
Efficient Alignment of Medical Language Models using
Direct Preference Optimization

Stanford CS224N Custom Project

Brendan P. Murphy
Department of Computer Science

Stanford University
bigsur@stanford.edu

Abstract

Recent advances in large language models (LLMs) have shown impressive per-
formance on various natural language tasks. However, adapting these models to
specialized domains, such as medicine, requires efficient fine-tuning techniques and
alignment with domain-specific preferences. This research explores the application
of Direct Preference Optimization (DPO) in combination with parameter-efficient
fine-tuning methods to align a medical LLM, BioMistral-7B, with the nuanced
preferences and analytical style required for advanced medical reasoning tasks.
By leveraging Low-Rank Adaptation (LoRA) and 4-bit quantization, the model is
efficiently fine-tuned on the PubMedQA dataset for medical question answering.
The supervised fine-tuned model (SFT) is further aligned using DPO, where the
ground truth answers from the dataset are treated as preferred outputs, and the SFT
model’s predictions are considered rejected outputs. Qualitative and quantitative
evaluation metrics, including Win Rate, Helpfulness Quotient and DPO Reward
Margin, demonstrate the effectiveness of this approach in improving the model’s
alignment with medical preferences. The DPO-aligned model achieves a 63% win
rate over the SFT model in human evaluations and notably eliminates evasive or
safe responses that directly avoid answering the question. This research highlights
the potential of DPO as a valuable tool for aligning LLMs in specialized domains,
offering a more direct and efficient approach to preference learning. The proposed
framework of combining parameter-efficient fine-tuning with DPO opens up new
possibilities for developing domain-specific LLMs that generate outputs aligned
with expert preferences.

1 Introduction

Large language models (LLMs) have demonstrated remarkable performance across a wide range of
natural language tasks, driven by the transformer architecture and the increasing scale of data and
compute(Vaswani et al., 2023). Models like GPT-3 have shown impressive capabilities in language
understanding and generation(Brown et al., 2020).

Aligning language model behavior is important for realizing usefulness and impact of these tech-
nologies. However, typical alignment methods pose challenges to adoption due to their complexity
and high computational costs. Direct Preference Optimization (DPO) offers a promising alternative,
providing a more direct approach to preference learning that avoids the challenges associated with
reinforcement learning techniques(Rafailov et al., 2023).

This research explores the application of DPO for aligning a medical language model, BioMistral, for
complex clinical reasoning tasks and preferences(Labrak et al., 2024). Unlike common applications
of DPO, such as aligning models to be harmless, this project focuses on adapting the model to capture
the specific preference and style of the medical domain experts who created the dataset.
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To investigate the effectiveness of DPO within a complex clinical reasoning question answering
domain. I first performed supervised fine-tuning (SFT) on the BioMistral model using a task-specific
dataset. The SFT model served as a benchmark for evaluating the performance of the DPO-optimized
model. In the DPO step, I used the same dataset as in the SFT phase, but I treat the actual answers
from the dataset as the preferred choices and the SFT model’s predicted answers as the rejected
choices. By doing so, I aim to align the BioMistral model’s outputs with the preferences and analytical
style inherent in the dataset. This approach aims to capture nuances, terminology, and reasoning
patterns specific to question answering in the medical domain.

To efficiently adapt the BioMistral model while reducing computational resources, the parameter-
efficient fine-tuning technique Low-Rank Adaptation (LoRA) was used (Hu et al., 2021). This method
freezes most of the model’s parameters and fine-tunes only a small subset, significantly reducing
training time and memory requirements while maintaining performance and preventing catastrophic
forgetting.

This experiment demonstrates promising results, with the DPO-optimized models achieving a win
rate of approximately 63% over the SFT model in human evaluations. Additionally, the DPO
model no longer evades questions by providing safe responses, indicating improved alignment
with the preferred answers. The key contributions of this research are twofold. First, I showcase
the effectiveness of DPO in aligning a medical language model to specific tasks and preferences,
enabling the generation of outputs tailored to the needs of medical experts. Second, I demonstrate
the feasibility of efficiently adapting large language models using parameter-efficient fine-tuning
techniques, making the alignment process more accessible and cost-effective.

These findings highlight the potential of DPO as a valuable tool for aligning language models in
specialized domains, such as healthcare, where capturing domain-specific preferences and styles is
crucial. By providing a more direct and efficient approach to preference learning, DPO opens up
new possibilities for developing language models that generate outputs aligned with the needs and
expectations of domain experts.

2 Related Work

In the medical domain, domain-specific language models have been developed by pretraining on large
amounts of medical text. MEDITRON-70B is a notable example, which scales medical pretraining
to a 70 billion parameter model, demonstrating strong performance on various medical language
tasks(Chen et al., 2023). These medical LLMs provide a foundation for further adaptation and
alignment to specific medical tasks and preferences. Adapting large language models to specific
domains and tasks can be achieved through various techniques. Supervised fine-tuning is a common
approach, where the model is trained on a labeled dataset specific to the target task. However,
fine-tuning large models can be computationally expensive and may require significant resources.

To address the challenges of efficient adaptation, techniques like parameter-efficient fine-tuning have
been proposed. Low-Rank Adaptation (LoRA) is a popular method that freezes most of the model
parameters and only fine-tunes a small subset, significantly reducing the computational requirements
while maintaining performance. LoRA has been successfully applied to medical language models for
tasks like question answering and summarization(Wang et al., 2023) and (Van Veen et al., 2024).

Another approach to aligning language models with specific preferences is through Direct Preference
Optimization (DPO). DPO involves training the model on a dataset of human-annotated comparisons
between model outputs, allowing the model to learn and align with the preferred responses. This
technique has been applied to medical text summarization, demonstrating its ability to enhance
downstream tasks (Ahn et al., 2024).

Recent work has also explored the use of contrasting responses across identical and diverse prompts
to enhance LLM alignment (Yin et al., 2024). They propose a method to optimize the model’s
preferences by comparing its outputs across different prompts, allowing for a more nuanced alignment
with desired behaviors.

Despite the advancements in LLM adaptation and alignment, the evaluation of clinical LLMs for real-
world applications remains a critical challenge. Other work introduces the Conversational Reasoning
Assessment Framework for Testing in Medicine (CRAFT-MD), a novel approach for evaluating the
diagnostic capabilities of clinical LLMs in the context of natural doctor-patient dialogues(Johri et al.,
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2024). The authors applied CRAFT-MD to assess GPT-4 and GPT-3.5 in the domain of skin diseases,
revealing limitations in their conversational reasoning, history taking, and diagnostic accuracy. Based
on these findings, the paper proposes a set of guidelines for future evaluations of clinical LLMs,
emphasizing realistic conversations, comprehensive history taking, open-ended questioning, and a
combination of automated and expert evaluations.

3 Approach

Direct Preference Optimization (DPO) is an algorithm for training language models from human
preferences, without needing explicit reward modeling or reinforcement learning(Rafailov et al.,
2023). Prior methods for preference learning fit a reward model on human judgments about model
outputs, and then use reinforcement learning to optimize a policy to maximize the predicted reward.
However, reinforcement learning is complex and unstable. DPO sidesteps these challenges by
parametrizing the reward in terms of the policy directly. Specifically, DPO sets the reward equal to:

r(x, y) = β log

(
π(y|x)
πref(y|x)

)

Where π is the policy, πref is a reference policy, and β controls the strength of the KL constraint that
prevents uncontrolled distribution shift. The authors prove this allows transforming the probability of
human preferences under a Bradley-Terry model into a loss over policies:

L(π) = −E(x, y+) log σ
(
r(x, y+)− r(x, y−)

)
This loss maximizes the relative probability of preferred outputs y+ over dispreferred outputs y−.
Weighting by the logistic helps prevent instability, so DPO can directly optimize a policy to satisfy
human judgments, without needing separate reward modeling or reinforcement learning.

To efficiently adapt the BioMistral language model to specific medical tasks and preferences, this
experiment combines DPO with parameter efficient fine tuning techniques. I utilize the Transformer
Reinforcement Learning (TRL) library from HuggingFace for supervised fine-tuning and DPO
(Wolf et al., 2020) and employ LoRA parameter efficient fine tuning. LoRA is a technique that
adds adapters to the existing model, enabling efficient learning and adaptation to downstream tasks
while significantly reducing computational resources. By freezing most of the pre-trained model’s
parameters and introducing a small set of trainable low-rank update matrices, LoRA allows the model
to adapt to new tasks while preserving the knowledge acquired during pre-training, thus preventing
catastrophic forgetting.

This approach involves three main steps for each medical task:

• Supervised Fine-Tuning (SFT): Fine-Tune the BioMistral model on task-specific datasets
and use SFT outputs to establish benchmark performance.

• DPO Dataset Creation: Creating a DPO dataset by treating the actual answers from the
task-specific datasets as preferred choices and the SFT model’s predictions as rejected
choices.

• DPO Optimization: Applying DPO to the SFT model using the DPO dataset, this aligns the
models’ outputs with the preferences and style of the datasets.
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Figure 1: Supervised fine-tuning and DPO of Mistral7B model on PubMed QA Task

4 Experiments

4.1 Data

The data for this experiment comes from a subset of the PubMedQA dataset, a publicly available
resource designed for the development and evaluation of medical question answering systems (Jin
et al., 2019). This subset consists of 5000 examples selected from PubMedQA, with each example
corresponding to a unique medical question derived from the abstracts of research articles. The
preprocessing step involves condensing the nested JSON structure of the original PubMedQA dataset
and mapping the data into a format suitable for the model. This entails extracting the ’context’,
’question’ and ’answer’ fields, and prefixing the ’context’ to the ’question’.

4.2 Experimental Details

Experiments were conducted using the open-source 7 billion parameter BioMistral-7B model on a
single NVIDIA A100 GPU with 80GB memory,leveraging NVIDIA CUDA libraries for accelerated
computing(NVIDIA et al., 2024). I use the Hugging Face Transformers library’s model quantization
functionality to reduce the precision of BioMistral-7B’s parameters to 4 bits using bitsandbytes which
significantly reduces the memory footprint of the model. I employ LoRA to minimize computational
overhead and configured training with a rank of 64, alpha of 16, and dropout of 0.1. The target
modules for adaptation are the query, key, value and output projection matrices in the attention blocks.
I use the TRL library’s SFTTrainer for supervised fine-tuning. I also use gradient accumulation with
a batch size of 4 per device to simulate larger batch training, and a learning rate of 2e−5 The learning
rate schedule follows a cosine decay. I fine-tune for 1 epoch.

5,000 examples from the PubMedQA dataset for question answering in the biomedical domain are
used for the SFT step. I preprocess the dataset to map it to a format suitable for prompted fine-tuning,
with each example containing a sequence of interleaved user and assistant messages. The dataset
is split into 90% train, 5% validation, and 5% test. I limit the total sequence length to the model’s
maximum of 2048 tokens.

Following the supervised fine-tuning of BioMistral-7B on the PubMedQA dataset, I created the DPO
dataset by first generating 5000 predictions from the SFT model on a held out set of PubMedQA
questions. For each question, the model’s predicted answer is paired with the actual ground truth
answer. This forms a dataset where each example consists of a question prompt, the model’s prediction
(considered the "rejected" answer), and the human-written ground truth (considered the "chosen"
answer). I split this dataset into 90% train and 10% test. The dataset is also transformed into the
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format expected by the DPO trainer, with each example containing the question prompt, chosen
answer, and rejected answer.

For the DPO training, I continue using the 4-bit quantized version of BioMistral-7B, loading the
weights fine-tuned during the SFT phase. I apply LoRA on top of this model for parameter-efficient
DPO tuning, using a configuration with rank 128, alpha 128, and dropout 0.05. The target modules
for LoRA include the query, key, value, output, gate, up, and down projection matrices. I use the
TRL library’s DPOTrainer for optimization. The training is run for 1 epoch with a batch size of 8
per device, gradient accumulation steps of 4, and a learning rate of 5e-6 with cosine decay. The loss
function used is the sigmoid loss, and the DPO hyperparameter beta is set to 0.01. Evaluation is
performed every 100 steps on the test split of the DPO dataset. The hypothesis is that the DPO-tuned
model will show improved alignment with human preferences compared to the SFT model, generating
answers more similar to the human-written ground truth when prompted with questions.

Finally I sample 500 questions from a hold out set from PubMedQA, and use the DPO model to
generate long text answers. Automated metrics like training and evaluation loss, Rewards Margin,
and Helpfulness Quotient are calculated, as well as human evaluation via inspection by a volunteer
rater are used to quantify model performance.

4.3 Evaluation method

To comprehensively assess the performance of the BioMistral-7B model and the effectiveness of the
DPO approach, I employ a combination of human evaluation, DPO-specific metrics, and automatic
evaluation metrics.

• Human Evaluation - Win Rate I conduct a blind study involving a physician as a human
evaluator to compare the outputs of the Supervised Fine-Tuned (SFT) model and the DPO-
optimized model. The evaluator is presented with a set of questions and the corresponding
outputs from both models, without knowing which model generated each output. The
evaluator then selects the preferred output for each question based on their understanding of
the PubMed QA dataset and professional judgment. To calculate the "win rate," I sample
100 comparisons between the SFT and DPO model outputs. The human evaluator provides
judgement by selecting their preferred answer. The win rate is calculated as the number
of instances where the DPO model’s output is selected as the preferred choice, divided by
the total number of judgments made. This metric quantifies the relative performance of the
DPO model compared to the SFT model based on human preference.

• DPO Reward Margin During the DPO training phase, I track the Reward Margin metric
to assess the model’s learning progress. The Reward Margin represents the difference
between the rewards assigned to the preferred answers and the rejected answers. As the
DPO progresses, the Reward Margin is expected to increase, indicating that the model
is learning to assign higher rewards to the preferred answers compared to the rejected
answers. The Reward Margin serves as a proxy for the model’s accuracy in aligning with
the preferences defined by the DPO dataset. A higher Reward Margin suggests that the
model is effectively distinguishing between preferred and rejected answers, and is adapting
its outputs accordingly.

• Helpfulness Quotient To assess the effectiveness of the DPO approach in reducing the
model’s tendency to generate evasive or safe responses, I introduce the Helpfulness Quotient
(HQ). This metric quantifies the extent to which the model provides direct and relevant
responses to the given questions. I sample a set of 500 questions from the PubMedQA
holdout set and generate responses using the unmodified BioMistral-7B model, the Super-
vised Fine-Tuned (SFT) model, and the DPO-optimized model. I then analyze the generated
responses to identify instances of evasive or non-specific answers that do not directly address
the given question. The HQ is calculated for each model using the following formula:

HQ =
Ntotal −Nevasive

Ntotal
(1)

where Ntotal is the total number of generated responses and Nevasive is the number of
identified evasive responses.
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By comparing the HQ scores of the unmodified BioMistral-7B model, the SFT model, and
the DPO-optimized model, I aim to quantify the extent to which the DPO approach has
successfully re-aligned the model to provide more direct and specific answers, reducing
its reliance on safe or evasive responses. A higher HQ score in the DPO-optimized model
compared to the unmodified and SFT models would indicate the effectiveness of the DPO
approach in mitigating this limitation and improving the model’s ability to provide relevant
and informative answers according to the task-specific training data. The Helpfulness
Quotient serves as a targeted metric to evaluate the model’s progress in reducing evasive
responses and enhancing its overall helpfulness in providing answers that directly address
the given questions. By incorporating this metric alongside other evaluation methods, I aim
to comprehensively assess the impact of the DPO approach on the model’s performance and
its alignment with the desired behavior defined by the task-specific training data.

By combining Win Rate, Reward Margin, and Helpfulness Quotient, I provide a comprehensive
evaluation of the BioMistral-7B model’s performance and the effectiveness of the DPO approach
in aligning the model’s outputs with the preferred answers. The human evaluation captures the
subjective preferences of a domain expert, while the Reward Margin and Helpfulness Quotient offer
quantitative measures of the model’s learning progress and usefulness, respectively.

5 Results

The performance of the BioMistral-7B model was evaluated using three key metrics: the human
evaluator win rate, the Helpfulness Quotient (HQ), and the DPO Reward Margin. Table 1 presents
a comparison of the results obtained for the unmodified BioMistral-7B model, the Supervised
Fine-Tuned (SFT) model, and the DPO-optimized model.

Model Win Rate HQ Reward Margin
Unmodified BioMistral-7B - 0.81 -
SFT Model 0.37 0.78 -
DPO Model 0.63 1.00 11

Table 1: Comparison of evaluation metrics for different models

The Win Rate was found to be 63% in favor of the DPO-optimized model, indicating a clear preference
for the outputs generated by this model over those of the SFT model.

The Helpfulness Quotient (HQ) metric, which quantifies the proportion of direct and relevant re-
sponses, showed a notable improvement from the unmodified BioMistral-7B model (0.81) to the
DPO-optimized model (100%). This suggests that the DPO approach has successfully reduced
the model’s tendency to generate evasive or non-specific answers, resulting in more helpful and
informative responses.

The DPO Reward Margin, a metric specific to the DPO training process, measures the difference
between the rewards assigned to preferred and rejected answers. During training, the Reward Margin
climbed significantly and plateaued around 0.80 epochs. This indicates that the model has effectively
learned to distinguish between desirable and undesirable outputs, assigning higher rewards to the
preferred answers compared to the rejected ones. The Reward Margin can be interpreted as a measure
of the model’s accuracy in aligning with the preferences defined by the DPO dataset.

These results demonstrate the effectiveness of the DPO approach in aligning the model’s outputs
with the preferences of the domain expert and improving the overall helpfulness of the generated
responses. The improvement in the HQ metric, in particular, highlights the model’s ability to provide
more direct and relevant answers after undergoing the DPO optimization process.

The obtained results are highly encouraging, the significant improvement in the human evaluation
(win rate), the HQ metric, and the high plateau of the DPO Reward Margin suggests that the DPO
approach is a promising method for fine-tuning language models in the biomedical domain. The
success of this approach can be attributed to its ability to incorporate expert preferences directly into
the model’s training process, allowing it to learn and adapt to the desired behavior more effectively
than traditional fine-tuning methods. These findings have important implications for the development
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of language models in specialized domains, such as biomedicine, where the ability to provide accurate,
relevant, and informative responses is crucial. The DPO approach offers a powerful tool for aligning
language models with expert preferences and enhancing their performance in real-world applications.

Figure 2: DPO Reward Margin on BioMistral7B and PubMed QA Task. The reward margin shows
the difference between the preferred and rejected answers and should increase during training as the
model learns the chosen or preferred answers have a higher reward than the rejected answers. This
metric can be interpreted as the accuracy.

6 Analysis

The qualitative analysis of the BioMistral-7B model’s outputs reveals interesting insights into its
behavior and the impact of the DPO approach. The unmodified BioMistral-7B model exhibits a
tendency to generate evasive or non-specific answers, particularly when dealing with questions related
to subjectivity, race, or ethnicity. This behavior can be attributed to the model’s inherent preference
for censorship, which was likely acquired during a fine-tuning step after its initial pre-training.

In contrast, the PubMedQA dataset, which serves as the basis for the DPO optimization process,
inherently prefers providing the best possible answer to medical questions. By aligning the model’s
outputs with the preferences of this dataset, the DPO approach effectively reduces BioMistral-7B’s
censorship preference and encourages the generation of more direct and relevant responses.

The Helpfulness Quotient (HQ) metric, introduced to quantify the proportion of direct and relevant
responses, provides a clear indication of the model’s qualitative improvement. The notable increase
in the HQ score from the unmodified BioMistral-7B model (0.81) to the DPO-optimized model (100),
highlights the effectiveness of the DPO approach in reducing evasive or non-specific answers. This
improvement in the model’s ability to provide helpful and informative responses is a direct result of
the alignment with the PubMedQA dataset’s preferences.

The human evaluator’s preference for the outputs generated by the DPO-optimized model over those
of the SFT model further supports the qualitative improvement achieved through the DPO approach.
The domain expert’s assessment of the model’s outputs provides valuable insights into the relevance
and informativeness of the generated responses, confirming the effectiveness of the DPO optimization
process.

The analysis of the DPO Reward Margin’s behavior during training offers additional evidence of
the model’s successful alignment with the desired preferences. The significant climb and plateau
of the Reward Margin at 0.80 epochs indicate that the model has learned to distinguish between
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preferred and rejected answers, assigning higher rewards to the desired outputs. This learning process
demonstrates the model’s ability to capture and internalize the preferences defined by the DPO
dataset.

Overall, the qualitative analysis of the BioMistral-7B model’s outputs and behavior highlights the
power of the DPO approach in capturing and aligning the model with domain-specific preferences.
By reducing censorship tendencies and promoting the generation of direct and relevant responses,
the DPO-optimized model achieves a significant improvement in its ability to provide helpful
and informative answers to medical questions. This analysis underscores the potential of the DPO
approach as a valuable tool for adapting language models to specialized domains, such as biomedicine,
where accurate and relevant information is of utmost importance.

7 Conclusion

This research demonstrates the effectiveness of combining parameter-efficient fine-tuning techniques,
such as LoRA and 4-bit quantization, with DPO to align a medical language model with domain-
specific preferences. The proposed approach achieves promising results, with the DPO-optimized
model outperforming the SFT model in both human evaluations and automatic evaluation metrics.

The introduction of the Helpfulness Quotient metric provides a valuable tool for quantifying the
proportion of direct and relevant responses generated by the model. The significant improvement in
the HQ score from the unmodified BioMistral-7B model to the DPO-optimized model highlights the
effectiveness of the DPO approach in reducing evasive or non-specific answers and promoting the
generation of helpful and informative responses.

The human evaluator’s preference for the outputs generated by the DPO-optimized model over those of
the SFT model further validates the qualitative improvement achieved through the DPO approach. The
domain expert’s assessment confirms the relevance and informativeness of the generated responses,
underscoring the successful alignment of the model with the PubMedQA dataset’s preferences.

The analysis of the DPO Reward Margin’s behavior during training provides additional evidence of
the model’s successful internalization of the desired preferences. The significant climb and plateau of
the Reward Margin demonstrate the model’s ability to distinguish between preferred and rejected
answers, assigning higher rewards to the desired outputs.

While the results of this research are highly encouraging, there are some limitations to consider.
Further evaluation of the model’s generalization ability on diverse medical datasets and real-world
scenarios is necessary to fully assess its performance and robustness. Having multiple evaluators
would also provide a more comprehensive and diverse assessment of the model’s performance and
mitigate subjectivity. Future work should involve a larger pool of evaluators. Additionally, exploring
newer modified DPO implementations, such as iterative or online DPO, and alternative preference
learning methods that eliminate the need for binary preferences could potentially enhance the model’s
alignment and adaptability in the medical domain (Ethayarajh et al., 2024).

Overall, this research contributes to the growing body of work on efficient adaptation and alignment
of LLMs in specialized domains. The successful application of parameter-efficient fine-tuning
techniques and DPO to align a medical LLM with domain-specific preferences opens up new
possibilities for the development of accurate, relevant, and informative language models in the
biomedical field. The proposed approach offers a promising direction for future research and practical
applications, potentially leading to more effective and trustworthy AI-assisted tools in healthcare and
medical decision-making.

8 Code

Part of the code for supervised-fine-tuning and dpo was adapted and inspired from a deeplearning.ai
notebook, "Supervised fine-tuning (SFT) of an LLM" and "Human preference fine-tuning using direct
preference optimization (DPO) of an LLM" by Lewis Tunstall and Edward Beeching of Hugging
Face (Tunstall and Beeching, 2024b) and (Tunstall and Beeching, 2024a).

The code is available on my GitHub
https://github.com/csbrendan/cs224N
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A Appendix

A.1 Human Study

To calculate the win rate, I sampled 100 SFT to DPO comparisons for which the rater produced 100
judgements. The win rate was calculated as the number of DPO generations selected divided by the
total judgements made. 63 / 100 or 63%.

A.2 Participant

I had one volunteer rater, Agustina Saenz (MD, MPH) who blindly compared the benchmark SFT
answer to the DPO answer for 100 questions from the PubMed QA dataset. She is a practicing MD
and post graduate research at the Rajpurkar Lab at Harvard Medical School as well as a mentor in the
Stanford & Harvard Medical AI bootcamp.

A.3 Summarization Experiment

In addition to the main experiment, I conducted a similar experiment for a summarization task
utilizing the MeQSum dataset (Ben Abacha and Demner-Fushman, 2019). Although the dataset was
likely too small at 1000 examples for the SFT step, the results demonstrate the effectiveness of DPO
in redirecting the model to a new task, even with limited data. The SFT model struggled to adapt
to the summarization task, often attempting to answer the question instead of providing a summary.
This behavior suggests that the SFT step did not have sufficient data to train the model to change its
goal from answering questions to summarizing them.

However, when performing DPO with a small hold out set from MeQSum, the model was instructed
to summarize the question instead of trying to answer it in most cases. The ROUGE scores presented
in Table 2 indicate the significant impact of DPO in redirecting the model to an entirely new type of
task.

These results highlight the potential of DPO to effectively align language models to new tasks,
even with limited training data. The ability of DPO to redirect the model’s focus from question
answering to summarization, despite the small dataset size from MeQSum, underscores its versatility
and efficiency in adapting to different tasks and objectives.

Model ROUGE-1 ROUGE-2 ROUGE-L
F1 Precision Recall F1 Precision Recall F1 Precision Recall

SFT Model 0.12 0.46 0.08 0.03 0.12 0.02 0.10 0.36 0.06
DPO Model 0.36 0.37 0.38 0.23 0.23 0.24 0.34 0.35 0.36

Table 2: Comparison of ROUGE scores for SFT and DPO models
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