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Abstract

Transfer learning is a powerful tool for natural language processing that applies
the robustness and complexity of a model trained on a large dataset to downstream
tasks in smaller target domains. However, NLP frameworks that utilize trans-
fer learning may have a high risk of overfitting due to the incongruous sizes of
the pre-training and fine-tuning datasets. Many research groups have proposed
methods for improving the resilience of the original BERT model to overfitting.
We focus specifically on the SMART framework, which was proposed by Jiang
et al.[(2020) and includes smoothness-inducing adversarial regularization and mo-
mentum Bregman proximal point optimization (MBPP). We also implement our
own slanted triangle learning rate method for selecting ideal hyper-parameters,
taking inspiration from the slanted learning rate method proposed by Howard and
Ruder|(2018). Though packages for the SMART framework exists, we choose to
implement it from scratch to test the replicability of Jiang et al.|(2020)’s published
work. We also tailor our slanted triangular learning rate method for our specific
context. Though we attained some promising results, our implementation does not
attain the levels of success reported by Jiang et al.|(2020) or Howard and Ruder
(2018). Our findings suggest the difficulty of implementing these adjustments in
practice and highlight the need for increased accessibility in the field of machine
learning research in order for research insights to extend their benefit to the real
world.

1 Key Information

¢ Mentor: Rohan Taori

* Team Contributions: Cat worked primarily on the baseline SMART and MBPP extensions.
Clarisse worked primarily on the baseline vanilla implementation and slanted triangular
learning rate extensions. However, both members of the group improved upon each others’
baselines to achieve the reported results.

2 Introduction

Transfer learning is a process where a model that has been trained for one task with a large amount
of data is fine-tuned to perform a related task with a smaller target domain. Large language models
like ELMo (Peters et al.|(2018)), GPT (Brown et al.| (2020)), and BERT (Devlin et al. (2019)) are
often selected for pre-training, because their power in capturing linguistic information can be useful
for downstream tasks. They are also compatible with cheaply available unlabeled data sourced
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from the internet. A common framework for implementing transfer learning includes replacing the
task-specific layer in the more complex model and then training the model on downstream tasks using
the dataset from the target domain. Transfer learning was first suggested in the context of NMT by
Vaswani et al.[(2017) and later led to the development of BERT by Devlin et al.|(2019).

In spite of the strengths of transfer learning, however, overfitting is a significant issue during the
second stage of the transfer learning process, because the data from the target domain is so limited
and the pre-trained model is highly complex. Many researchers have used hyper-parameter tuning
heuristics to respond to overfitting and improve the generalizability of the model, such as using
a heuristic learning rate schedule, gradually unfreezing layers or only adapting certain layers and
freezing others, and adding layers (Howard and Ruder|(2018), Peters et al.|(2018), [Houlsby et al.
(2019), |Stickland and Murray (2019)). However, these methods demand significant tuning and are
therefore unsatisfying solutions to the problem on their own.

One promising adjustment that has been shown to improve a model’s resilience against overfitting
is SMART, or SMoothness-inducing Adversarial Regularization and BRegman pRoximal poinT
opTimization, which was suggested by Jiang et al.| (2020). The SMART framework is used to
fine-tune the language model that is used in the pre-training stage of the transfer learning process.
SMART includes (1) smoothness-inducing adversarial regularization, which deals with the high
complexity of the large language model to prevent overfitting during the pre-training stage, and
(2) momentum Bregman proximal point optimization, which penalizes the model for aggressive
updating in the fine-turning stage which may cause overfitting. Smoothness-inducing adversarial
regularization prevents the output of the model from changing even when small perturbations are
injected. Performing regularization in this way prevents the output of the model from changing
much within the neighborhoods of all the training points, thus preventing overfitting at the stage
in the process of transfer learning that modifies the model. Meanwhile, the momentum Bregman
proximal point optimization (MBPP) method accelerates the vanilla Bregman proximal point method
by introducing the momentum parameter. MBPP was selected by Jiang et al.| (2020) due to its
state-of-the-art performance in other learning benchmarks. Also called the "mean-teacher" method,
the MBPP method prevents an iteration from deviating significantly from the previous iteration. Jiang
et al. (2020) argue that the MBPP method allows the model to "effectively retain" the pre-trained
model’s knowledge of the out-of-domain data.

We implement the SMART framework from scratch in order to test the replicability of
Jiang et al. (2020)’s work. Since hyper-parameter selection can greatly impact model performance,
we also implement our own slanted triangle learning rate method, inspired by the work of Howard
and Ruder|(2018). Like the mehtod proposed by Howard and Ruder|(2018)), our method increases and
decays the learning rate according to an update schedule that is informed by the model’s performance.
Jiang et al.|(2020) and [Howard and Ruder|(2018) both report high performance of their models. Jiang
et al.| (2020) find that SMARTggr performs better than BERT across all 8 GLUE tasks by over
1%. SMARTggzr also has results that are comparable to T5, which [Jiang et al. (2020) note has 11
billion parameters in comparison to SMARTgggr’s 356 million. Howard and Ruder| (2018) find that
their slanted triangular learning rate method outperforms other common learning rate schedules on
large datasets. Our implementation of the suggested adjustments show improvements upon the
baseline, but in spite of a comprehensive approach, our implementation fails to attain the success
reported by Jiang et al. (2020) and Howard and Ruder|(2018). Therefore, we maintain thatJiang et al.
(2020) and |Howard and Ruder|(2018) present promising solutions to overfitting at a high level, while
also arguing that their work is not adequately reproducible to a level that would benefit real-world
implementations of improved transfer learning frameworks.

3 Related Work

We combine the work of [Jiang et al. (2020) and Howard and Ruder|(2018) to create a framework
that intends to improve the resilience of pre-trained language models against overfitting. Jiang et al.
(2020)’s SMART framework is based on the work of Miyato et al. (2018), Zhang et al.|(2019), and
Shu et al.|(2018), who used regularization methods similar to SMART for other applications. Jiang
et al.|(2020)’s SMART contributes to the wider research context by presenting the first application
of these methods to pre-trained language models. [Howard and Ruder (2018) present the slanted
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triangular learning rate method as an extension of the triangular learning rates method developed
by |Smith (2017) that includes a shorter increase period and longer decay period. Improvements to
transfer learning like those proposed by Jiang et al.|(2020) and [Howard and Ruder|(2018) are valuable
to the NLP community because in a landscape of limited data, models must become more resilient to
overfitting in order to generalize more accurately to unseen data points and ultimately provide better
representations of language for a variety of NLP tasks.

4 Approach

In addition to implementing a baseline BERT model that uses the Adam optimizer for sentiment clas-
sification and multitask classification, as outlined in the default project handout, we also implement
the SMART framework and our own slanted triangular learning rate method from scratch. Other than
the provided source code, all our code is our own. We will proceed by outlining our approach to each
sub-element of our framework.

1. Vanilla minBERT. We implemented a baseline minBERT model as outlined in the default
project handout. To ensure that we had a robust baseline on which to implement our two
extensions, we developed a vanilla model, which included (1) adding 2-3 linear layers to the
pooler outputs of the baseline minBERT model; (2) experimenting with utilizing ReL.U,
softmax, and sigmoid computations in the downstream tasks; and (3) finetuning on each of
the three downstream tasks.

2. Smoothness-inducing adversarial regularization. We implemented the smoothness-
inducing adversarial regularization and the momentum Bregman proximal point method by
integrating the algorithm provided in the default project handout with Jiang et al. (2020)’s
Algorithm 1 (see Appendix). Jiang et al. (2020) define the smoothness-inducing adversarial
regularizer as R(6) as follows:

n

Ra(0) == max  ((f(&:0), f(2:;0))

izl <e

where f(x;6) as a model associated with the parameter 6 that maps input sentences x to an
output space. Consider n points of the target task such that {(x;, y;)}?, and z; refers to
the embedding of the input sentences from the first embedding layer of BERT. Let y; refers
to the associated labels. A; > 0 and ¢ > 0 are tuning parameters. ¢ is the loss function
depending on the target task, which is chosen to be symmetrized KL-divergence. /; is
defined as follows:

ts(P, Q) = Dxu(P||Q) + Dx(Q| P),

where Dk 1, (P]|Q) is the KL-divergence of two discrete distributions P and @ such that
Drr(P||Q) = >, prlog(pr/qik). The associated parameter for P is pj, and the associated
parameter for @ is gy.

Smoothness-inducing adversarial regularization prevents the output of the model f
from changing even when a small perturbation is injected to z; by minimizing the
optimization defined as follows:

where £(6) is the loss function defined as:

3See|Howard and Ruder (2018) for full citations.



3. Momentum Bregman proximal point optimization (MBPP). As previously stated, our
implementation of the MBPP method is based on Jiang et al. (2020)’s Algorithm 1. Given a
model f(-;6) and n data points {(x;,y;)}},, we compute

011 = arg H%in F(0) + pDpreg (0, ét) M

where Dpyeg (6, ét) is the Bregman divergence, described by the equation below,
Direg (6, 01) = Zé (23 0), (2, 01)) )

and where > 0 is a tuning parameter and 6, = (1 — 3)0; + $0;_1.

4. Slanted triangular learning rate. We implement our own version of the slanted triangular
learning rate method based on the work of Howard and Ruder|(2018)).

Since the multitask classifier allows the model to train on different learning rates, our
implementation of the slanted triangular learning rate method uses the passed-in learning
rate as the initial learning rate then steeply increases the learning rate linearly to thrice the
learning rate in the first 20 — 25% of batches then gradually decreases the learning rate
linearly back down to the initial learning rate, as shown in the equation below:

3

10'0 (iter_num) + Ir if iter_num < 200
new_lr = i .
— 505 (iter_num) + (3.5 x Ir)  otherwise

S Experiments

5.1 Data

We are using the pre-processed datasets specified in the default project handout and provided via
the default project GitHub repository. The provided datasets are the Stanford Sentiment Treebank
(SST) dataset (11,855 examples), the CFIMDB dataset (2434 examples), a subset of the Quora
dataset (202,152 examples), and the SemEval STS Benchmark dataset (8628 examples). Sentiment
classification labels are predicted using BERT embeddings of the SST and CFIMDB datasets,
paraphrase detection is predicted using BERT embeddings of the Quora dataset subset, and sentence
similarity is predicted using BERT embeddings of the SemEval STS Benchmark dataset.

5.2 [Evaluation method

As described in the project handout, we evaluated the accuracy of our results using the pro-
vided model_eval_sst() and model_eval_multitask() functions in the evaluation.py file. The
model_eval_sst() and model_eval_multitask() functions are used to evaluate accuracies or correlation
at the end of each epoch for the train and dev sets. We made small adjustments to these functions
when manipulating the return values of the predicting functions, particularly for our implementation
of the SMART framework. The dev accuracies and correlation were noted for each version of the
sentiment classifier and multitask classifier BERT implementations to ensure we develop a strong
baseline with which to test extensions on. The accuracies and correlations are compared in the results
section below.

5.3 Experimental details

The following five model configurations were implemented: (1) Baseline, which is an implementation
of the multitask classifier as outlined in the default project handout that was finetuned only on
sentiment classification; (2) Vanilla, which is an extension of the Baseline model that is finetuned on
all three downstream tasks; (3) T-Vanilla, which is an extension of the Vanilla model that includes an
implementation of our slanted triangular learning rate method; (4) T-Bregman, which is an extension
of T-Vanilla that includes an implementation of the MBPP method; and (5) T-SMART, which is



an extension of T-Bregman that includes an implementation of smoothness-inducing adversarial
regularization.

Each of the 4 extensions of the Baseline model were pretrained with a learning rate of 1e — 3 and
a number of epochs € [2, 6, 10] and then finetuned with a learning rate of le — 5 and a number of
epochs € [2, 6, 10]. For one pretrain epoch, training time on all three datasets took approximately 2
minutes total, and for one finetune epoch, training time on all three datasets took approximately 18
minutes total. Our implementation of our slanted triangular learning rate method use the learning
rate parameter passed to the model to calculate the range of learning rates that the model will
use. Additional learning rates were experimented with, though the learning rates listed consistently
resulted in optimal performance.

5.4 Results

Accuracy and Pearson Correlation Scores from Test Leaderboard
SST test accuracy 0.502
Paraphrase test accuracy 0.674
STS test correlation 0.374

Figure 1 demonstrates the mean pre-training dev accuracies for the five different model configura-
tions, and Figure 2 demonstrates the mean finetuning dev accuracies for the five different model
configurations. We see that the extensions have improved accuracy of the paraphrase classification
and textual similarity classification tasks in comparison with the Baseline model, but all four
extensions perform more poorly in comparison with the Baseline model for the sentiment task.
T-Bregman performs the most poorly of all the extensions, which is expected, as T-Bregman includes
the MBPP method without the smoothness-inducing adversarial regularization method that Jiang
et al.| (2020) intend for MBPP to work with in tandem. T-SMART has similar but slightly less
optimal performance as compared to the Vanilla and T-Vanilla models, which may point to errors in
our from-scratch implementation of the highly complex algorithm as proposed by Jiang et al. (2020).

6 Analysis

Our five-model system intends to demonstrate how adjustments to the transfer learning process can
build upon one another and work in tandem as part of a transfer learning framework. The Baseline
model shows some success, but it is limited; by finetuning the model on three downstream tasks, the
Vanilla model improves upon the generalizability of the Baseline model and completes the transfer
learning process. Our extensions, the slanted triangular learning rate method and SMART, intend to
further improve upon the Vanilla model in order to make the model more resilient against overfitting.
Our slanted triangular learning rate method acknowledges the key role that hyper-parameters play in
the performance of a model and adjusts the learning rate according to the model’s performance. On
the dev set, we see that the slanted triangular learning rate method (as demonstrated by T-Vanilla)
improves the accuracy of the Vanilla model. However, we see that the slanted triangular learning
rate method cannot make up for a model framework that is in itself lacking; for example, the
T-Bregman model, which adds the MBPP method to the T-Vanilla model, performs poorly despite
integrating two extensions. This can be explained by the fact that the MBPP method performs best
in coordination with the SMART method, and therefore, we would not expect to see significant
increases in performance between T-Vanilla and T-Bregman.

Acknowledging the intended harmony of the MBPP method and smoothness-inducing ad-
versarial regularization, we would expect to see increased performance from the T-SMART model,
which includes the slanted triangular learning rate and the SMART framework, in comparison to the
four other models. However, T-SMART performs either similarly to or worse than the three other
extension models and performs more poorly than the Baseline model on the paraphrase detection and
textual similarity tasks. We credit this performance to the difficulty of implementing the SMART
method from scratch. Though Jiang et al.| (2020) present a reasonable, high level description of
their method, their work would be more informative for other researchers in the field of natural
language processing who already have experience with building transfer learning frameworks and
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Figure 3: Finetune Dev Sentiment Accuracies for T-SMART by Number of Epochs

have access to the infrastructure necessary to implement them. Handling memory and compute
constraints constituted a significant portion of our work toward the implementation of our framework.
In order to make progress in the development of our framework, we leveraged different computing
platforms and debugging methods. For example, after developing our Baseline locally, we trained
our model using Google Colab. When we found that Colab GPU limitations were insufficient for
running the Vanilla model on all three datasets, we continued to develop our framework while only
testing extensions on one classification task at a time. We then transitioned to training our model
using a virtual machine on the Google Cloud Platform and similarly tested our extensions on one
classification task at a time. While collecting some of our experimental data, we limited our model to
2 epochs due to compute limitations.

The impact of memory limitations is best demonstrated by Figure 3. Figure 3 visualizes
the performance of a smaller version of our T-SMART model that was fine-tuned exclusively for
sentiment classification on a subset of the data that was about 10% the size of the datasets that we
used for our other models. Due to the memory demands of the T-SMART method, we were unable to
train the model on any larger subset of the data. We would encounter CUDA memory limitations that
we were unable to solve. These limitations also prevented us from being able to finetune the model
on more than one downstream task at a time. However, we see that our implementation of T-SMART
shows promise, as Figure 3 demonstrates a gradual increase in accuracy over a small number of
epochs and a small set of training data points. We hypothesize that if had been equipped with the
ideal infrastructure for implementing the T-SMART method, our implementation would have seen a
level of success more similar to that proposed by Jiang et al.| (2020).

7 Conclusion

In the RO-BERT multitask classifier implementation, we have demonstrated the improvements in
model performance that finetuning on downstream tasks, applying a slanted triangular learning rate
method, applying the MBPP method, and implementing smoothness-inducing adversarial regression
have on a baseline minBERT model. However, the performance of these four model extensions did not
reach the levels of success reported by Jiang et al. (2020) or|[Howard and Ruder|(2018)), demonstrating
the difficulty of demonstrating replicability in natural language research and highlighting the need
for increased accessibility in the field of machine learning research in order for research insights
to extend their benefit to the real world. Future work on RO-BERT could involve identifying and
working with research mentors to better analyze replicability and researching modifications on these
model extensions to achieve improved performance on par with the work of Jiang et al. (2020) and
Howard and Ruder (2018).
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A Appendix

Algorithm 1, as presented by [Jiang et al./(2020) to describe their SMART framework (Jiang et al.|
2020).

Algorithm 1 SMART: We use the smoothness-
inducing adversarial regularizer with p = co and
the momentum Bregman proximal point method.

Notation: For simplicity, we denote g;(Z;, 0s) =
ﬁ Zzieg Vals(f(2i;05s), f(Ti;05)) and
AdamUpdatez denotes the ADAM update
rule for optimizing (3) using the mini-batch
B; I1 4 denotes the projection to 4.

Input: T the total number of iterations, X: the
dataset, 6y: the parameter of the pre-trained
model, S: the total number of iteration for
solving (2), o2: the variance of the random
initialization for Z;’s, T%: the number of itera-
tions for updating z;’s, : the learning rate for
updating Z;’s, 3: momentum parameter.

1: 61 < 6y

2: fort=1,..,T do

3: él — 61

4: fors=1,..,Sdo

5: Sample a mini-batch B from X

6: For all z; € B, initialize Z; < z; + v;

with v; ~ N(0, 021)

7: form=1,.,T; do
~ 9i(Zi,05)

s 9 < TaGoon L

9: T; + Hjz,_a) o <e(Ti +13i)

10: end for

11: Os+1 + AdamUpdateg(6s)

12: end for

13: Qt — és ~
14: 0t+1 — (1 — 5)05 + ﬂﬂt
15: end for

Output: 6p

10
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