
Enhancing BERT for NLP Tasks: Pretraining,
Fine-tuning, and Model Augmentation

Stanford CS224N {Default} Project

Name
Department of Computer Science

Stanford University
dylanrd@stanford.edu, bperk25@stanford.edu

Abstract

This project aims to enhance BERT’s performance in Semantic Textual Similarity
(STS), Paraphrase Detection, and Sentiment Analysis tasks through additional pre-
training, fine-tuning with cosine similarity, and model size expansion. Inspired by
"Sentence-BERT," our goal is to assess whether these enhancements significantly
improve accuracy and efficiency. We used diverse datasets for training and evalua-
tion, comparing against existing benchmarks like BERT, STSb: STS benchmark,
STS12-STS16, and SICK-R: SICK relatedness dataset. Through this work, we
seek to progress NLP research by improving deep learning model effectiveness in
real-world applications.

1 Introduction

Sentiment analysis is an important task in natural language processing, having to accurately identify
the underlying sentiment or opinion expressed within textual data. This task has previously been
approached through various methods including lexicon-based methods, relying on predefined senti-
ment lexicons to assign sentiment scores to words or phrases, and machine learning-based methods,
employing algorithms to classify text into predefined sentiment categories. In this project, we aim to
enhance sentiment analysis leveraging a multitask BERT model, a versatile adaptation of the original
BERT architecture designed to concurrently address sentiment classification, paraphrase detection,
and semantic textual similarity tasks. By fine-tuning this multitask model, we seek to improve its
capability to discern subtle sentiment distinctions in text, potentially reducing computation time
by sharing representations across tasks. Our approach draws inspiration from recent advancements
in sentiment analysis research , particularly those utilizing SBERT-based models, to develop and
evaluate our proposed enhancements (Reimers and Gurevych, 2019).

2 Related Work

Previous work have aimed to solve a persistent issue encountered when utilizing BERT and RoBERTa
models, where processing both sentences concurrently causes substantial computational overhead.
This challenge interferes with the creation of independent sentence embeddings, requiring alternative
solutions. Researchers have explored passing individual sentences through these models and deriving
fixed-size vectors using methodologies such as averaging the outputs or leveraging the distinctive
[CLS] token. In response to this issue, some propose Sentence-BERT (SBERT), an enhanced
iteration of BERT designed to streamline the generation of sentence embeddings. SBERT implements
siamese and triplet network architectures, which play pivotal roles in facilitating efficient computation
and ensuring the preservation of semantic meaning. Through rigorous experimentation, SBERT
significantly truncates the time required to identify the most similar pair of sentences, drastically
reducing it from a staggering 65 hours with traditional BERT/RoBERTa models to a mere 5 seconds,
all while maintaining the high accuracy standards set by BERT. The siamese network architecture

Stanford CS224N Natural Language Processing with Deep Learning



embedded within SBERT proves instrumental in deriving fixed-size vectors for input sentences,
thereby enabling the identification of semantically akin sentences using established measures such
as cosine similarity or diverse distance metrics. SBERT’s effectiveness stems from its integration
of a pooling operation into the output of BERT/RoBERTa. This feature allows for the exploration
of multiple pooling strategies, including leveraging the [CLS] token output, computing the mean
of all output vectors, or determining a max-over-time of the output vectors, with the mean strategy
emerging as the default choice.
Although most previous works share some limitations - such as the reliance on English-only training
data which may restrict SBERT’s applicability in multilingual settings, and the absence of in-depth
analysis on model mistakes, leaving room for uncertainty regarding SBERT’s robustness - the achieve
their primary goal of enhancing efficiency without compromising accuracy. Therefore, SBERT
remains a valuable tool in natural language processing tasks, yet future research should address the
identified limitations and delve deeper into the model’s performance.

3 Approach

3.1 Architecture

The architecture of our MultitaskBERT model is structured with BERT at its core, followed by a
shared fully connected (FC) layer that maintains the original BERT hidden size (768 dimensions
for bert-base-uncased). This shared layer is crucial as it acts as a bridge between the generic
representations learned by BERT and the task-specific adaptations required for our diverse set of tasks.
On top of this shared layer, we introduce task-specific heads: a linear layer for sentiment classification
that maps to the number of sentiment classes, a linear layer for binary paraphrase detection, and
another linear layer for computing a continuous similarity score in semantic textual similarity tasks.
Each of these heads is designed to interpret the shared representations in the context of its respective
task, allowing for specialized learning without losing the benefits of cross-task knowledge transfer.
After calculating the sentence embeddings, cosine similarity is used to measure the similarity between
pairs of sentences. This computes the cosine of the angle between two vectors, providing a measure
of their similarity regardless of their magnitude. Our architecture remains similar to the graphic
below, except that our cosine similarity is within a range [0, 1] so we can assign sentiment scores
easily to the resulting similarities.

3.2 Baselines

The best extractive baselines for Semantic Textual Similarity (STS) tasks, focusing on both Avg.
BERT embeddings and BERT CLS-vector models exhibit, vary across different benchmarks. The
Avg. BERT embeddings model achieves scores ranging from 38.78 to 63.15 on STS12 to STS15.
The BERT CLS-vector model demonstrates lower scores across all benchmarks, ranging from 20.16
to 42.63, having lower performance in capturing relationships between sentence pairs.

2



Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg.
Avg. BERT embeddings 38.78 57.98 57.98 63.15 61.06 46.35 58.40 54.81

BERT CLS-vector 20.16 30.01 20.09 36.88 38.08 16.50 42.63 29.19

Table 1: Spearman rank correlation ρ between the cosine similarity of sentence representations and
the gold labels for various Textual Similarity (STS) tasks. Figure comes from Reimers and Gurevych
(2019)

4 Experiments

4.1 Data

We will be using the SST dataset, IMDb movie review dataset, and the Stanford Sentiment Treebank
for sentiment analysis, the Quora dataset for paraphrase detection, and the SemEval dataset for
semantic textual analysis. These are all preexisting datasets that we will access open source.

4.2 Evaluation

For evaluation, we will use the Pearson correlation coefficient as a well-defined, numerical metric to
assess the performance of our enhanced BERT model in tasks such as Semantic Textual Similarity
(STS) and Paraphrase Detection. Specifically, we will compare against the performance achieved by
the original BERT model and other models, such as InferSent, Quick-Thoughts, and USE, on these
tasks. Additionally, for Sentiment Analysis, we will utilize accuracy as an evaluation metric and
compare our model’s performance against existing benchmarks like the IMDb movie review dataset
or the Stanford Sentiment Treebank. For qualitative evaluation, we conduct error analysis to identify
patterns and potential areas for improvement by examining sample predictions made by our model
and comparing them with human-labeled data.

4.3 Experimental details

For all of the tasks, our settings remained the same: Learning Rate: 1e− 5 Batch Size: 8 Epochs: 10
Optimizer: AdamW with default parameters. Regularization: Dropout with a probability of 0.3

However, we experimented with a model using Adagrad optimizer while the rest of the settings
remained the same.

4.4 Results

4.4.1 Extensions

We first implemented a naive implementation of the multitask classifier by leveraging the existing
BERT architecture. This implementation had 3 separate linear layers, simple neural networks, for
each of the downstream tasks: sentiment classification, paraphrase detection, and semantic text
similarity. The embeddings were gathered for each of the three tasks by processing them through
BERT and the respective linear layer, and output predictions for that task.

After gathering results for this naive approach using the base BERT, we explored our first extension
of using cosine similarity for semantic similarity between words. We gathered the embeddings from
the forward pass and then normalized the embeddings before calculating the cosine similarity and
scaling the results by a factor of (cosine similarity + 1) * 2.5. This is due to cosine similarity being
calculated in a range [0, 1] so we scale this result up to match the 5 sentiment classes 0-5.

Our second extension involved additional finetuning on the ids-sst-train, quora-train, and sts-train
datasets. While in the "pretrain" mode the parameters of the BERT model are frozen and only the
layers added for the specific tasks are trained, in the "finetune" mode, these BERT parameters are
unfrozen and updated during training. This fine-tuning allows the model to adjust the pre-trained
BERT embeddings more closely to the specific characteristics and nuances of the tasks at hand. We
saw a substantial increases in accuracy in the paraphrase and STS tasks as shown in the tables below.

Our third extension involved sharing a layer between our tasks. The shared layer in consists of a
linear layer followed by a ReLU activation function and dropout, which is designed to process the

3



embeddings from the BERT base model before task-specific prediction. The aim of this shared
layer is to create a common representation space that captures features relevant to all the tasks the
model is being trained on, namely sentiment classification, paraphrase detection, and semantic textual
similarity. By using a shared layer, the model leverages the commonalities among these tasks, which
can lead to more robust and generalized feature extraction. This approach also helps in parameter
efficiency, as it reduces the need for separate, task-specific feature extraction layers for each task,
thereby streamlining the model architecture and potentially improving its learning capabilities across
different tasks. We saw a great increase in the paraphrase accuracy, however the other STT task
suffered a significant hit to overall accuracy.

Furthermore we experimented with a version of the model using the Adagrad optimizer instead of
AdamW with a shared layer. The Adagrad optimizer is an algorithm for gradient-based optimization
that adapts the learning rate for each parameter, giving larger updates to infrequent parameters and
smaller updates to frequent ones. This feature makes Adagrad particularly suitable for dealing with
sparse data and features, as it can dynamically adjust how much each feature contributes to the
learning process based on its frequency. However, this led rather subpar results with no improvements
in any category.

4.4.2 Quantitative Analysis

Based on our our second extension (finetuning) to our final extension (shared layer), we saw these
changes: Sentiment Classification: Minimal Change: This suggests that the shared layer does not
significantly impact the sentiment classification task. It’s possible that sentiment classification, being
potentially more reliant on specific lexical cues than the other tasks, gains little from the shared
contextual embeddings that are influenced by the needs of the other tasks.

Paraphrase Detection: Significant Improvement: The accuracy for paraphrase detection sees a substan-
tial increase from 0.626 to 0.737 with the shared layer. This improvement indicates that paraphrase
detection benefits greatly from the shared representations. The task of detecting paraphrases likely
shares more commonalities with the STS task, as both involve assessing the relationship between
pairs of sentences. The shared layer helps the model to better generalize across these tasks by learning
representations that capture semantic similarities effectively.

Semantic Textual Similarity (STS) Decrease in Performance: The STS task experiences a decrease
in performance, with the correlation dropping from 0.546 to 0.437. The drop in STS performance
suggests that the shared representations, while beneficial for paraphrase detection, may not align
well with the specific requirements of the STS task. This could be due to the STS task’s reliance on
fine-grained distinctions in similarity, which might be diluted when the model learns to accommodate
the needs of the other tasks within the shared layer. The shared layer’s representations, optimized
also for sentiment classification and paraphrase detection, might not capture the nuanced similarities
and differences as effectively for STS.

We were expecting a increase for both STS and Paraphrase due to their commonalities but our
results differed from this expectation. However, we did not expect a huge improvement in Sentiment
Classification due to less overlap with the other two tasks. It seems that targeted upgrades at specific
tasks i.e. Cosine Similarity for Sentiment, and finetuning for all three were generally more adept
at increasing the accurarcy score rather than trying to generalize upgrades to each as we did in the
shared layer. This intuitively makes sense, but it was promising to see an improvement in 2/3 tasks
with the shared albeit a incredibly small one for Sentiment.

4



Figure 1: Multitask Comparison

5



Figure 2: Overall Scores Comparison

5 Analysis

We observed both many successes and areas for improvement during our exploration of the system
and its results. Notably, the model excels in capturing nuanced semantic relationships and accurately
identifying paraphrased expressions, demonstrating its proficiency in understanding some textual
nuances. This success can be attributed to the incorporation of additional fine-tuning along with the
shared learning layer with STS. However, despite these enhancements, the model faces challenges
in interpreting subtle nuances in language, particularly in sentences containing sarcasm, irony,
or ambiguous sentiments. This is seen in sentences that used deep figurative language such as
"Maneuvers skillfully through the plot ’s hot brine – until it ’s undone by the sogginess of its
contemporary characters , and actors". Additionally, its performance is hindered by cultural references
or idiomatic expressions not well-represented in the training data. This is seen some incorrectly
predicted sentences that included phrases such as "the speedy wham-bam", "mothball-y", "slash-
n-hack" and "girl-power". Furthermore, the model struggles with complex sentence structures
and non/adjacent words with opposite connotations, which may obscure the intended sentiment or
semantic relationship between text pairs. An example of this is the sentence "Corny, schmaltzy, and
predictable, but still manages to be kind of heartwarming, nonetheless." Overall there is still ample
room for growth and potential future improvements to address the identified challenges and further
enhance the model’s capabilities.

6 Conclusion

6.1 Main Findings

Task Synergy: The results underscore the potential for task synergy in multitask learning frameworks.
Paraphrase detection and STS, both involving semantic analysis of sentence pairs, were expected
to benefit mutually from shared representations. However, the shared layer’s impact was more
pronounced and positive for paraphrase detection than for STS.

Task-Specific Requirements The varied impact of the shared layer on different tasks highlights the
importance of considering task-specific requirements. While shared representations can enhance
learning by leveraging commonalities across tasks, they may also obscure or dilute task-specific
features critical for specific task performance.

6



6.2 Primary Limitations

One-Size-Fits-All Approach: The use of a single shared layer across all tasks may not optimally
address the unique requirements of each task, suggesting a limitation in the flexibility of the current
model architecture.

6.3 Avenues for Future Work

Given the complexity of multitask learning, more extensive hyperparameter tuning and experimen-
tation with different optimizer settings (including revisiting the choice of AdaGrad vs. AdamW)
could yield improvements in task performances. Furthermore, we could exploring alternative shared
structures. Investigating alternative architectures for shared learning could offer new ways to enhance
task synergy while preserving task-specific learning. Also, implementing pretraining to each task
could significantly improve model performance similar to how finetuning led to increased accuracies
for all three.

References
Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence embeddings using Siamese BERT-

networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 3982–3992, Hong Kong, China. Association for Computational Linguistics.

7

https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410

	Introduction
	Related Work
	Approach
	Architecture
	Baselines

	Experiments
	Data
	Evaluation
	Experimental details
	Results
	Extensions
	Quantitative Analysis


	Analysis
	Conclusion
	Main Findings
	Primary Limitations
	Avenues for Future Work


