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Abstract

For our project, we aimed to improve BERT’s performance on three downstream
tasks: Sentiment Classification, Paraphrase Detection, and Semantic Textual Simi-
larity. Our strategies were inspired by many proven methodologies as referenced
in this paper. Our implementation included cosine similarity, gradient surgery,
training interleaving, and pretraining on additional data. Our findings showed
that we were able to improve performance on all three tasks. We also found that
pretraining on additional data failed to improve the model, partly because the
dataset for our task was fundamentally too different from our other datasets. Our
findings show that gradient surgery, cosine similarity, and training interleaving are
viable improvements for our three downstream tasks.

1 Key Information
• Mentor: Rohan Taori
• External Collaborators : None
• Sharing project: No
• Team Contribution: See appendix C

2 Introduction

The evolution of Natural Language Processing (NLP) has been significantly advanced by the intro-
duction of new deep learning models, which have shown to be capable of both understanding and
generating authentic human language. Of these groundbreaking models, Bidirectional Encoder Rep-
resentations from Transformers (BERT) have proved to be innovative in the way that they pre-train
on a large corpus of text and fine-tune for specific NLP tasks. This model architecture has set the
framework for achieving peak performance across a variety of linguistic problems within NLP.

The original BERT paper states that BERT model uses the Transformer architecture, not the traditional
neural network architecture, to process sequences of words Devlin et al. (2018). This design choice
allows BERT to capture more context within written text, regardless of their position and difference in
the word sequence. With this, BERT can generate far better contextualized sequences than traditional
models, which aid in tasks requiring seemingly authentic human text generation. The BERT model’s
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downfall, with its large computational cost and model size, is deploying it within an environment
with a lack of computational resources. To solve this problem, our project develops a minimal and
deployable version of BERT, called minBERT.

The minBERT model is tailored to maintain its advanced contextual NLP capability, while optimizing
for computational efficiency and model size. Our goal is to implement the model and make sure
it performs well in three separate linguistic tasks. We start with sentiment analysis, aiming to
fine-tune minBERT’s sensitivity to context in written text, making it a versatile tool for businesses,
social platforms, and accurately gauging public sentiment. Next, we wanted to solve the problem of
paraphrase detection, where the goal is to understand the nuances of language, identifying when two
pieces of text are essentially saying the same thing but in different words. This is crucial for tasks
like summarizing content, detecting plagiarism, or optimizing search engines. Finally, we wanted
to address Semantic Textual Similarity (STS), measuring and interpreting the hidden feelings and
views within text, on a graded scale. In addition to our three standard tasks, we also aimed to include
three extensions which would improve the quality of our minBERT, including gradient surgery, loss
aggregation, and an additional dataset.

The technical goal of our project, and the general development of minBERT as opposed to BERT, is
to reduce computational load, implement more efficient memory usage, and allow for faster training
and tuning. As a result, minBERT will have many social effects such as accessibility to those with
limited hardware capabilities (educators, students, non-technical users, etc.), faster deployment for
international crises, the decrease of environmental footprint through lower power consumption, and
promoting access to advanced NLP tools for ethical AI development and legislation.

3 Related Work

In the rapidly changing field of Natural Language Processing (NLP), the development of BERT
has been a significant breakthrough, offering an advanced understanding of, and ability to generate,
human-like text. Our project builds upon this foundation, and extends BERTs application through
the use of extension, inspired by other research papers in the field of NLP. This section assesses the
various research papers that shaped our approach, focussing on advancements in BERT’s architectural
extensions, sentiment analysis, cosine similarity, and gradient surgery, each contributing to the final
iteration of our minBERT model.

3.1 Sentiment analysis of Chinese stock reviews based on BERT model:

Our first paper demonstrates an innovative application of the BERT model, using its bidirectional
technique for effective sentiment classification in a niche field. In the paper, Mingzheng et al. (2020),
the approach involved fine-tuning BERT on a subject-specific dataset, where certain hyperparameters,
including learning rate and batch size, could be optimized for classification performance for a specific
field. Particularly, their use of a linear layer function, paired with ReLU activation served a basis of
design inspiration for our STS task. By integrating similar strategies like fine-tuning on an additional
dataset (HuggingFace), and adjusting our learning rate (1e-5 to 1e-4), we tailored minBERT to
capture and classify sentiment nuances in various types of text.

3.2 Gradient Surgery for Multi-Task Learning:

Yu et al. (2020) assesses gradient surgery, crucial for reducing conflict between gradients from
different tasks in multitask situations, improved our project’s approach to training minBERT effi-
ciently. This method involves the calculation and adjustment of task-specific gradients to prevent
them from interfering negatively with each other, which facilitates smooth multitask learning. The
core mathematical technique used in gradient surgery involves projecting conflicting gradients onto a
plane where they do not oppose each other, as is shown in equation 7. This adjustment ensures that
the training process in multitask settings, like ours, benefits from the net improvement across other
tasks without the risk of gradient interference. By using this technique in our training process, we
were able to fine-tune minBERT on sentiment analysis, paraphrase detection, and textual similarity
tasks with substantial improvement in model performance for all tasks. The choice to include gradient
surgery, inspired by this paper, was instrumental in achieving learning and performance rates in our
project.
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3.3 A hybrid approach of Weighted Fine-Tuned BERT extraction with deep Siamese Bi –
LSTM model for semantic text similarity identification:

Incorporating cosine similarity into our project was inspired by this paper, creating a metric for
analyzing textual similarity Viji and Revathy (2022). Cosine similarity, defined mathematically as the
cosine of the angle between two nonzero vectors in a multi-dimensional space, serves as a measure of
orientation and not magnitude, making it useful for comparing text vectors from BERTs embeddings.
The equation relies on calculating the dot product of the vectors normalized by their magnitudes,
shown in equation 4. This result ranges from -1 to 1, where 1 indicates identical orientation (high
similarity). In our minBERT model, we used cosine similarity to improve the STS task, allowing
the model to understand semantic similarities between sentences with accuracy. By integrating this
with the embedding comparison layer, we adapted minBERT to generate embeddings that, when
compared using cosine similarity, returned relationships within nuanced text.

4 Approach

In our BERT model, we first create 3 separate linear layers to focus on the downstream tasks. Given
the challenges faced with multitask training as mentioned in the introduction, we understood that
there are challenges we would have to navigate in order to have optimal performance across all
three tasks. As we planned our approach to solve the following problems we decided to implement
multi-task finetuning by interleaving the training of the different tasks. We then evaluated other
strategies.

4.1 SST: Sentiment Classification

For our sentiment classification task, we make note of the fact that this is a multiclassification task.
Essentially, there are 5 categories for a input to be mapped to. Each phrase has a label of negative,
somewhat negative, neutral, somewhat positive, or positive. Our linear layer takes in an embedding,
which is of size 768. The output size is then of size 5, since there are 5 categories.

Each embedding is mapped to a probability score, which is then transformed into a prediction label
with the argmax function. For our loss function, we thought the default CrossEntropyLoss
function from torch was adequate, defined as:

ℓ(x, y) =

N∑
n=1

−wyn log

(
exp(xn,yn

)∑C
c=1 exp(xn,c)

)
· 1{yn ̸= ignore_index} (1)

4.2 PARA: Paraphrase Detection

For our paraphrase detection task, we first build a neural network capable of handling two
embeddings, with a single unnormalized logit as the output. The prediction label is a value of 0 or 1.
A value of 0 means the two inputs are not paraphrases of each other, while a score of 1 indicates
a paraphrase. It should be noted that the logit produced by the linear layer is unnormalized, and
therefore a continuous value from 0 to 1. Our linear layer concatenates both embeddings from
sentence A and sentence B, each of both size 768. This input of size 2 ∗ 768 is then passed through
our linear layer to give an (unnormalized) logit. This logit represents a probability, and as a result,
used the following equation to produce a prediction label, defined as:

σ(logit) = prediction (2)

However, we did not need to use the prediction label in our implementation. To train our model, we
first understood that our linear layer outputs logits, and we are dealing with a binary task. As a result,
we leveraged torch’s binary_cross_entropy_with_logits function for our loss function, defined as:

L(x, y) = − 1

N

N∑
i=1

[yi · log(σ(xi)) + (1− yi) · log(1− σ(xi))] (3)
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4.3 STS: Textual Similarity

For our textual similarity task, we use the take inspiration from Reimers and Gurevych (2019). As
such, we add a cosine similarity score feature onto our linear layer as the last entry. Given the
embeddings for sentence A for batch i, ai and sentence B, bi, without loss of generality, we can
extend this definition to tensors a and b for multiple batches. Similar to the implementation in
UKPLab (2023) (which is derived from Reimers and Gurevych (2019)), This represents the logits a
vectors as:

cosine_similarity(ai,bi) =
ai · bi

∥ai∥∥bi∥
(4)

However, we must also note that cosine similarity is defined to have a range of [−1, 1]. This is largely
unsuitable for our purposes because a score of -1 indicates an embedding of opposite magnitude is
present. So we normalize the cosine similarity scale to be from 0 to 1.

We then build a neural network 1 capable of handling two embeddings, with a single logit as the
unnormalized logit as the output. The prediction label ranges from varying similarity on a scale from
0 (unrelated) to 5 (equivalent meaning). It should be noted that this is also a continuous scale. The
approach by Viji and Revathy (2022) used euclidean distance. Our linear layer instead takes the
squared difference from sentence A and sentence B, each of both size 768. This input is then passed
through our linear layer to give an (unnormalized) logit. We also append the cosine similarity score to
the the end of the squared distance of the embeddings as an additional feature to the linear layer. We
then added intermediate layers with ReLU activation. Ultimately, we have a linear layer input:output
of (768 + 1 : 512 → ReLU → dropout → 512 : 256 → ReLU → 256):1. (see Appendix B)

Since, the output of our linear layer prediction function, a logit, represents a probability, and as a
result, used the following equation to produce a prediction label:

5 · σ(logit) = prediction (5)

We define our predicted label for batch i as ŷi and our true label as yi. Without loss of generality,
we compute the batch-wise loss of ŷ and y following the approach used by Reimers and Gurevych
(2019) via the MSE loss:

MSE(input, target) = MSE(ŷ, y) (6)

4.4 Further Implementations to Improve Performance

After analyzing our baseline performance when implementing our training loop, we contemplated the
reasons for our relatively poor performing model. We understood all three tasks were fundamentally
different, and as such, optimal parameters for one task could be at odds with another. As such, we
chose to implement gradient surgery in accordance with the package PCGrad Tseng (2020). The
mathematical expression for gradient surgery is (Yu et al., 2020) :

gi = gi −
gi · gj
||gj ||2

· gj (7)

We also adjusted our original training loop, which training on each dataset separately, to now used
batched samples from each dataset. Our improved training loop obtains a batch of training data for
each task per epoch. Meaning, that all the losses were ensembled together, albeit in different loss
functions which will be discussed later. Once all the loss functions were computed, we aggregated
our losses as described in Bi et al. (2022). Defining the total loss as

LTotal = LSST + LPARA + LSTS (8)

Finally, we noticed our sentiment task evaluation on the SST dataset was performing significantly
worse than the other two tasks . As a result, we chose to further train on a dataset that resembled the
SST dataset so the model can learn the relevant parameters before hand, and begin training with more
seen examples on the dataset. We were able to procure a dataset from Huggingface’s datasets module,

1via tutorial from https://pytorch.org/tutorials/beginner/basics/buildmodel_tutorial.
htmlPyTorch
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specifically yelp_review_full. Finding this dataset was inspired by the methodology in Zhang
et al. (2015), who trained on this sentiment task with 650, 000 samples. This dataset was ideal for our
needs since the reviews were normalized from 1 star to 5 star reviews, to 0 to 4. This was suited for
our task considering that the SST training dataset is formatted in the same way . As a result, we were
able to adapt our previously written code to readily adapt and train on this dataset. Our methodology
for doing so is as follows:

5 Experiments

5.1 Data

We used several datasets while fine-tuning our model across the three tasks.

Yelp Review dataset2 [Sentiment Analysis, pretraining]
This dataset consists of 700,000 full, multi-sentence Yelp reviews. The sentiment is analyzed on a
five point scale from 0 (very negative) to 4 (very positive). Using this dataset was ideal since it was
formatted nearly identical to our SST task.

Stanford Sentiment Treebank (SST) dataset3 [Sentiment Analysis]
This dataset consists of 11,855 single sentences extracted from movie reviews. These sentences were
parsed into individual phrases, which were given one of five labels (negative, somewhat negative,
neutral, somewhat positive, or positive) by three human judges.

CFIMDB dataset [Sentiment Analysis]
This dataset consists of 2,434 movie reviews which have a binary label of negative or positive.

Quora dataset [Paraphrase Detection]
This dataset consists of 400,000 question pairs with binary labels that indicate whether pairs are
paraphrases of one another.

SemEval STS Benchmark dataset [Semantic Textual Similarity]
This dataset consists of 8,628 pairs of sentences that vary on similarity from 0 (unrelated) to 5
(equivalent meaning).

5.2 Evaluation method

We have an evaluation metric for each task.

Task Metric Rationale

Sentiment Analysis Accuracy Given the labeled data, easy to compute
Paraphrase Detection Accuracy Given the binary labels, very easy to compute

Semantic Textual Similarity Pearson score Following original paper (Agirre et al., 2013)

2https://huggingface.co/datasets/yelp_review_full
3https://nlp.stanford.edu/sentiment/treebank.html
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5.3 Experimental details

As previously mentioned, we implemented a number of extensions. Our general methodology for
evaluating these adjustments was to compare our new model to our best model up until that point by
looking at performance on our metrics for our dev sets. In other words, our extension had to improve
our dev scores for us to accept it.

When we tested a new technique, we would pretrain our model by training over 10 epochs with the
default dropout rate of 0.3. Although this took much more time than simply comparing scores after a
single epoch, this allowed us to remove some sense of stochastiticy by giving the model more time to
converge on model parameters that we could safely compare.

5.4 Results

Our baseline scores for a "basic" model (that without any extensions) were:

Metric Value
SST dev accuracy 0.364
Paraphrase dev accuracy 0.686
STS dev correlation 0.252

Table 1: Standard Performance Metrics

Multi-task Fine-Tuning and Gradient Surgery
We implemented multi-task fine-tuning by restructuring our training to fine-tune on the three tasks
simultaneously. As previously shown, we would sum the losses for each task and then use gradient
surgery to handle conflicting tasks. Our results did improve on our basic model:

Metric Value (Change)
SST dev accuracy 0.459 (+0.095)
Paraphrase dev accuracy 0.684 (-0.002)
STS dev correlation 0.318 (+0.066)

Table 2: Gradient Surgery + MultiTask Performance Metrics

Cosine Similarity
Another implementation we added was using cosine similarity to improve training on Semantic Text
Similarity. This was only possible after we had refactored our model to train on the three-tasks
simultaneously. Our results continued to improve:

Metric Value (Change)
SST dev accuracy 0.457 (-0.002)
Paraphrase dev accuracy 0.687 (+0.003)
STS dev correlation 0.323 (+0.005)

Table 3: Cosine Similarity Performance Metrics

Additional Pre-training
We wanted to continue improving scores for all three tasks, so we decided to introduce additional
pre-training. We found a dataset from Yelp which seemed to be more domain-specific, but we found
that it made our scores worse. This surprised us, as we thought adding additional, domain-specific
data would drastically improve our model across all metrics.
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Metric Value (Change)
SST dev accuracy 0.443 (-0.030)
Paraphrase dev accuracy 0.680 (-0.033)
STS dev correlation 0.309 (-0.007)

Table 4: Yelp Performance Metrics

Final Results
Here are our final results on the test leaderboard after we fully fine-tuned our model compared to our
"basic" model.

Metric Value (Change)
SST dev accuracy 0.490 (+0.126)
Paraphrase dev accuracy 0.708 (+0.022)
STS dev correlation 0.707 (+0.455)

Table 5: Test Performance Metrics (all implementations active except for additional data training)

Two of our changes improved our model, but we were very surprised that our additional pretraining
made our model regress in performance. Upon further analysis, we realized that the data in the Yelp
dataset was not similar enough to our datasets used for sentiment analysis. While Yelp dataset had
the same labels as the Stanford Treebank dataset, the data itself was quite different. Specifically,
the Stanford Treebank dataset consisted of sentence phrases while the Yelp dataset consisted of full,
multi-sentence reviews. This mismatch likely caused our model’s performance to worsen.

6 Analysis

6.1 Our Improvements

After analyzing our results, we remain surprised on how little our extensions were able to improve
the overall performance of the model when not finetuning. On one hand, we expect that the gradients
of each task likely conflict with each other. Therefore, one task’s gain in performance may be another
task’s downturn. This issue was largely remedied by gradient surgery, courtesy of the PCGrad
package Tseng (2020). As a result, we recognize that gradient surgery did indeed improve the overall
performance of the model. We also saw benefit when combining the loss functions of all three tasks
when interleaving training as in equation 8.

Cosine similarity was another implementation that we saw significant improvement, especially when
fine-tuning the model. We also conclude that adding more layers intermediate layers for this task,
paired with dropout and ReLU activation likely boosted performance as well. As a result, it makes
intuitive sense for our combination of cosine similarity and increased linear layer complexity allowed
the model to grasp more complex relationships in the data.

6.2 Our Shortcomings and Possible Explanations

We were most surprised by our regression in our performance when incorporating additional pretrain-
ing on the YELP dataset. The YELP dataset was ideal to plug into our model since it was perfectly
formatted for our needs. The dataset was in English and had sentiment scores on the same scale as the
SST dataset. Intuitively, we would expect, at worst, for the PARA and STS tasks to regress as a result
of this emphasis on the sentiment task. After analyzing our results, we have come to a conclusion
that although the data is formatted the same way, it not necessarily the same content being trained on.
There are two possible culprits for this lack of improvement:

• Textual sample length Looking at the first entry of the YELP dataset, and the first entry of
the SST training dataset we likely see our first problem:
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Dataset Sentence

YELP Dr. Goldberg offers everything I look for in a general practitioner. He’s
nice and easy to talk to without being patronizing; he’s always on time in
seeing his patients; he’s affiliated with a top-notch hospital (NYU) which
my parents have explained to me is very important in case something
happens and you need surgery; and you can get referrals to see specialists
without having to see him first. Really, what more do you need? I’m
sitting here trying to think of any complaints I have about him, but I’m
really...

SST The Rock is destined to be the 21st Century’s new ’Conan’ and that
he’s going to make a splash even greater than Arnold Schwarzenegger,
Jean-Claud Van Damme or Steven Segal.

Table 6: Sentences from the YELP and SST datasets.

The YELP samples are significantly longer in length than the training samples provided.
As a result, it is more difficult for the model to generalize a larger sample and therefore,
likely leads to poorer performance. This pattern repeats itself for many of the samples in
both datasets. In addition, sentiment may not be equivalent the "sentiment" defined in the
YELP dataset, since it is used more as a review score.

• Insufficient Training Due to the sheer number of samples, We only train on a random
sample of 1% of the available YELP dataset for 5 epochs. As a result, there is not only a
large sentence to generalize, but not enough time to do so. This training time was largely
decided by virtual machine and time constraints:

7 Conclusion

In our work, we experimented with different strategies to improve BERT’s performance on 3 down-
stream tasks: sentiment classification, paraphrase detection, and semantic similarity. We implemented
cosine similarity, gradient surgery, additional pretraining, and loss aggregation to improve our model.
However, we were surprised to receive relatively modest gains from our baseline implementation.
Meaning, there may have been an unforeseen error in our implementation. There is also the possibility
that the extensions we implemented are not as compatible as we had thought, due to a variety of
reasons mentioned in the analysis portion of this paper. We were able to achieve decent performance
results with our implementation, but still fall short in making BERT capable of multitasking of high
performance across all tasks. We are particularly satisfied by our performance on the paraphrase
task, which may be due to the large amount of trainable data. On the other hand, if we had access
to more powerful GPUs, additional time, etc, we would have liked to explore how the adjusting the
batch size and other parameters (such as learning rate) affects the performance of the model as well
as implement and experiment with regularization. We also learned that there are instances where a
model’s parameters can benefit one task, but simultaneously regress another. We also learned that
just because a dataset is formatted similarly to a task, it does not automatically make it viable for
pretraining. With these lessons, we are confident we can improve upon our findings given more time
and resources.
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A Appendix

B Vector Visualization

Let sentiment analysis linear layer input be the vector given by

v = (embedding)

Let paraphrase detection linear layer input be the vector given by

v =

(
embedding1
embedding2

)
Let text similarity linear layer input be the vector given by

v =

(
(embedding1− embedding2)2

(cosine similarity score + 1)/2

)
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