
A Good Novelist Should be a Good Coder: From
Language Critics to Automatic Code Generation

Stanford CS224N Custom Project

Brian Munoz Calonge
Department of Computer Science

Stanford University
brmunoz@stanford.edu

Mu-sheng Lin
Department of Computer Science

Stanford University
vrlinp@stanford.edu

Abstract

Code projects could be modeled as Reinforcement Learning (RL) embodied envi-
ronments where the agents interact on behalf of the programmers. In this study, we
seek to develop an automatic code-generating process with the assistance of Large
Language Models (LLMs) as the task of machine translation from natural language
to codes. Our innovation includes Modularity (to relax the limit of context length
of LLMs), Factorization (to improve sample efficiency and to facilitate debugging),
and Language Critic (to automate code generation robustly). These three com-
ponents help the automatic code-generating process progressively and robustly
with supporting evidence from both simulation results and prompt experiments via
LLMs.

1 Key Information to include
• Mentors: Tathagat Verma (Internal). Fan-Yun Sun and Logan Cross (External)
• Equal contribution from both authors (research, language Critic proof-of-concept, analysis,

conclusion). Brian: Work on LLM prompts. Mu-sheng: Factor graph improvements.

2 Introduction

Currently, code generation for simple tasks can be achieved by LLMs through natural language
prompts (Wang et al., 2023). Even though individual scripts could be generated in seconds, for
complex projects, 1) high-level abstraction among scripts and 2) dynamic interacting behaviors of
variables, are still missing, meaning that the designs still need human effort involved to organize the
overall projects to be consistent during the continuous development process.

Tools to automate code generation include GitHub Copilot, the commercial product Copilot (2024), or
open-source alternatives, Code Llama Rozière et al. (2024), StarCoder Li et al. (2023), and DeepSeek
Guo et al. (2024), just to name a few. These code-generation tools could not solve the aforementioned
challenges yet. In addition, the generated codes still require manually debugging for end-to-end
projects.

To solve the challenges of high-level abstraction among scripts and dynamic-interacting behaviors of
variables, we propose to use LLMs together with Reinforcement Learning (RL) techniques as the
approach: LLMs could understand the design goals and partition the project into feasible modules (or
individual scripts) though prompts while RL helps to emulate the roles of programmers with iterative
efforts in the design process (such as implementing code, debugging error, and creating new features)
as the agents; the whole continuous development process of the code with dynamically-interacting
behaviors of variables are represented as embodied environments.

The structure of this study is as follows: Related works of embodied environment design, language,
and causality on RL and capability of scaled LLMs are briefed in Sec. 3. The approach and proposals
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for automatic code generation are detailed in Sec. 4. Experiments on the emulation of automated
code generation are conducted through the use of virtual games with LLMs, as detailed in Sec. 5,
including some prompting experiments. Analysis and possible enhancement of the proposals are
discussed in Sec. 6. In Sec. 7, we conclude this study together with interesting directions for future
work.

The contributions of this work are summarized as follows:

• Model code dynamics of embodied environments as POMDPs.

• Propose Modularity as the approach to partition the project into feasible modules by LLMs.

• Propose using LLMs as Language Critic with Causal Factor Graphs in the RL process.

• Propose Self-encouraged Learning under curriculum learning via detecting the progressive
difficulty with the Language Critic.

3 Related Work

Here we introduce concepts that are critical for our study that are not generally associated with pure
Natural Language Processing (NLP), yet in recent years have gained popularity for interdisciplinary
research, as methods across different branches of Artificial intelligence (AI) exhibit properties that
can be leveraged for improvement on current approaches.

3.1 Unsupervised Environment Design (UED)

Designing a high dimensional join distribution of the RL environment is difficult. Dennis et al.
(2020) suggest designing an underspecified environment (UED), by providing the distributions of
free parameters that control the features and behavior of the environment (formal definition in Sec.
4.1). Compared to their approach, we propose modularity and factorization with LLMs (expanded in
Sec. 4.2) to generate the embodied environments.

3.2 Languages on Reinforcement Learning

3.2.1 Language on World Model

The world model Ha and Schmidhuber (2018) uses the autoregressive model to predict the environ-
ment’s next state unsupervisedly for temporal representations. The spatial representations of the
model come from their innovation of using vision representations/tokens from the variational autoen-
coder (VAE) Kingma and Welling (2022). Refer also to more recent implementation Hafner et al.
(2023). In Lin et al. (2023), vision-token-only world model is extended with the language-conditioned
world model. In our study, we use LLMs to track the interaction dynamics among modules with the
factor graph, instead of learning from the autoregressive world model.

3.2.2 Language on Agent Model

In Hanjie et al. (2021), the agent’s policy is formed by conditioning on the text manuals of the games
(descriptions of the entities in the world and their dynamics) and the three most recent observations.
Mu et al. (2022) provide agents with goal location descriptions in language to enhance and generalize
the agents’ policy. In our study, the agent simply follows the code domain factors generated by the
LLMs (function calls) deterministically.

3.2.3 Language on Reward Model

To solve the sparse reward issue, intrinsic rewards is suggested (Oudeyer et al. (2007)) to encourage
agents to explore the environment. Mu et al. (2022) implement the language-parameterized explo-
ration method by adding an exploration bonus for visiting linguistically-novel states. Shinn et al.
(2023) propose to control reinforced language agents with linguistic feedback and store the agents’
self-reflective feedback in an episodic memory buffer. In our study, the proposed Language Critic (in
Sec. 4.2.3) also uses language feedback but we suggest using a causal factor graph to trace back the
possible errors in the environment in counterfactual ways.
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3.3 Causality on Reinforcement Learning

Causality (Pearl, 2009a) relates to the cause and effect of actions taken by an agent in an environment.
Following this idea, a counterfactual describes the actions that could have been taken by this agent
which would have yielded different effects (Figure 7 in A.4). This thought process allows us to
examine past events in hindsight and speculate on what could have happened if we had modified
specific variables in given situations. This methodology, when used in RL, is referred to as Causal
RL (Schölkopf et al., 2021), which –by explicitly integrating causality into the modeling process–
offers a systematic method for overcoming intricate decision-making challenges increasing the clarity
of the modeling process. Similarly, in our study, we leverage the causality ability of LLMs together
with factor graphs to employ causality inference to help us in code generation (explained details of
the Language Critic in Sec. 4.2.3).

3.4 Artificial General Intelligence

Andreas (2022) claims that –though with some global incoherence of generated context– sometimes
LLMs could infer partial representations of the beliefs and intentions from the training example
(authors’ mindsets) and could causally link these concepts to their generative prediction. Bubeck et al.
(2023) experiment on an early version of GPT4 that the model could perform "vision" under a pure
language model, which means LLMs could "track" the interaction dynamics of described components
in the provided scenes. In our study, we particularly use this "vision under language" ability together
with causal reasoning to backtrace the causal factor graph (refer to the simple example in A.3 and
Sec. 4.2.3 on code generation process).

4 Approach

Starting by framing the code project as the Partially Observable Markov Decision Process (POMDP)
modified with parameters generated by language prompts, we propose, for the automatic code
generation, three components corresponding to the following phased approach: 1) Modularity, 2)
Factorization, and 3) Language Critic. The phases address different issues in incremental order when
LLMs are leveraged to generate code progressively and robustly.

4.1 Partially Observable Markov Decision Process

The Partially Observable Markov Decision Process (POMDP) is defined as (S,A, T,R,O,Ω, γ),
where S is the state space, A is the action space, T is the state transition model, R is the reward
(depends on S and A), O is the set of observations, Ω is the observation function/probability,
p(o|s, a) and γ is the discount factor. Furthermore, the embodied environments can be described by
the parameters, qtext:

S
′
, T

′
, R

′
,Ω

′
= g(S, T,R,Ω, qtext)

where T , R and Ω are Turing computable functions. We leverage Large Language Models (LLMs),
such as GPT4, to design the function g. Specifically, we aim to model the code design problem as a
machine translation from natural language domain L to code domain C and further decompose the g
into factors (or function calls) by LLMs.

4.2 Code Generation Process

The automatic code-generating process could be modeled as Reinforcement Learning (RL) with
Large Language Models (LLMs). We divide the approach into the following three phases:

4.2.1 Phase 0: Modularity by LLMs

Current LLMs fall short of designing learning-efficient POMDPs end-to-end that are scalable. Here
we propose to use modularity to assist the LLM in generating embodied environments to track the
interaction dynamics among tasks under the overall design goal in high-level abstraction. One module
is defined as the sequence or set of factors (or functions) that belong to one task. By implementing this
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we effectively partition the main project into modules that each has its own task. 1 For instance, one
dialogue Li to the LLM updates the set of state variables {i0, i1, . . . , in, tk} to {i′0, i

′

1, . . . , i
′

n, tk+1}
in language domain (not observable), mapping (or translating) the Li into a sequence of factors,
Ci

m, . . . , Ci
1, C

i
0, which updates the set of state variables {c0, c1, . . . , cn, tk} to {c′0, c

′

1, . . . , c
′

n, tk+1}
in code domain. The collection of the sequence of factors under one task becomes one module that
participates in our generated POMPD environment in which the LLM tracks the interaction-dynamics
among modules. One benefit of modularity is to overcome the context length constrained by LLMs.

Our baseline for this project is the generated embodied environment in code for the games Flappy
Bird, Catcher, Snake, and Pong using a set of tailored prompts with GPT3.5 and GPT4. In the
environments that were generated successfully, we trained agents using Proximal Policy Optimization
(PPO) and Deep Q-Network (DQN) and obtained scores based on the rewards described in Kubovčík
(2023). Refer to Sec. 5.2 for more details. Notice that the agent is implemented as a fully connected
network of multilayer perceptron (MLP).

4.2.2 Phase 1: Factorization by LLMs

Factorization decomposes system state variables within one module into separable factors as shown
in Fig. 2 by the LLMs (LLM-driven factorization (Balaji et al., 2021) of POMDPs). Compared to the
MLP implementation of the agent in Sec. 4.2.1, this approach has two benefits: 1) sample efficiency
of the learning process and 2) accessibility to the debugging process. The former is to reduce the
model update complexity by separating factors while the latter helps to verify the agent under the
generated environment through the divide and conquer philosophy (details described in Sec. 4.2.3).
The experiment results (refer to Sec. 5.4) show improvement, compared to the baselines.

4.2.3 Phase 2: Language Critic by LLMs

Pearl’s Ladder of Causation

Pearl (2018) describe the "Ladder of Causation" in three layers: 1) Association, 2) Intervention, and
3) Counterfactual. Causal Hierarchy Theorem (Bareinboim et al. (2022)) proves that layers collapse
with measure (probability) zero, which implies that "to answer the question in layer i, one needs
knowledge at layer i or higher" (Bareinboim et al. (2022)). Here are examples from machine learning
fields we think are relevant to the definition: L1: BERT style model for join distributions or purely
factor graphs, L2: RL on the factor graphs, and L3: "what if" by LLMs.

Artificial General Intelligent of Scaled LLMs

Scaled LLMs, such as GPT4, show the ability of counterfactual (L3 category in Sec. 4.2.3). This is a
crucial ability since LLMs could exploit the beliefs (Andreas (2022)) and experiences (common sense
or domain-specific knowledge, Bubeck et al. (2023)) from training large corpus to avoid unnecessary
simulation in traditional RL on sample efficiency (zero-shot in context learning).

Language Critic with Causal Factor Graph

To automate the code generation process, we model the code project as an embodied environment
created by the LLMs, with the agent serving on behalf of the programmer who modifies this
environment to accomplish a specific design objective, e.g. a virtual game. The Language Critic
(by counterfactual, refer to A.4) adjusts the actions of both generated environments and the agents
based on the design goal by means of LLMs (in contrast to language reward described in Sec. 3.2.3
) and evaluate the actions (backward) based on the design goals (like the value functions but only
short term within the context window described in Fig. 2). To be specific, as shown in Fig. 1, the
language critic (implemented by using the LLMs) records the accumulated causal factor graph by
storing active factors (with state variables from modularity metadata) from both the agent and the
generated environment and produces the feedback (by counterfactual) based on a set of design goals,
either from human feedback (Ouyang et al. (2022)) or predefined metrics (Dubois et al. (2024), (Si
et al., 2024)), and then acts to adjust the agents and embodied environment to meet these objectives.

For instance, when the game is over (true reason that the gaps between pipes being too narrow in
the generated Flappy Bird game), the agent may experiment several times, then starts tracing back,

1The concept of modularity is inspired by the design pattern of MVC (Model-View-Controller).
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Figure 1: The System Diagram with Language Critic

as in Fig. 2, on the causal factor graph and eventually counterfactual reasoning on the solutions to
deduce that widening the pipe gap would allow the game’s character to pass through, enabling the
game to proceed (Fig. 3). In curriculum learning setting, a Language Critic could detect progressive
difficulty (we call this self-encouraged learning) by monitoring 1) design goal metric events or 2)
reward change events in Fig. 2.

Figure 2: Back-tracing on Causal Factor Graph by LLMs

5 Experiments

5.1 Data

We generate environments by prompting the LLMs. In the first phase of our project, we train RL
agents on these generated environments. Hence, the data is obtained via the direct interactions of
agents with the environments of the games described in our baseline as shown in Section 4.2.1. The
rest two phases use the same approach.

5.2 Evaluation method

We use different evaluation methods to determine the effectiveness and performance of our results.

5.2.1 Phase 0: Modularity Evaluation

Once the code of the game environment is produced by our baseline from prompts (GPT-3.5 and
GPT-4), we simulate the agents in the Ray framework with RLlib (Liang et al., 2017) under PPO
and DQN algorithms. The evaluation is done first by calculating the rewards of the agent "playing"
Flappy Bird (Kubovčík (2023)).

5



Figure 3: Self-encouraged Learning with Language Critic (Illustration)

5.2.2 Phase 1: Factorization Evaluation

Since Phase 0 only demonstrates that the RL algorithms can run under the generated environment
in one particular game without showing full correctness of the generated environment, we created
unit test cases that are specific to each game, in which we compare the details of the factor generated
codes to the baseline codes (only with modularity). The metric is defined as the passing rate, which is
the ratio of the unit tests that were successful on the generated game.

5.2.3 Phase 2: Language Critic Evaluation

We qualitatively analyze the environment using the Language Critic that we design to advance the
automatic code generation process that LLMs can use causal inference to debug our codes.

5.3 Experimental details

5.3.1 Phase 0: Modularity Experiment

1. We prepared the set of prompts with a sample structure of the embodied environment we
want to generate. Specifically, we define the structure that contains 1) the process input
prompt to the game, 2) the logic update prompt that handles changes in states, and 3) the
render prompt that transforms the environment into graphics. We use a "decompose" prompt
to connect the structure as shown in Figure 4

2. The prompts are processed using the GPT-3.5 and GPT-4 API. This step mainly leverages
the LLMs ability for code generation in Python code.

3. The Python code containing the embodied environment structure is post-processed through
a wrapper, adapted for the Gymnasium interface.

4. We trained our agent in the generated environment using PPO and DQN algorithms from
the standard Ray library (RLlib), both with the same parameters: 1 GPU, 40 workers, using
Adam optimizer with an initial learning rate of 0.001.

5.3.2 Phase 1: Factorization Experiment

We generated factorization code using chain-of-though (Wei et al. (2023)) with more "fine-granularity"
in language. The language model could be viewed as an extrapolation process. Intuitively, by
prompting step-by-step with guidance, the quality of the code for the generated environment should
be better. The experiment results support this intuition in Sec. 5.4.2. To further investigate the quality
of the factorization approach, we experimented with other games including Catcher, Snake, and Pong
to verify that the approach could be generalized. We ran unit test cases as explained in 5.2.2.

6



Figure 4: One example of the LLM input for code generation process used in this project

5.3.3 Phase 2: Language Critic Experiment

We use Language Critic to "judge" (or debug) the generated codes by back-tracing the causal factor
graph. We use prompts to support the concepts that 1) LLMs could trace back on causal graphs and
2) LLMs could suggest counterfactual proposals for our experiments.

5.4 Results

5.4.1 Phase 0: Modularity Results

The agents can run in the generated embodied environment, which implies partial correctness of
the code generation from the LLM. The results are shown by the max of the episodic rewards in
our baseline models in Figure 5. However, when the simulations run longer, the rewards do not
improve for either PPO or DQN, which made us re-evaluate our approach in this phase. After further
investigation, we proposed to use factorization to enhance our code generation process instead.

5.4.2 Phase 1: Factorization Results

With the conjecture that chain-of-thought could improve the generated code quality (in Sec. 5.3.2), the
code is generated by new prompts with more games simulated for generalization. The performance
between the baseline and proposed factor graph approach is summarized in Table 1. The results
indicate that the application of factorization boosts the passing rate of the generated code, which
aligns with our prediction. This supports the idea that chain-of-thought can improve the code quality
in factorization as explained previously.

Method Flappy Bird Catcher Snake Pong

GPT-3.5 0.19 0.39 0.37 0.22
GPT-4 0.35 0.35 0.57 0.25
GPT-4 plus factor graph 0.78 0.66 0.44 0.57

Table 1: The Factor Approach and Baseline
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5.4.3 Phase 2: Language Critic Results

This phase is in the proof-of-concept stage. The prompt experiment that supports that the LLM
(GPT4) could trace back on the causal graph is shown in A.3. The counterfactual ability of LLM
(GPT4) is shown in A.5. The use of a Language Critic in this phase demonstrates a qualitative
improvement is possible, suggesting that incorporating causal inference and feedback mechanisms
can refine the code generation process, making it more aligned with the design objectives.

6 Analysis

The experiments demonstrated improvement in code generation through the integration of Modularity,
Factorization, and Language Critic mechanisms. Specifically, the transition from GPT-3.5 to GPT-4
and then to GPT-4 enhanced with factor graphs shows a progressive performance improvement.

Some technical challenges of Language Critic design are still unsolved at the current stage: 1)
Grounding the useful counterfactual proposals, e.g. A.5 would be needed. LLM’s hallucination of
infeasible solutions might be another concern. 2) Deciding between choosing the different actions
in the action space or choosing the counterfactual proposals from LLMs could impact the sample
efficiency (similar to exploration vs. exploitation). We would need to estimate which one has a higher
probability of increasing the rewards instead of trying all of them to help with the decision. 3) When
designing the back-trace process, the back-tracing depth and the context window length are design
parameters, dependent on the design goal evaluation rate or reward change events. Another aspect is
the memory required to store the causal factor graph.

7 Conclusion

Our methodical approach, progressing from Modularity through Factorization to Language Critic,
demonstrates that we may significantly decrease the need for manual debugging and elevate the level
of automation in code generation.

However, there are limitations to acknowledge. The variety of games tested is limited, and extending
these findings to more complex or diverse settings requires additional study. Moreover, the compu-
tational requirements and the adaptability of our proposed techniques in more extensive, intricate
codebases need further examination for real-world code project examples.

Looking ahead, future research should delve into applying these strategies across a wider array
of programming languages and development contexts. Investigating the incorporation of more
sophisticated feedback mechanisms and the examination of more advanced model architectures could
further refine the process of code generation. The proposed Language Critic focuses on the dynamics
design of the automatic code generation process, which could be applied to extend the static website
design in Si et al. (2024) to the dynamic websites. Multi-model transformer architectures Robine
et al. (2023) with visual tokens and language tokens together might further improve the back-tracing
process of the causal factor graphs, for example, our pipes too close could be detected right after the
scene has been rendered without the need to play the game until reaching game-over.
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A Appendix

A.1 One Toy Example by chatGPT

We use chatGPT (GPT3.5) to generate a toy example: the generated python codes demonstrates that
the LLM could track the interaction dynamics among the submodules. Notice that the this model gets
"who moves to the door" wrong in the dialog (should be B, not C).

Prompt 1

Dialog to the ChatGPT to generate submodule dynamics in codes.

User: Let’s play a game. There are two roles in the game: one is A and the other is B.
GPT: Sure, I’m up for a game! I can play the roles of A and B. What’s the objective or rules
of the game?
User: The objective is to track the behavior of the roles. A and B sit at the table now.
GPT: Got it! A and B are at the table. What happens next? Are there specific actions or
decisions they should make, or should we just observe their behavior?
User: A decided to stay but B move to the blackboard.
GPT: Interesting choices! A has decided to stay at the table, while B has moved to the
blackboard. What happens next? Any specific actions or reactions, or should we continue to
observe?
User: Suddenly the lamp from the ceil near the table falls. Who might be hit by the lamp?
GPT: Given that A decided to stay at the table and B moved to the blackboard, it’s likely
that the lamp might hit B, as they are closer to the blackboard. However, the outcome could
depend on factors like the lamp’s trajectory, the speed of the fall, and the positions of A and
B. What happens next?
User: Who might be hit if the lamp is exactly above the table?
GPT: If the lamp is directly above the table and both A and B are at the table, it’s possible
that either A or B could be hit by the falling lamp, depending on their exact positions at the
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table. The outcome would then depend on the specific arrangement of A and B in relation to
the falling lamp. What happens next?
User: Assume A is hit. What could be the possible decision for A to avoid being hit by the
lamp?
GPT: If A is in danger of being hit by the falling lamp, they might try to take evasive action
to avoid getting hurt. Possible decisions for A to avoid being hit by the lamp could include:
1. Duck or move away: A could quickly duck under the table or move to the side, away from
the falling lamp’s path.
2. Push the chair back: A might push their chair back to create more space and reduce the
chance of being hit.
3. Use an object as a shield: If there’s a nearby object, A could use it as a shield to protect
themselves from the falling lamp.
4. Call for help: A might shout for assistance from someone else in the vicinity to help them
avoid the falling lamp.
What does A decide to do in this situation?
User: If A decided to use an object as shield while B move to the door. We hear someone
open the door. Who might be the person to open the door?
GPT: Given the current scenario where A is using an object as a shield and B has moved to
the door, the person opening the door could be someone entirely new, perhaps a third character
in the scene. Without additional information, it’s not clear who that person might be. It could
be another individual entering the room, someone responding to the commotion, or any other
character relevant to the context.
Who do you want the person opening the door to be, or would you like me to suggest a
character?
User: That’s right. C is the new character opened the door and walked to A while B is
drinking water. Suddenly, there is earthquake. Water spilled out. Who might want to change
clothes since his clothes get wet by the water.
GPT: In this situation, B, who was drinking water when the earthquake occurred and caused
water to spill, might want to change clothes since their clothes got wet. The decision to
change clothes would be a practical response to being wet, especially if B wants to be more
comfortable or avoid any potential discomfort caused by damp clothing. What does B decide
to do next?
User: Generate python code to describe the whole story till now
GPT: Creating a Python code to describe the entire story so far is an interesting task. Here’s a
simplified example in Python code:

class Character:
def __init__(self , name):

self.name = name

def stay_at_table(self):
return f"{self.name} decided to stay at the table."

def move_to_blackboard(self):
return f"{self.name} moved to the blackboard."

def use_object_as_shield(self):
return f"{self.name} used an object as a shield."

def move_to_door(self):
return f"{self.name} moved to the door."

def change_clothes(self):
return f"{self.name} decided to change clothes."

# Initial characters
A = Character("A")
B = Character("B")
C = Character("C")
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# Initial actions
print(A.stay_at_table ())
print(B.move_to_blackboard ())

# Incident with the falling lamp
print("Suddenly , the lamp from the ceiling near the table falls.

")

# Reaction to the earthquake
print("An earthquake occurs. Water spills as B is drinking water

.")
print(C.move_to_door ())
print(C.walk_to(A))
print(B.change_clothes ())

A.2 Single Episode of Flappy Bird Game

Figure 5: Max agent rewards (PPO vs DQN).

A.3 Backtrace the Causal Graph

The following example is adapted from Pearl (2009b). Could observe that GPT4 could backtrace the
causal graph reasoning. Notice that some further instruction is needed to control the reasoning when
back-tracing to state A or state B. Also GPT4 considers partial effect (magnitude) of C → D.

Prompt 2

Backtrace the actions on causal factor graph.

User: Generate a causal graph: A -> C and B ->C and C -> D
GPT: Here’s the causal graph based on your instructions (Fig. 6), showing the relationships:
A -> C, B -> C, and C -> D. Each node represents a variable, and the directed edges indicate
the direction of causation between these variables.
User: Now A means "it rains yesterday", B means "the house’s sprinkler is on", C means "the
grass is wet" and D means "it’s slippery to walk on". If D is not true, what could we infer for
A or B?
GPT: If D (it’s slippery to walk on) is not true, this suggests that the grass is not sufficiently
wet to create slippery conditions. In the causal chain you provided, C (the grass is wet)
directly influences D. So, if D is not true, we can infer that C might not be true or not to a
significant degree that it affects walking conditions. However, the absence of D doesn’t
directly inform us about the truth values of A (it rained yesterday) or B (the house’s sprinkler
is on), because:
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1. It rained yesterday (A): Rain can wet the grass, but the grass may have dried up by the time
someone checks if it’s slippery, or the rain wasn’t enough to create conditions for D.

2. The house’s sprinkler is on (B): The sprinkler can also wet the grass, but similarly to rain,
the water might not have been enough to make it slippery, or the sprinkler water has dried or
was not directed at areas that affect walking conditions.

The causal model indicates that both A and B can cause C, but the absence of D suggests
C might not have occurred or not to the extent necessary to lead to D. However, we cannot
directly infer the specific states of A and B without more information. It’s possible that neither
A nor B occurred, or they occurred but their effects were mitigated by other factors (like wind,
sun exposure, or the absorbent nature of the soil) before leading to D.

Figure 6: A Causal Graph Example

A.4 Single Stage Counterfactual

The following plot (in Fig. 7) depicts the flow chart of the single stage of the counterfactual proposal.

Figure 7: Simple Counterfactual Diagram
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A.5 An Example of Counterfactual Proposals by GPT4

The following example is adapted from Pearl (2009b). Could observe that GPT4 could backtrace the
causal graph reasoning. Notice that some further instruction is needed to control the reasoning when
back-tracing to state A or state B. Also GPT4 considers partial effect (magnitude) of C → D.

Prompt 3

Counterfactual proposals on flappy birds game from GPT4.

User: Assume we are playing the flappy bird game. After some time, the bird hits the pipe.
What could be the reason of this?
GPT: In the Flappy Bird game, hitting a pipe can happen due to several reasons, often related
to the game’s mechanics and the player’s performance. Here are some possible reasons why
the bird might hit a pipe:

1. Timing Issues: The player didn’t tap at the right moment to ensure the bird flies through the
gap between pipes. Timing the taps is crucial to navigate through the obstacles successfully.

2. Speed Misjudgment: The player may either tap too quickly, causing the bird to ascend too
high, or not tap quickly enough, resulting in the bird descending too much and hitting the
lower part of the pipe.

3. Distraction: External factors could distract the player, leading to a lapse in concentration
and a misjudgment in gameplay, causing the bird to collide with a pipe.

4. Lack of Experience: New or inexperienced players might find it challenging to control the
bird’s flight accurately due to unfamiliarity with the game’s mechanics.

5. Game Difficulty: As the game progresses, the gaps between the pipes may seem to require
more precise navigation, and the player might not adjust their strategy accordingly.

6. Technical Issues: Although less common, technical glitches or lag in the game can disrupt
the gameplay, leading to unintended collisions with pipes.

7. Pressure: The pressure of trying to beat a high score or the stress of the increasing pace of
the game might lead to mistakes.

Each of these factors highlights the challenge of mastering Flappy Bird’s simple yet difficult
gameplay, where precision, timing, and focus are key to achieving a high score.
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