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Abstract

Transfer learning has reshaped natural language processing (NLP) by pre-training
models on extensive text corpora before fine-tuning them on specific tasks. Yet, the
challenge of overfitting due to limited task-specific data and the complex nature of
pre-trained models hampers their ability to generalize to unseen data, especially in
multitask. In this project, we explore the generalization performance of pretrained
BERT models in three downstream tasks: sentiment analysis(SST-5), paraphrase
detection (QQP), and semantic textual similarity (STS-B). We integrate a multi-task
learning framework enhanced by several key methodologies: ensemble models for
task-specific performance optimization, Smoothness-Inducing Adversarial Regular-
ization (AdvReg) for maintaining generalization, Momentum Bregman Proximal
Point Optimization for controlled model updates, the unsupervised SimCSE frame-
work for effective contrastive learning in sentence embedding generation, and Low
Rank Adaptation for efficient fine-tuning. Our results show that our approach
improves model generalization and robustness, leading to strong performance im-
provements across all three tasks simultaneously, achieving the 7th place on testset
leaderboard.

1 Key Information to include

Special thanks to our mentor: Heidi Zhang. We do not have external collaborators and we are
not sharing projects. Contribution: We equally contributed to the writing. Siyi: Focused on
implementing baseline, Cosine, ensemble and LoRA. Zixin: Focused on implementing the Adversarial
Regularization and MBPP. Ericka: Focused on implementing the Adversarial Regularization and
Contrastive Learning.

2 Introduction

In the realm of natural language processing (NLP), the advent of transfer learning has been a game-
changer, fundamentally altering how models are developed and applied. By adopting a two-phase
approach—initially pre-training on vast collections of text corpora before fine-tuning for specific
tasks—researchers have pushed the boundaries of what NLP models can achieve, as highlighted
by Chen et al. (2021). Such models now excel across a diverse aspect of NLP challenges, setting
new benchmarks for performance. Despite these advances, deploying these sophisticated models in
multitask settings introduces a set of distinct challenges. Among these, the risk of overfitting due to
limited task-specific data and the intrinsic complexity of pre-trained models are prominent, limiting
their ability to generalize to unseen data. Multi-Task Learning (MTL) presents a promising solution,
fostering the idea that knowledge acquired from one task can enhance performance in others when
multiple tasks are learned concurrently (Liu et al., 2019). Yet, previous studies (Yu et al., 2020) found
that conflicting gradients among different tasks may induce negative interference. Various approaches
have been explored to remedy negative interference, such as Adversarial Regularization (Liu et al.,
2019), Bregman Gradient Optimization (Liu et al., 2019), and Gradient Surgery (Yu et al., 2020)
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In response to these challenges, our study presents an innovative ensemble architecture that leverages
both the generalizability of Multi-Task Learning and the specialized knowledge of task-specific
models. We initiated our approach by implementing and training BERT on sentiment analysis using
the SST and CFIMDB datasets for single-task classification. Building upon this foundation, we
adopted the Multi-Task framework from Liu et al. (2019), which uses shared BERT embeddings across
tasks while tailoring loss functions to meet specific objectives. To address overfitting and improve
generalization, we implemented Adversarial Regularization and Momentum Bregman Proximal Point
Optimization techniques from scratch, drawing insights from Jiang et al. (2020). Additionally, our
research introduces an novel "pretraining" phase with Contrastive Learning, aiming to improve the
model’s ability to capture semantic nuances and generalization. Our contributions extend to the
creation of an advanced ensemble architecture for multitasking, combining four Multi-Task BERT
models, each fine-tuned on specific tasks, with a universally fine-tuned model across all tasks to
achieve superior performance. To counter the computational demands of this ensemble approach,
we independently implemented the Low-Rank Adaptation (LoRA) technique, achieving a balance
between computational efficiency and robust model performance.

3 Related Work

With the recent advancements in deep learning and transformer architectures, pre-trained models
have revolutionized the field of natural language processing. The introduction of BERT by Devlin
et al. (2019) utilizes deep transformer models that are pretrained on large corpora for downstream
tasks. BERT marked a significant leap in leveraging deep learning for language understanding. This
foundation has inspired a wide range of research directions, including Multi-Task framework (Liu
et al., 2019) and Contrastive Learning (Gao et al., 2022).

While BERT set the foundation for advanced language models, Multi-Task learning emerged as a
strategy to leverage shared knowledge across different tasks and enhance model generalization (Liu
et al., 2019). This approach aligns with our methodology, wherein we extend BERT’s capabilities to
handle sentiment analysis, paraphrase detection, and semantic textual similarity simultaneously. The
ensemble techniques integrate specialized knowledge from task-specific models to enhance overall
performance, despite being computationally intensive.

Jiang et al. (2020) propose Adversarial Regularization as a robust technique for combating over-
fitting, a challenge often faced when fine-tuning pre-trained models for specialized tasks. Adversarial
Regularization, combined with Momentum Bregman Proximal Point Optimization drawing from
the same study, refine the model’s stability and performance while preserving the rich linguistic
comprehension that BERT encapsulates.

Inspired by the success of self-supervised learning, Contrastive Learning, especially in its unsuper-
vised form as seen in SimCSE by Gao et al. (2022), encourages models to maximize the similarity
between embeddings of semantically similar data points while minimizing the similarity between
embeddings of dissimilar data points. This approach not only refines the models’ ability to capture
subtle semantic differences but also contributes to a more uniform embedding space and enhances
the alignment of semantically related pairs.

The multi-head attention mechanisms and extensive parameters of transformer architectures require
considerable memory and computational resources, posing challenges for researchers with limited
access to advanced hardware. The introduction of Low Rank Adaptation (LoRA) represents a key
advancement in addressing these computational challenges (Hu et al., 2021). By strategically inserting
low-rank matrices to approximate the changes in the weight matrices of pre-trained models, LoRA
presents a novel way to adapt large models more efficiently. This approach not only alleviates the
computational and memory intensity but also retains the nuanced understanding learned during
pre-training, enabling more sustainable model development.

4 Approach

Our approach aims to enhance BERT’s performance in multitask learning, specifically its ability
to simultaneously perform the following three tasks: sentiment analysis, paraphrase detection, and
semantic textual similarity. For the baseline, we implemented and trained the BERT model for
sentiment analysis on the SST and CFIMDB dataset (See Table 1), leveraging its powerful language
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Figure 1: Overview of Multitask Learning Framework and Quartet Ensemble

understanding capabilities to perform sentiment classification (Devlin et al., 2019). Secondly, we
further integrate Multi-Task framework to enhance its generalization ability and sets our baseline for
multi-task learning based on pre-trained BERT. We designed Multi-Task BERT following Liu et al.
(2019), where the BERT embeddings are shared across different task-specific layers. For tasks such
as paraphrase detection and semantic textual similarity, we utilize the BERT model to process pairs
of sentences, producing embeddings for each. Depending on the task, BERT embeddings are then
fed into distinct linear layers with dropout to handle three tasks with varied objectives. Specifically,
we use cross entropy loss for sentiment analysis, binary cross entropy loss for paraphrase detection,
and Mean-Squared Error for semantic textual similarity. We explored two variants of the baseline,
one where the pretrained BERT parameters frozen and another that fine-tunes the BERT parameters,
allowing us to assess the effect of updating BERT’s parameters alongside task-specific layers.

As shown in Fig. 1, we further explore several extensions and designed a novel ensemble architecture
for multi-task learning. Our framework is first fine-tuned through a contrastive learning stage
based on the Quora Question Pairs, which effectively primes the model for identifying nuanced
textual similarities. Subsequent to this stage, we designed a quartet ensemble of Multi-Task BERT,
where three of them fine-tuned on separate tasks—sentiment analysis, paraphrase detection, and
semantic similarity evaluation, and one fine-tuned on all three tasks. Ultimately, the outputs from
these classifiers are aggregated, harmonizing the generalization benefits of Multi-Task BERT with
the specialized knowledge from task-specific models. Since the ensemble model incurs higher
computational demands, we aim to further incorporate LoRA, an efficient parameterization technique,
into our ensemble architecture, therefore alleviating the computational constraints.

4.1 Ensemble

Besides our implmentation of Multi-Task BERT with task-specific layers and shared BERT layers, we
further explored the performance of ensemble models. Specifically, we trained three BERT models
each focused on its specfic tasks, maximizing its performance on the individual task independently.
We further combined our Multi-Task BERT with the new ensemble models to make the final pre-
dictions. While such ensemble model is computationally expensive, we hope to leverage both the
generalizability of Multi-Task BERT and the specialized knowledge of task-specific models. For
classification tasks, we take average of the probability to obtain the predicted class. For regression
tasks, we simply take average of the prediction scores to get the final output.

4.2 Contrastive Learning

We implemented the unsupervised SimCSE (Simple Contrastive Sentence Embedding) framework
from scratch to fine-tune our pre-trained model (Gao et al., 2022). SimCSE is predicated on the idea
that a sentence, when passed through the model multiple times with non-deterministic dropout, yields
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varied but semantically consistent embeddings. The training objective for SimCSE is formalized
as minimizing the negative log likelihood of a softmax distribution over similarities of sentence
embeddings:

ℓi = − log
esim(hi,h

+
i )/τ∑N

j=1 e
sim(hi,h

+
j )/τ

, sim(h1, h2) =
h⊤
1 h2

∥h1∥ · ∥h2∥
(1)

where hi and h+
i are the embeddings of a sentence and its dropout-augmented counterpart, N is the

batch size, and τ is the temperature hyperparameter that scales the similarity scores.

In our implementation, we employ an unsupervised learning method by utilizing dropout to create
positive pairs (x, x+) for all of our datasets where x+ is a sentence semantically related to x. In the
context of the unsupervised SimCSE framework shown in Fig. 2, x+ is simply another instance of
x passed through the model with different dropout masks. We denote the embeddings of x and x+

by h and h+ respectively, obtained by applying the BERT encoding function f such that h = f(x)
and h+ = f(x+). Despite x and x+ being the same in terms of content, the resultant embeddings h
and h+ differ due to the stochastic nature of dropout, thereby serving as effective data augmentation.
Negative pairs are taken as all other combinations of sentences in a training batch. This strategy
ensures a clear distinction between positive and negative examples, essential for the contrastive
learning process to effectively guide the model in developing a rich and nuanced understanding of
sentence embeddings.

Figure 2: Unsupervised SimCSE Illustration

4.3 Adversarial Regularization

BERT is trained on a comprehensive and rich corpus, providing it with a broad understanding of
language. Therefore, when fine-tuning BERT for specific downstream tasks, it’s crucial to avoid
excessively altering the model’s weights. We introduce Adversarial Regularization by adding
random small noise during training to prevent overfitting on single task and enforcing smoothness
to make the model’s embeddings more robust to perturbations. This procedure ensures that minor
perturbations to the input do not lead to disproportionately large changes in the output, a property
that is essential for the model to generalize well to new data. Our implementation of this technique
follows the principles outlined by Jiang et al. (2020), i.e.

min
θ

F (θ) = L(θ) + λsRs(θ), (2)

The task-specific loss L(θ) and the adversarial regularizer Rs(θ) can be further defined as L(θ) =
1
n

∑n
i=1 ℓ(f(xi; θ), yi) and Rs(θ) =

1
n

∑n
i=1 max∥x̃i−xi∥p≤ϵ ℓs(f(x̃i; θ), f(xi; θ)), where ℓ(·, ·) is

the target-specific loss function, ϵ > 0 is a hyperparameter. For classification tasks, we compute
symmetrized KL-divergence ℓs(P,Q) = DKL(P∥Q) + DKL(Q∥P ); and for regression tasks, we
compute mean square error ℓs(p, q) = (p− q)2.

We then combine the adversarial loss Rs(θ) with the task-specific loss L(θ), balanced by a hyper-
parameter λs > 0. By integrating the adversarial loss Rs(θ) with the task-specific loss L(θ), and
modulating their relative influence through the hyperparameter λs, Adversarial regularization ensures
that a model’s output predictions’ smoothness under minor input perturbations. This is particularly
helpful in low-resource domain task because the model will be less likely to overfit the small amount
of data it has been trained on and more likely to perform well on unseen data.
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4.4 Momentum Bregman Proximal Point Optimization

To mitigate overly aggressive updates and to further prevent overfitting, we introduces the application
of a Bregman Proximal Point Optimization (BPPO) method, inspired by Jiang et al. (2020). This
approach significantly enhances our model’s generalization capability across various tasks through a
Bregman divergence-based regularization framework. Specifically, at iteration t+1, model parameters
θt+1 are updated using:

θt+1 = argminθ (F (θ) + µDBreg(θ, θt)) , (3)
where µ > 0 serves as a regulatory tuning parameter, and DBreg(θ, θt) =
1
n

∑n
i=1 ℓs(f(xi; θ), f(xi; θt)), with ℓs being the symmetric KL divergence or mean square

error, depending on the task. This divergence measures discrepancies in model outputs between
iterations, ensuring consistency with previous learning and preserving out-of-domain insights
inherent in the pre-trained model. Additionally, we augmented the Bregman proximal point method
with a momentum component, defined as:

θt+1 = argminθ
(
F (θ) + µDBreg(θ, θ̃t)

)
, (4)

in which θ̃t = (1− β)θt + βθ̃t−1 calculates a weighted average of last parameters. The momentum
parameter 0 < β < 1, fine-tunes the extent of parameter averaging. This mechanism not only speeds
up the optimization but also ensures more stable and effective learning outcomes.

4.5 Data Sampling

After evaluating the performance of baseline models, we observed a common issue: they exhibited
higher accuracy in paraphrasing tasks while showing low accuracy in textual similarity and sentiment
analysis. This discrepancy stems from the imbalance in the dataset sizes used for fine tuning. Such
disparities in dataset size lead to models overfitting the larger datasets and underperforming on
the smaller ones, thereby restricting their generalization ability. To address this challenge and
simultaneously perform three downstream tasks, we introduced a batch-level data samping method.
By selecting the minimum number of batches from all training datasets, and updating each models’
weights with a single pass for each batch, we ensured balanced exposure to each task. This approach
promotes uniform learning across tasks, irrespective of their individual dataset sizes.

4.6 Cosine Similarity

Inspired by SBERT (Reimers and Gurevych, 2019), we adopt the computation of cosine similarity
between sentence representations for STS-B (cos(θ) = u·v

∥u∥∥v∥ , where u and v are sentence embed-
dings obtained from BERT). In this way, we adjust the model’s embeddings to maximize the cosine
similarity for semantically similar sentences and minimize it for dissimilar ones. Since the similarity
score is in range of (-1,1), we further apply a sigmoid function and scale the output to span 0 to 5 to
match true label range in the STS dataset. Since BERT embeddings are semantically-rich, similar
sentences should have similar embeddings. Cosine similarity intuitively computes similarity between
two vectors, which is highly correlated with semantic similarity. It enables the model to better capture
semantic similarity between sentences, which is especially beneficial for tasks like STS, where the
goal is to quantify the degree of semantic equivalence between two sentences.

4.7 Low Rank Adaptation

As transformers and ensembles are generally computationally expensive, we integrate Low Rank
Adaptation (LoRA) into our framwork, alleviating storage and computation burden required to train
large language models for multitask learning (Hu et al., 2021). In Multi-head attention, each head
can be computed as

headi = Attention(QWi
Q,KWi

K , VWi
V ) (5)

where Wi
Q,Wi

K ,Wi
V , are weight matrices specific to each head for queries Q, keys K, and values

V. LoRA can be further applied within the transformer architecture to adapt these weight matrices
Wi

Q,Wi
K and Wi

V efficiently. In the LoRA framework, the idea is to adapt these weight matrices
in a computationally efficient way. Instead of directly learning the full weight matrices, LoRA
introduces two low-rank matrices to be updated A and B such that

∆W = AB (6)
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where A and B are much smaller in size compared to W, making the adaptation computationally
efficient and significantly reducing the number of trainable parameters. Inspired by BERT-LoRA-
TensorRT, we implemented a low-rank adapted linear layer from scratch with cutomized rank of the
A and B matrices.

5 Experiments
5.1 Data

We use three datasets for our multitask learning framework, each with a different sentence-level task:

• Stanford Sentiment Treebank (SST-5) (Socher et al., 2013) is used for sentiment analysis and
contains 11,855 single sentence reviews, where the reviews are categorized into five groups: negative,
somewhat negative, neutral, somewhat positive, positive. The dataset is split to 8,544 train, 1,101 dev,
and 2,210 test samples.

• For paraphrase detection, we use the Quora Question Pairs (QQP) dataset (Fernando and Stevenson,
2008) comprising 400k question pairs with binary labels indicating whether the questions are
paraphrases of each other. The dataset is split to 141,506 train, 20,215 dev, and 40,431 test samples.

• Semantic Textual Similarity(STS-B) (Agirre et al., 2013) consists of 8,628 sentence pairs, where
each pairs of sentences are scored based on their semantic similarity on a 0 to 5 scale. The number of
samples in train, dev, and test are 6,041, 864, and 1,726 respectively.

5.2 Evaluation Method

We evaluate the performance on the SST and Quora dev set and test set with accuracy, a measurement
of how well predicted labels match the ground truth labels. For the STS dataset, since it’s range from
0 to 5, we use Pearson correlation to evaluate the linear relationship between predicted scores and
ground-truth.

5.3 Experimental Details

We implement BERT architecture and use pretrained weights from the Hugging Face Transformers
library. For the baseline, we test the performance of both the updated (Baseline-finetune) and
frozen (Baseline-pretrain) BERT parameters. For the extensions, we consistently update the BERT
parameters. By default, we run 10 epochs with a learning rate of 1e-5 for fine-tuning and 1e-3 for
pretrain. The dropout probability is set to 0.1 and batch size is set to 16. Due to memory constraints,
we set the batch size to 8 when fine-tuning with SMART loss. For the adversarial regularization, we
set λ = 5 and ϵ = 1e− 5. For Bregman optimization, we set σ = 1e− 5, β = 0.995, and µ = 1. For
ensemble models, we take average of each of the sub-models’ predictions to get our final predictions.
Additionally, we set the contrastive learning weighting parameter, λ_contrastive = 0.1 to balance the
contrastive learning objective in our multitask learning framework.

Table 1: Quantitative Result on Part 1. Accuracy comparison of BERT on SST and CFIMDB.
Ours Reference

SST CFIMDB SST CFIMDB
dev-pretrain 0.417 0.784 0.390 0.780
dev-finetune 0.537 0.959 0.515 0.966

Figure 3: Model Performance with Varied λ

6

https://github.com/alexriggio/BERT-LoRA-TensorRT
https://github.com/alexriggio/BERT-LoRA-TensorRT


Table 2: Performance Comparison of BERT with different extensions on SST-5, Quora, and STS-B
Tasks. The table presents accuracy metrics for SST-5 and Quora, and Pearson correlation coefficients
for STS-B, with higher values indicating better model performance.

SST-5 QQP STS-B
Model Parameters Acc ↑ Acc ↑ Corr. ↑ Avg

Baseline-pretrain 2M 0.318 0.432 0.228 -
Baseline-finetune 112M 0.411 0.543 0.348 -

sampling 111M 0.513 0.816 0.753 -
SMART-sampling(λ = 5, ϵ = 1e− 5 ) 112M 0.523 0.868 0.832 -

SMART-sampling-cosine 112M 0.518 0.871 0.790 -
SMART-sampling-SimCSE 112M 0.529 0.878 0.869 -

SMART-sampling-SimCSE-Ensemble 449M 0.537 0.874 0.869 0.782
SMART-sampling-SimCSE-Ensemble-LoRA 12M 0.490 0.865 0.859 -

Best-test performance (Ranked 7) 0.547 0.875 0.875 0.787

Table 3: Model Performance with Varied Learning Rate and Hidden Dropout Probability.
Learning Rate SST QQP STS

1e-5 0.521 0.871 0.875
2e-5 0.505 0.867 0.868
3e-5 0.490 0.867 0.854
5e-5 0.431 0.836 0.854

Dropout Rate SST QQP STS

0.1 0.529 0.878 0.869
0.2 0.526 0.875 0.866
0.3 0.519 0.876 0.867

5.4 Results

Tab. 1 and Tab. 2 present our results on sentiment analysis and multi-tasking respectively. Upon
integrating several extensions, as shown in Tab. 2, our model exhibits significant performance
enhancements across all three tasks, with best performance on paraphrasing detection. For the dev
set, we achieved an accuracy of 0.537 on SST, 0.874 on QQP, and pearson correlation of 0.869 on
STS-B, leading to a overall performance score of 0.782. For the test set, we achieved an accuracy
of 0.547 on SST, 0.875 on QQP, and pearson correlation of 0.875 on STS-B, leading to a overall
performance score of 0.787 and ranked 7 on the leaderboard. Results showed that all extensions
improved the model’s performance and combining them we outperform the baseline by a notable
margin. As expected, since the purpose of LoRA is to enable faster training and reduce memory
usage, it in fact leads to worse performance on all three tasks. Yet the usage of LoRA enables us to
reduces the trainable parameters to approximately 2.6%, showcasing its effectiveness in reducing
computational costs.

We further provide results with hyperparameter tuning on learning rate, dropout probability and λ in
adversarial regularization, as shown in Table 3 and Fig. 3. We find that during fine-tuning, model
performs the best with a setting of learning rate of 1e-5, dropout probability of 0.1 across all three
tasks. When tuning λ, we find out a lower value of λ leads to better performance on SST yet QQP
and STS-B have best performance around λ = 5.

6 Analysis

We further visualize the distribution of sentiment scores and similarity scores in Fig. 4 with our current
best model. Fig. 4 (left) shows that our model is good at capturing the overall score distribution but
suffer when distinguish sentiments with slight differences(neutral and somewhat positive). Fig. 4
(right) shows that our model is correctly predicting the overall distribution for the STS task but is too
conservative when predicting extreme similarity scores.

In the SST-5 development dataset, the majority (99%) of errors occurred when the model’s predictions
deviated by only one or two levels from the actual labels. This pattern underscores the model’s
difficulty in accurately discerning sentiment intensity, especially in distinguishing between "positive"
(3), "very positive" (4), "negative" (1), and "very negative" (0) sentiments. For instance, the sentence:
"Not only is Undercover Brother as funny, if not more so, than both Austin Powers films, but it’s
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also one of the smarter, savvier spoofs to come along in some time," received an actual sentiment
of 4 (Very Positive) but was predicted as 3 (Positive) by our model. This discrepancy indicates a
challenge in precisely predicting sentiment levels. Moreover, the model appears to struggle with
detecting sentiment in sentences predominantly composed of neutral wording. A case in point is
"The Iditarod lasts for days - this just felt like it did," which offers a critique of the movie’s pacing by
negatively comparing its length to the prolonged Iditarod race, receiving an actual sentiment of 0
(Very Negative) yet predicted as 2 (Neutral). The model’s inability to discern the critique’s negative
sentiment points to a potential improvements if we can enhanced sentiment detection within neutral
contexts. Additionally, certain labels within the dataset may be deemed questionable or unreasonable.
For example, "Reign of Fire looks as if it was made without much thought – and is best watched
that way." was categorized as 3 (Positive) but anticipated as 1 (Negative) by the model, suggesting
potential inconsistencies in label assignment.

In the QQP dev dataset, our model’s performance appears compromised by learning lexical similarity
instead of semantic content. It fails to recognize paraphrases for the sentence pair "What are the
best ways to learn English?" and "How can I improve my English skills?". This indicates a reliance
on word matching rather than understanding underlying meanings. Another example is the model
mistook "How do I register for Star Alliance?" and "What benefits do Star Alliance members get?"
for paraphrases. Moreover, it also struggles with recognizing the general equivalence of specific
instances, for example, not seeing the similarity between "What is the implication of free education
in rte?" and "What is the implication of free education in the right to education act?".

In the STS-B development dataset, our model appears to have difficulty accurately discerning the
varied meanings of words. For instance, it gives a similarity score of 3.26 to the sentences "Work into
it slowly." and "It seems to work.", despite their completely different meaning.

Figure 4: (Left) Distribution of predicted sentiment labels and true sentiment labels for the SST
dataset. (Right) Comparison of distribution of predicted similarity scores (left) and actual similarity
scores (right) for the STS task. Scores range from 0 (unrelated) to 5 (equivalent meaning).

7 Conclusion

In conclusion, our project illustrates that a multitask learning framework, enhanced with Adversarial
Regularization, Momentum Bregman Proximal Point Optimization, and other innovations like
ensemble models and SimCSE contrastive learning significantly boosts BERT’s generalization
across diverse NLP tasks. Our experiments across three different datasets have yielded promising
results, notably achieving the 7th place on the test set leaderboard. This underscores the success of
our methods and the promise of these combined techniques in tackling overfitting and improving
model generalization within NLP.

Despite these achievements, our work is not without limitations. The computational expense of
ensemble models and the balance between model complexity and performance remain areas for
further exploration. Moreover, the relatively conservative predictions in semantic textual similarity
tasks suggest room for refinement in capturing extreme semantic variances.

As we look to the future, there are several areas of improvement. Exploring various regularization and
contrastive learning methods, fine-tuning strategies, and applying our approach to more NLP tasks
and languages are all promising paths. With continued research and development, we are optimistic
about the potential to further elevate the capabilities of NLP models in understanding and processing
human language.
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