Task-specific attention

Stanford CS224N Default Project

Enzo (Chaoqun) Jia
Department of Computer Science
Stanford University
enzojia@stanford.edu
enzo.jiaOgmail.com

Abstract

In this paper I explore applications of task-specific attention mechanism, which
takes BERT foundation model output and is intentionally overfitted for each task.
Experiments proved that this mechanism can help to improve model performance
when finetune data is relatively large. Corresponding training cost is not sig-
nificantly higher compared to traditional finetunes. In this project, task-specific
attention layers improve paraphrase detection accuracy from 0.551 to 0.842, with a
10% increase of finetune training time.

1 Key Information to include

* Mentor: N/A.
* External Collaborators (if you have any): N/A.
 Sharing project: N/A.

2 Introduction

2.1 Introduction

BERT (Bidirectional Encoder Representations from Transformers) is designed to be a foundation
model which supports different applications, including but not limited to sentiment analysis, para-
phrase detection, and semantic textual similarity [Devlin et al.|(2019). For each document (sentence),
BERT produces one document representation which is the self-attention block output corresponding
to the first token, and this representation is fed to downstream applications. For example, for sentiment
analysis one sentence’s representation is fed to a linear layer, and for paraphrase detection we will
need representations for two sentences.

In this design, we need the attention block output of only one token to construct a document’s
representation, because as BERT’s name indicates it is_a bidirectional encoder model using self-
attention as its building blocks, as shown in equation [1/and[2 X € R™*4 is the input sentence
embedding matrix, Q € RP*? is the query transformation, ' € RP* is the key transformation,
V € RP*4 ig the value transformation, A € R%*? and h is number of heads. As the final output
Y € R™*4 has the same dimension as the input matrix, the final architecture of the model can stack
multiple layers of self-attentions. I will not repeat (too much of) what is illustrated in the original
paper Devlin et al.| (2019) and CS224N lecture notes.

Y, = softmax(W) (XV}) (1)
Y = [Yi;...;Y,]A 2

Stanford CS224N Natural Language Processing with Deep Learning

BERT return pretrain/ | sentiment | paraphrase | STS Train
finetune | dev acc dev acc dev corr | time (sec)
Part1 first token pretrain 0.389 0.401 0.298 15006
output finetune | 0.504 0.595 0.587 37183
Baseline | mean sentence pretrain | 0.460 0.386 0.643 15608
perf output (masks excl’d) | finetune | 0.515 0.561 0.854 38161

Table 1: Results on dev datasets, utilizing BERT’s outputs on each sentence’s first token vs. the
whole sentence. One T4 GPU on Google Cloud was used for each task in each experiment.

The purpose of having equations [T|and 2 here is to demonstrate that the first column of final layer
output, which corresponds to the first token and is used as the whole document’s representation,
contains information from all other non-masked tokens in the same document.

2.2 Motivations

In above section 2.1 I demonstrated that in theory, when number of self-attention layers is large
enough, final output of the first token’s attention block is representative for the whole document.
Are 12 and 24 large enough? An experiment answers this question. Table[2.2] gives BERT model’s
downstream task performances under different settings. Row "first token output" corresponds to
the scenario of using BERT’s ’vanilla’ output which is self-attention output of the sentence’s first
token, which in the case of this project is a prepended [CLS] token. On the contrast, results in "mean
sentence output" row utilizes mean of the whole sentence’s all tokens’ outputs, after excluding masked
tokens. Here we see how the "mean sentence output" helps the STS (semantic textual similarity)
task’s performance, and this improvement indicates that attention outputs corresponding to tokens
other than the first one also have information which is not collected by the first token’s output.

Please note in table@], for finetune rows, each downstream task was trained for this task only, without
finetuning for other two tasks. This is because finetune optimizes foundation model’s parameters
for this specific task, and this optimization does not necessarily work for other tasks. The train time
in this table is sum of 3 finetuning procedures’ running times. To keep train time of pretrain rows
comparable to finetune rows, I also ran pretrain procedures 1 time for each task and sum 3 run times.

Instead of taking mean of the whole sentence’s attention value, I propose arranging different weights
to tokens in the sentence for aggregation — that is what attention does. Detailed discussion on
approaches can be found in section 4]

2.3 Baseline performance

Because purpose of this exploration is to test attention layers’ capability to collect information
distributed in the whole sequence, I use row "mean sentence output (masks excl’d)" in table [2.2]as
baseline, which collects information in the whole sentence in an euqally-weighted fashion.

3 Related Work

Related work on BERT and other transformer-architecture large models have been introduced in
CS224N lectures, so here I focus on using attention blocks outside of the foundation model. This
straightforward idea is very possibly already explored by other researchers, however a *quick’ search
did not find scholar papers discussing about it. My guess to explain the lack of related works include:

1. Additional attention layers may not significantly improve models’ performance. If true, this
may be caused by the fact that foundation models already have multiple attention layers and
have exhausted the potential capability of attentions.

2. Attention layers/blocks are resource-consuming to train, so adding them outside of the
foundation model may not be meaningful because end-users don’t have enough data and
computing resources to train the layers.

4 Approach

4.1 Loss functions

The focus of this project is exploring whether task-specific attentions help a large model’s performance,
so I select loss functions in a straightforward way.

1. Cross entropy for sentiment analysis. Sentiment analysis is an ordinal classification problem
which can be simplified to be a categorical classification problem, so cross entropy loss is
an intuitive choice. However this setting does not use all information we can obtain from
ordinal sentiment labels, so I put "loss function exploration" in the future works list.

2. Binary cross entropy for paraphrase detection, which is a binary classification problem.

3. Negative Pearson correlation for semantic textual similarity analysis, which is an ordinal
classification problem.

4.2 Task-specific attention

Second row of table @] takes mean of the whole sentence’s attention output, which hurts the
paraphrase detection task’s performance, and that motivates the author to collect information from
each token’s output in a smarter way. To be specific, I use one or multiple self-attention layer(s) for
sentiment analysis, one or multiple cross-attention layer(s) for paraphrase detection, and another
one or multiple cross-attention layer(s) for semantic textual similarity analysis. Having this strategy
is because sentiment analysis works on one sentence, and the other two tasks are comparing two
sentences. All these attention layers are implemented outside of BERT model and are trained in a
task-specific fashion.

4.2.1 Attention outputs

For each sentence I take the last task-specific attention layer’s output corresponding to the first token
([CLS] token) as the whole sentence’s encode. This is Y[:, 0] extracted from Y in equation which
uses a softmax to distribute weights to all tokens’ transformed values calculated from previous layer’s
output. Meanwhile because output corresponding to pad tokens are masked, what I finally get is a
weighted mean of the sentence’s all tokens’ previous attention outputs.

4.2.2 Attention initialization

Without initialization of attention layers’ weights, for sentiment analysis and paraphrase detection,
task-specific attentions do not help, and on the contrast addition of these layers lowers corresponding
dev performance scores. This can be explained by item #2 as discussed in section [3] that attention
layers require large amounts of data to train, however my training datasets for these two tasks are
small. Considering another fact that in table [2.2]taking mean of a whole sentence’s tokens’ encode
improves model performance, which indicates a special case of uniformly distributed attention
(without value transformation), I add another series of experiments which have attention layers
initialized to have their weight entries close to each other. This initialization results in softmax output
close to a uniform distribution, and meanwhile weight entries are not equal so the optimizer can
update them. A uniform distribution /(0.9, 1) is used for weight initialization.

4.3 Implementation details

1. For each of the 3 downstream tasks, the upstream output tensor is further transformed by a
linear layer. For sentiment analysis the final output is a 5-element softmax probability tensor,
and for each of the other 2 tasks the final output is a scalar produced by a dot multiplication
between two input sentences’ transformed upstream output encodes.

2. In cross-attention implementation, I align the two sentences by padding the shorter one to
the length of the longer one. This is for implementation convenience and doesn’t impact
prediction performance.

5 Experiments

Because the purpose of this exploration is to test whether extra attention layers on top of BERT bring
performance improvements, I control Data and most experimental settings as discussed in subsection

5.1 Evaluation method

To better understand two possible reasons for the lack of related work on task-specific attention
mechanism, as discussed in section[3] this exploration looks into two metrics:

1. For recognition performance I will use the same metrics as demonstrated in table [2.2(accu-
racy for sentiment analysis and paraphrase detection, and Pearson correlation for semantic
textual similarity). These metrics will be collected on test datasets.

2. For computational resource requirement I record running time on one Nvidia T4 GPU to
finish corresponding tasks. I don’t expect a significant change in this metric, as both baseline
and new experiments have the same training time complexity of O(n?) for each sentence
in each epoch, where n is number of tokens in one sentence. The required large amounts
of resources discussed in section [3]come from processing large amounts of data. Because
the three downstream tasks are trained separately, I record running time as the sum of three
training times.

5.2 Experimental details

For this project I control experiment settings, except task-specific attention settings, to be the same
across all 3 experiments: baseline, experiment #1, and experiment #2, corresponding to 1st row, 2nd
row, and 3rd row in result table[5.3] respectively. Controlled settings include:

* Loss function: cross entropy for sentiment analysis, binary cross entropy for paraphrase
detection, and negative Pearson correlation for semantic textual similarity analysis.

* Data: Stanford Sentiment Treebank data for sentiment analysis, Quora dataset for paraphrase
detection, and SemEval STS Benchmark dataset for semantic textual similarity analysis.

* Optimizer: all experiments for all tasks use AdamW optimizer.
* Learning rate: le — 3 for pretrain and le — 5 for finetune.

* Number of epochs: 10 epochs for pretrain, and 10 epochs for finetune.

Differences between baseline vs. experiment #1 vs. experiment #2 are in task-specific attention
settings, and can be found in table[A] that baseline has no task-specific attention layer, experiment #1
has uninitialized task-specific attention layers, and experiment #2 has task-specific attention layers
with their weights initialized under uniform distribution /(0.9, 1). Number of layers of task-specific
attention varies for three downstream tasks.

5.3 Results

Experiment results are collected and organized in table My best test leaderboard submission
was an assembly including experiment #2 output for sentiment analysis, experiment #1 output
for paraphrase detection, and baseline output for semantic textual similarity analysis. This
submission was scored at (0.524 +0.842 4 1.826)/3 = 0.759, and ranked #30 out of 80 submissions
on March 15th, 2024.

In table[5.3] *Train time (sec)’ column records sum of three downstream tasks’ training times for each
row, in seconds. Also *Train time vs. baseline’ is the ratio between the train time in that row over
corresponding train time in the baseline row.

Table[5.3]is further discussed in section [f] to answer questions including why paraphrase detection
sees a significant score improvement while the other two tasks don’t.

Processing on || pretrain/ | sentiment paraphrase | STS Train | Train time

BERT return finetune / | accuracy accuracy correlation || time Vs.
test (sec) baseline
Baseline mean sentence || pretrain 0.460 (dev) | 0.386 (dev) | 0.643 (dev) || 15608 | 1
output (masks || finetune 0.515 (dev) | 0.561 (dev) | 0.854 (dev) || 38161 | 1
excl’d) test 0.517 0.551 0.826
Experiment | Uninitialized pretrain 0.253 (dev) | 0.469 (dev) | 0.251 (dev) || 18086 | 1.159
attention finetune 0.509 (dev) | 0.843 (dev) | 0.822 (dev) || 41827 | 1.096
test 0.533 0.842 0.791
Experiment | Initialized pretrain 0.262 (dev) | 0.429 (dev) | 0.148 (dev) || 17648 | 1.131
attention finetune 0.539 (dev) | 0.838 (dev) | 0.386 (dev) || 41036 | 1.075
test 0.524 0.839 0.374

Table 2: Final results on dev and test datasets. One T4 GPU on Google Cloud was used for each task
in each experiment.

sentiment | paraphrase | STS

Baseline 3840 0.59M 2.36M
Experiment #1 & #2 | 4.72M 3.54M 11.2M

Table 3: Number of task-specific parameters to train for each task in each experiment.

6 Analysis and discussions

6.1 Number of task-specific parameters

In baseline models, each task has one linear projection layer, which is 768 by 5 for sentiment analysis,
768 by 768 for paraphrase detection, and 768 by 3072 for semantic textual similarity analysis. These
linear projection layers also exist in experiment #1 and #2. In each self-attention block, there are four
linear projection layers, three of which are for transformation of query, key, and value matrices, of
size 768 by 768, and the fourth one is another 768 by 768 layer for transformation of final output.
Each cross-attention block is similar to a self-attention block in parameter settings, but with one more
768 by 768 linear layer for intermediate transformation. In each of experiments #1 and #2 there are
two self attention layers for sentiment analysis, one cross attention layer for paraphrase detection, and
three cross attention layers for semantic textual similarity analysis. With all the above information
we get the number of task-specific parameters in table[6.1] So for experiments with task-specific
attentions there are 4.72M/3.54M/11.2M parameters to train, for each task respectively, and this
echos concern item #2 as discussed in section [3] that training task-specific attentions require large
amounts of data and corresponding computing resources.

There is one note for paraphrase detection task. Training data for this task has 17688 labeled pairs of
sentences, and this is a relatively large data set compared to other two tasks, as sentiment analysis has
1068 labeled sentences and semantic textual similarity analysis has 755 labeled pairs of sentences.
With a larger amount of training data, and longer training times which indicate larger amounts of
computational resources, paraphrase detection task is benefited the most from addition of task-specific
attentions and has its test accuracy increased from 0.551 to 0.842.

6.2 Performance: experiment #1 vs. baseline

For sentiment analysis and semantic textual similarity tasks, experiment #1°s test scores increase by
0.013 and -0.035, respectively, both of which are relatively small. On the contrast, for paraphrase
detection task, experiment #1’s uninitialized task-specific cross-attention layer helps to increase
detection accuracy from 0.551 to 0.842, which is a significant improvement. In subsection [6.1]I
discussed about three tasks’ different amounts of performance improvements by examining numbers
of parameters and training data sizes, and in this subsection the discussion is from a different
perspective.

Improvement in paraphrase detection task’s score proves that the task-specific cross-attention layer
has a better capability than a simple mean in collecting information from all token’s encodes.
However why this better capability doesn’t work as well for the other two tasks? I looked into
the test leaderboard for best scores for the 3 tasks, that by March 15th 2024, the best scores were:
0.557 for sentiment analysis, 0.9 for paraphrase detection, and 0.891 for semantic textual similarity
analysis. Comparing these best scores to my baseline test scores, we see that for sentiment analysis
and semantic textual similarity analysis, my baseline scores are > 90% of best scores. This can
be interpreted as that for these two tasks, a simple mean of all tokens’” BERT encodes is already
capable of extracting most information out, and there is not much potential left for a weighted mean
to improve each task’s performance. However for paraphrase detection a simple mean only catches
0.551/0.9 = 61% of the best submission score, this leaves a large amount of improvement potential
for a weighted mean, which can be implemented by task-specific attention layers.

6.3 Performance: experiment #1 vs. experiment #2

For all three downstream tasks, experiment #2’s test scores are lower than experiment #1’s, indicating
that initialization of task-specific attention weights does not help to improve application performances.
There are two different scenarios among the three tasks, and one possibile scenario not observed in
this exploration:

* For sentiment analysis and paraphrase detection tasks, experiments with and without weight
initialization produce close score values. This indicates that parameter searches for both
experiments may arrive at the same local optima. Under this scenario initialization does not
help to improve model performance.

* For semantic textual similarity analysis, initialization of attention weights reduces test score
(label vs. prediction Pearson correlation) from 0.791 to 0.374. This can be explained that
initialization of weights leads the optimizer to arrive at a different local optima, where the
model performance is not as good.

* There is another possible scenario that, initialization may lead to a better-performing local
optima.

Conclusion of this subsection: when resources allow, trying different initialization settings has
the potential to help improve the model’s performance on tasks, however if there is not redundant
resource, I recommend using uninitialized task-specific attention.

6.4 Training time

Compared to baseline, both experiments #1 and #2’s training times increase between 7% and 16%.
This quantifies the discussion in section [5.1] that addition of task-specific attentions increases
computational resource requirement for training, but not by a significant margin because of the same
O(n?) training time complexity for both baseline and experiment #1/4#2 settings.

Experiment #1 costs more time than experiment #2, for both pretrain and finetune training scenarios.
This indicates that the initialization method which uses /(0.9, 1) makes starting point of the attention
layers to be closer to a local optima, though this closer local optima may not be the same one the
optimizer would arrive at without an initialization precedures.

6.5 Performance: loss function for STS

Two loss functions were evaluated on training and dev data for semantic textual similarity analysis.
Using an MSE loss results in dev Pearson correlations between 0.3 and 0.4, under different other
settings. A customized negative Pearson correlation loss improves result dev Pearson correlation to
be above 0.8, as shown in table

6.6 Discussion: task-specific attention vs. more attention layers in the foundation model

With multiple attention layers added, a question is raised that, why don’t we directly use a foundation
model with more attention layers, e.g. BERT with 24 attention blocks? The answer is yes we can use
a bigger pretrained foundation model, and meanwhile this does not stop us from trying task-specific

attention mechanism. The reason is that task-specific attention is trained more precisely for one type
of tasks, so it’s intentionally overfitted and can not be generalized to other types of tasks. This is
why this mechanism is different from attention blocks inside foundation models. When the finetune
dataset is large enough we always want to further explore the remaining potential in a foundation
model’s outputs.

7 Conclusion

Task-specific attention helps to collect information from the whole document’s tokens’ encodes in
an efficient way, so this is a method worth being tried when building an application of a foundation
model. This mechanism has a higher probability to succeed when finetune data size is large. However
the author wants to emphasize that task-specific attention is a downstream mechanism on top of results
by finetuning the foundation model, so the scientist or engineer who is designing the application
shall first focus on upstream tasks, including foundation model selection, task loss function design,
etc., and then use task-specific attention mechanism as an easy add-on option to check whether the
upstream outputs have remaining information which can be captured by this machanism.

8 Future works

There is a list of items not included in my experiment plan because of limited time for this exploration,
including:

* Different loss functions, especially for sentiment analysis. Cross entropy loss sees model
outputs as categorical classfication results, however for sentiment analysis the label is ordinal
data, with more information unused.

* More training data, including CFIMDB data for sentiment analysis.
* Different foundation models.
* Different experiment settings, including different optimizers, learning rates, etc.

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language understanding.

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805

Processing on sentiment paraphrase STS

BERT return
Baseline mean sentence no attn no attn no attn

output (masks excl’d)
Experiment | Uninitialized 2 self-attn layers | 1 cross-attn layer | 3 cross-attn layers
#1 attention no initialization | no initialization | no initialization
Experiment | Initialized 2 self-attn layers | 1 cross-attn layer | 3 cross-attn layers
#2 attention init: (0.9, 1) init: ¢4(0.9, 1) init: ¢/(0.9, 1)

Table 4: Experiment settings. Attention here refers to task-specific attention layers, not layers in

BERT.

A Appendix (optional)

	Key Information to include
	Introduction
	Introduction
	Motivations
	Baseline performance

	Related Work
	Approach
	Loss functions
	Task-specific attention
	Attention outputs
	Attention initialization

	Implementation details

	Experiments
	Evaluation method
	Experimental details
	Results

	Analysis and discussions
	Number of task-specific parameters
	Performance: experiment #1 vs. baseline
	Performance: experiment #1 vs. experiment #2
	Training time
	Performance: loss function for STS
	Discussion: task-specific attention vs. more attention layers in the foundation model

	Conclusion
	Future works
	Appendix (optional)

