
models. However, multi task training can be problematic and suffer from "catastrophic forgetting",
where weights from previous tasks are overwritten with the new task’s weights McCloskey and Cohen
(1989). We try different batch sampling techniques to alleviate effects from different data set sizes
inspired by (Stickland and Murray, 2019). We also examine whether using a single combined loss
function as opposed to three separate loss functions improves results. We try a combined regularized
multi task loss function with learnable weights proposed by Lukas and Körner (2018).
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2 Related Work

Using pretrained transformer networks for downstream NLP-related tasks was explored by Devlin
et al. (2018). They used masked language modelling and next sentence prediction to train a network
of stacked transformer layers.

In the context of multi task learning several approaches have been taken. Stickland and Murray (2019)
added parallel task specific transformer layers and used a modified round robin approach to reduce
effects of different dataset sizes when training on multiple tasks, gradually increasing samples from
smaller datasets towards the end of training.

A lot of effort has been put into combining task specific loss functions into a "global" multitask
loss function. However, combining individual loss functions presents a challenge: Task specific
loss functions may have different scales and simply adding them together may make the gradients
interfere. One way to combine the losses is to learn a task specific weight for each loss function and
then take the weighted sum of the losses. Such an approach is explored by Lukas and Körner (2018)
where they were able to boost performance of a main task by simultaneously learning auxiliary tasks.

3 Approach

3.1 Baseline

As a baseline, we start by implementing three simple classifier heads, one for each task, on top of a
pretrained BERT model (Devlin et al., 2018), where the tasks and their heads are as follows:

• Sentiment: Classifying a sentence into one of five sentiment categories. The pooler
output from BERT is passed through a dropout layer and then into a linear classifier with
five output logits. Cross-Entropy loss is used as loss function.

• Paraphrase: Detecting whether two sentences express the same meaning. Both sentences
are individually processed by BERT, then the two pooler outputs are concatenated, passed
through a dropout layer and into a linear classifier. Binary Cross-Entropy loss is used as loss
function.

• Similarity: Determining the similarity of two sentences. Both sentences are individually
processed by BERT, then the two pooler outputs are concatenated, passed through a dropout
layer and into a linear classifier. MSE loss is used as loss function.

To obtain baseline data, we train and evaluate each task individually and pick the best model from 10
epochs of fine-tuning, using an Adam-optimizer (Kingma and Ba, 2014) with weight decay, AdamW
(Loshchilov and Hutter, 2017).

We notice that the network almost immediately starts to overfit with train accuracy approaching 100%
after 10 epochs, whereas dev accuracy remains way below and largely stable after the first epoch.

We hypothesize that multitask training could alleviate this, because the model should generalize better
when faced with three different tasks simultaneously. We thus implement a naive multitask procedure.
We employ a round robin approach going through the entirety of the three datasets consecutively
during one epoch. We fail to see generalization benefits from this naive multitask training procedure
— in fact, accuracy drops across the board.

For comparison, we repeat the baseline runs with frozen BERT weights, so only the classifier heads
get trained. This practically eliminates overfitting and confirms our suspicion that the BERT model
provides too many degrees of freedom for the low number of training examples we have available.

Various experiments with regularization and higher dropout inside BERT do not improve the overfit-
ting behavior. However, despite overfitting, we reproduce the finding from Devlin et al. (2018) that
fine-tuning yields better performance. We conclude that for the given architecture, more training data
or a much more refined training approach would be needed to further improve baseline results.

Based on our confirmation of the finding that fine-tuning beats frozen weights, all experiments from
hereon will be conducted by fine-tuning the entire model.
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Figure 1: Model architecture used in the majority of experiments. Design of the task specific heads
shown to the right.

3.2 Model architecture

Looking into architectural enhancements, we add cosine similarity (Reimers and Gurevych, 2019)
between sentence encodings as an additional input feature to the classifiers for Paraphrase and
Similarity, but cannot obtain a significant improvement.

We speculate that using BERT’s attention mechanism to assess two input sentences at once will be
more powerful than what we are likely to achieve with a classifier based on two individual BERT
results. We thus feed both sentences, concatenated and separated by a [SEP] token, into BERT,
yielding a massive improvement for Similarity, and a significant improvement for Paraphrase.

Regarding the surprising finding that multitask training did degrade results on the baseline, we
theorize that there must be an internal model conflict when training for different tasks. We recognize
that the BERT pooler output together with our linear classifiers on top forms multi-layer perceptrons.
In the current architecture, the lower half of this perceptron is shared across all three tasks.

We thus move the pooler (feed-forward + tanh-activation) from BERT into each of the three heads and
use the first token of the last BERT hidden state as input. This yields a substantial improvement in
multitask training for Sentiment and Paraphrase and a slight improvement for Paraphrase, confirming
our analysis.

We note however that Sentiment hovers substantially below the result achieved in individual training.
This could be due to the fact that in naive multitask, Sentiment is first in round robin, with it’s learning
partially being wiped out by the two tasks that follow. A run in reversed order, where Similarity is
trained first and Sentiment last, confirms this. We will look into resolving this problem – or even
taking advantage of it – when optimizing the training procedure.

Assuming that Paraphrase and Similarity are conceptually related while Sentiment is different, we
also run multitask training with only Paraphrase and Similarity, but fail to see a significant change.

Trying to optimize Similarity further we try different output functions for the classifier: Using logits
directly, applying clamping [0,5] to the logits, and computing sigmoid of the logits multiplied by 5.
All three approaches yield similar results, so we leave it at direct logit output which has the lowest
compute cost.

Next, we experiment with different pooling strategies: We try basing the classifier input on: the
first token [CLS], the last token 1, and the mean of all sentence tokens. All three strategies produce
roughly the same results, so we leave it at [CLS], which is the most common approach.

1Note that "last token" in this context means the token at the position where the last unmasked token of each
respective input sentence was, not the physically last token of the last hidden layer
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3.3 Training procedure

We started the baseline by implementing a naive multitask procedure, training consecutively on the
entirety of each dataset during each epoch. As expected, results are heavily influenced by the order
in which the datasets are trained, with the performance of the first-in-line dataset degraded and the
last-in-line boosted.

Before working to alleviate this problem, we try to take advantage of this ordering bias by producing
a set of trained models where each task to be trained is placed last in the round robin queue. This
multitask with smart round robin training approach can be viewed like a blend of balanced multitask
and individual training. Indeed, we see transfer learning effects with an improvement for Similarity
and a minuscule degradation for Paraphrase, but this comes at a cost, as we now have to run the
entire training multiple times.

To achieve a more balanced multitask training, we need to solve the ordering bias problem, and also
try to even out the differences in dataset sizes. We take inspiration from Stickland and Murray (2019)
and implement an improved sampling strategy.

Using this method, during an epoch we select a batch from a dataset i of size Ni with probability pi:

pi ∝ Ni (1)

This procedure exposes the network to the full datasets during one epoch, as does our naive approach,
but in a balanced way without exhausting the entire dataset before proceeding to the next one. As
expected we see a more balanced learning progress, without the degradation of the first dataset of the
epoch, yielding a better overall model. We also see a smoother learning curve and faster convergence
compared to the naive approach.

With the QQP dataset being significantly larger than the other sets, we proceed along the path
suggested by Stickland and Murray (2019) and even out dataset sizes during an epoch to see if this
improves results. To do so, we introduce a hyperparameter α ∈ [0, 1]:

pi ∝ Nα
i (2)

α = 1 will let the sampling probability remain proportional to the size of the datasets, while
decreasing α will increase the likelihood of sampling from smaller datasets. Stickland and Murray
(2019) found that letting α decrease during training was beneficial, and we implement this technique
as well:

α = 1− 0.8
e− 1

E − 1
, E > 1 (3)

Here, e is the training epoch and E is the total number of epochs. Note that we no longer define an
epoch to be the entire datasets, but rather an arbitrary number of training steps. We typically use
2500 steps per epoch. The runs with α = 0.5 seem to produce somewhat less fluctuating results for
the smaller datasets, and we see only a slight improvement from having α < 1 or changing α during
training according to 3.

Still experiencing overfitting, we also try an approach with a combined multitask loss function instead
of having three separate loss functions. Believing that simply adding the losses together will be
suboptimal, an alternative could be to weigh each task specific loss by a factor wi, but instead of
tuning the weights manually, we try an approach with learnable weights. We start with a combined
loss function defined as:

Lcomb(x, y, θ, w) =
∑
i∈T

wiLi(xi, yi, θi) (4)

Here, Li is the task specific loss function, wi is a learnable weight and θi the model parameters. To
avoid trivial solutions where wi ≤ 0, an additional regularization term is needed. We implement the
combined loss function proposed by Lukas and Körner (2018). They define the combined loss as:

Lcomb(x, y, θ) =
∑
i∈T

1

2w2
i

Li(xi, yi, θi) + ln(1 + w2
i ) (5)
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4 Experiments

4.1 Data

We use the SST-5 (Socher et al., 2013), QQP (quo) and STS-B 2 datasets, split into train, dev and test
as specified in the project handout3.

4.2 Evaluation method

For Sentiment and Paraphrase we use dev accuracy (and test where available) , for Similarity we
use pearson corelation between predicted value and gold on the dev/test data. For multitask-trained
models we additionally provide an Overall score, picking the best model by computing the geometric
mean over all three tasks’ performance4.

We noticed that model results could change a few percent simply due to seeding and initialization
values for parameters. This brings up the question whether a change of one or two percent from one
architecture to another is an actual improvement. An established approach would be to run between
5 to 50 random restarts, then picking the best — or recording the mean and variance, for when
comparing model architectures, it may be beneficial to trade the absolute best, or the best mean for a
slightly lower mean with lower variance.

Due to lack of compute, we weren’t able to perform all our trials with multiple seeds. However, for
individual sentence-concat we tried 6 different seeds for SST, finding that accuracy varied by 0.02.

We also looked into lowering training variance by implementing weight decay and learning rate
decay with some promising initial results, but discovered that these hyperparameters are not generally
applicable and a separate grid search would be required for each architecture and training method. So
again, due to lack of compute, we had to keep the learning rate steady and weight decay at zero. This
would certainly be an interesting future research topic.

We used the following three models when submitting to the test leaderboard:

• Highest score per task achieved in individual training
• Highest score per task achieved in multitask training with smart round robin
• Highest score per task achieved in multitask training with sampling (decreasing α)

Since we only had three submissions to the test leaderboard we mainly used the dev accuracy during
evaluation. However, considering the comparatively small dev datasets, a chance best dev accuracy
doesn’t necessarily have to translate to the best test accuracy.

4.3 Experimental details

Unless otherwise stated, our experiments were run with the following hyperparameters:

• Learning rate: 10−3 with frozen BERT-weights and 10−5 for finetuning. Higher values for
finetuning did not produce good results; in fact, 10−5 already seems to be at the aggressive
upper end which is why we had looked into learning rate decay.

• Weight-decay: 0.0
• Drop-out: 0.3 for all layers. We also tried 0.1 without seeing improvements
• Batch size: 16
• For the AdamW optimizer, we used β1 = 0.9, β2 = 0.999, ϵ = 10−6

4.4 Results

For all training variants the model architecture was the one shown in figure 1 with task-specific pooling
layers inside the heads, using the [CLS] token of the last hidden state after feeding concatenated
sentences through BERT.

2https://aclanthology.org/S13-1004.pdf
3https://web.stanford.edu/class/cs224n/project/default-final-project-handout-minbert-2024.pdf
4Because we submit the best model per task to the leaderboard, there is no overall best model score for test
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Sentiment
SST-5 (Acc.)

Paraphrase
QQP (Acc.)

Similarity
STS-B (Corr.)

Overall
(Score)

BASELINES Dev/Test Dev/Test Dev/Test Dev
individual, frozen-bert 0.417 / – 0.670 / – 0.271 / – –
naive multitask, fine-tuning 0.486 / – 0.727 / – 0.389 / – 0.504
individual, fine-tuning* 0.535 / – 0.785 / – 0.399 / – –

MODELS
individual, cosine similarity* 0.510 / – 0.788 / – 0.407 / – –
individual, sentence concat* 0.530 / 0.535 0.888 / 0.887 0.864 / 0.869 –
naive multitask, sentence concat 0.465 / – 0.830 / – 0.871 / – 0.695
naive multitask, pooling in heads 0.503 / – 0.887 / – 0.887 / – 0.731

TRAININGS (pooling in heads)
multitask with smart round robin 0.518 / 0.527 0.884 / 0.888 0.887 / 0.886 0.732
multitask sampling (α = 1) 0.506 / – 0.886 / – 0.867 / – 0.728
multitask sampling (decreasing α) 0.519 / 0.533 0.884 / 0.884 0.875 / 0.872 0.732

Table 1: Results for dev and test (where available) datasets for the main experiments.
Note that the computation graph for SST is identical for the three models marked with * and the apparent
variance (0.510 - 0.535) stems solely from different random initialization due to model changes for QQP/STS

The overall best performing model architecture employs task specific pooling layers for all three
tasks and uses concatenated sentences for Paraphrase and Similarity.

For SST, no multitask-trained model performed better than the individually trained one. For STS, the
multitask-trained models were slightly better. QQP held mostly steady across approaches. However,
as explained above, variability from random initialization may explain away most of those differences.

Randomized sampling generally demonstrated a faster and more even convergence as can be seen in
2. Dynamically decreasing α benefits SST and STS, and slightly impacts QQP. This is expected, as a
smaller α gives more emphasis to the two smaller datasets, reducing exposure to QQP.

The combined loss function was on par with the results from task specific loss. See figure 7 in the
appendix for a graph of task specific loss versus combined loss.

5 Analysis

For the model architecture, we find that having a separate pooler for each task in multitask training
is essential. Our theory is that different tasks pose conflicting demands on the integrated pooler.
Surprisingly, what data the pooler is based on, be it the first token, the last token or the mean of all
tokens is largely irrelevant. We attribute this to the fact that we do full model fine-tuning, so the
BERT layers can adapt to the requirements of the poolers sitting above.

5.1 Sentiment Classification

Our best SST-5 result (0.535) is achieved when doing individual training. Getting SST correct is a
difficult task even for a human and analyzing the incorrect predictions, we notice that it is not obvious
which class to assign to the sentences. As a comparison, the top score as of today lies at 0.598 using
a much more elaborate and powerful model 5

Worth noting is that variability from random initialization exceeds most of the differences in obtained
SST results, so without random restarts these results are not statistically significant, except for the
massive drop in SST baseline performance when moving from individual to multitask training.

It can be concluded with high confidence, however, that SST has little to gain from transfer learning
in our setup, which makes intuitive sense as it is conceptually different from the other two tasks
which seem more related.

5https://paperswithcode.com/paper/an-algorithm-for-routing-vectors-in-sequences
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5.2 Paraphrase Detection

For paraphrase detection, we achieve a significant improvement by passing the concatenated sentence
pairs through the entire BERT model compared to passing each sentence separately. By concatenating
the sentences, the model can use the attention mechanism of the BERT-layers, which seems ideally
suited for such a task.

Future work could try to optimize this further by examining whether supplying different segment
encodings for the two sentences have an addditional positive impact.

It seems that QQP benefits little from multitask training, which we attribute to the fact that the dataset
is disproportionally large and is in fact dominating and slightly hurting its much smaller peers.

5.3 Semantic Textual Similarity

As with paraphrase detection, we find that feeding the concatenated sentence through the entire BERT
model is far superior to passing individual sentences.

Similarity is the only task where we see a benefit from multitask training (see table 2). We believe the
small STS-B dataset is able to leverage conceptual similarity between its task and Paraphrase to take
advantage of the much larger QQP dataset.

5.4 Multitask training

Our work shows that transfer learning benefits from multitask training are best obtained when the
tasks are related. As can be seen in table 2, only STS-B achieves an improvement over individual
training.

Sentiment
(SST-5 Dev)

Paraphrase
(QQP Dev)

Similarity
(STS-B Dev)

Best individual 0.535 0.888 0.864
Best multitask 0.519 0.887 0.887
Difference -0.16 -0.001 +0.023

Table 2: Comparing best results on dev datasets for individual vs multitask training

How batches are ordered during training is another important factor: Naive multitask favours learning
the task ordered last, degrading performance of what was learned before. Smart round robin training
takes advantage of this, but it comes at the expense of repeat training runs for each task. The
computational cost is much higher than for individual training, as each task has to train on all datasets.

With sampling this effect is well mitigated: Figure 2 shows data obtained from a model with a single
shared BERT pooler, which is prone to be pulled in different directions. As can be seen from the
graphs, the first two tasks suffer heavily from their round robin position. The sampling approaches
compensate very well for that degradation.

Furthermore, as can be seen from table 1, dynamically decreasing α reduces the negative impact of
the disproportionally large QQP dataset on the two smaller ones, as samples become more evenly
distributed across the three tasks. This effect is also visible in the STS chart of figure 2: In the later
epochs, dynamic alpha sampling slightly surpasses the other two methods as alpha becomes smaller.

Our experiments with task specific losses versus a combined loss with learnable weights are shown
in figure 7. Both versions produce similar results. We tried multitask training with combining loss
functions for all three tasks as well as only for the related Paraphrase and Similarity tasks. Further
experiments could try different types of combined loss functions such as gradient surgery (Yu et al.,
2020).
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Figure 2: Effect on sampling strategy on the SST-5, QQP and STS-B datasets. Figure showing dev
accuracy for naive sampling, proportional sampling α = 1 and dynamically reducing α as in eq 3.

6 Conclusion

In this project we explored how multitask training compares to individual training for different
downstream tasks, and how different multitask training approaches affect the result.

We found that multitask training is able to leverage transfer learning effects for tasks that are related.
The benefit when compared to individual training is bigger for smaller datasets, whereas tasks with
large training datasets may gain little or nothing but are not necessarily hurt by multitask training as
long as a conflict-free model is used. Avoiding conflicts inside the model, where shared parameters
are pulled in different directions by the different tasks, is absolutely essential. Otherwise multitask
training will yield inferior results in comparison with individual training.

Looking at different batch sampling techniques, we found that linearly cycling through tasks will
favor the last-in-line task by degrading learning results from earlier tasks. It is crucial to randomly
(or at least proportionally) mix batches from different tasks during each epoch in order to obtain
a balanced training result. If there is large asymmetry in the sizes of datasets, tasks with large
datasets may hurt tasks with less training examples and produce an unbalanced result as well. Using
a sampling technique that is not bound to the proportions in dataset sizes (with α < 1 or dynamically
decreasing α) can compensate the negative effect in these situations.

We also explored using a single combined loss function but weren’t able to improve results compared
to using separate task specific loss functions.

For the multi-task approaches, comparing the accuracy of each task as well as overall model perfor-
mance, we find that smart round robin and sampling with decreasing α both yield almost the same
results but smart round robin requires significantly more compute as well as a separate set of weights
for each task.

In terms of model architecture, for the tasks involving two sentences, we found that concatenating the
sentences before feeding them to the BERT-layers, thereby leveraging BERT’s attention mechanism,
improved performance significantly.

7 Team contribution

Both team members contributed to all tasks, but Matthias’s contribution was more weighted towards
developing / finding improved model architectures. Björn’s contribution was more focused on
developing / evaluating multitask training procedures.
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A Appendix

Figure 3: Training progress: Baseline - individual, fine-tuning

Figure 4: Training progress: Baseline - naive multitask, fine-tuning

Figure 5: Training progress: Baseline - individual, frozen-bert

Figure 6: Training progress: Baseline - naive multitask, frozen-bert
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Figure 7: Task specific loss vs combined loss function (ref to equation 5. Figure showing SST dev
accuracy for two training runs with the different loss functions. No significant difference.
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